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Abstract—Traditionally, end-to-end testing of mobile apps
is either performed manually or automated with test scripts.
However, manual GUI testing is expensive and slow, and test
scripts are fragile for GUI changes, resulting in high maintenance
costs. Scriptless testing attempts to address the costs associated
with GUI testing. Existing scriptless approaches for mobile testing
do not seem to fit the requirements of the industry, specifically
those of the ING. This study presents an extension to open source
TESTAR tool to support scriptless GUI testing of Android and
iOS applications. We present an initial validation of the tool on an
industrial setting at the ING. From the validation, we determine
that the extended TESTAR outperforms two other state-of-the-
art scriptless testing tools for Android in terms of code coverage,
and achieves similar performance as the scripted test automation
already in use at the ING. Moreover, we see that the scriptless
approach covers parts of the application under test that the
existing test scripts did not cover, showing the complementarity
of the approaches, providing more value for the testers.
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I. INTRODUCTION

Software development is a trillion dollar industry suffering
from the high costs associated with software failures. Software
testing is an important technique to assure quality and reduce
the cost of failures. The rapidly-growing mobile application
market[1] has created an urgent demand for testing techniques
to assure the quality of Android and iOS applications.

Testing at the Graphical User Interface (GUI) level is a
crucial part of the overall testing process. Manual GUI testing
is slow and expensive [2]. Therefore, tests are often automated
with scripts that can be automatically executed. Scripts reduce
the need for manual GUI testing, but when the AUT changes,
the scripts require maintenance effort [3]. In addition, GUIs
tend to have a large state space, so creating scripts to cover all
the possible paths of the AUT is usually an infeasible effort.

Scriptless testing [4] is an approach that could potentially
reduce the amount of scripted test cases and the related
maintenance effort. It is a process in which the tests are
both generated and executed automatically on-the-fly, saving
resources and time. There are, however, still a few challenges
that have to be addressed to effectively apply the approach in
an industrial setting.

The first challenge is the oracle problem [5], [6]. Oracles
are components that distinguish whether the AUT has quality
issues (failures) or meets the requirements specified [5]. The
literature on oracles for automated testing is limited and almost
non-existent for scriptless testing [6]. However, test oracles

significantly contribute to test effectiveness and reduction of
costs [7].

The second challenge is that with real applications, the user
has to provide application or domain specific information to
the tool to get a good coverage during automated GUI explo-
ration. The flexibility to add domain-specific AUT information
to the scriptless testing tool is an important aspect for industrial
take-up.

The third challenge is related to the availability and main-
tenance of the tools themselves. The majority of the available
scriptless GUI testing tools for Android are academic tools
that are neither well maintained and established, nor properly
verified on industrial-grade software applications. The situa-
tion is even worse for iOS applications. Industry take up of
academic tools is more likely for tools that have open source
licenses, are actively maintained, and come with case studies
showing that the tool can be used in an industrial setting.

The state-of-the-art study of scriptless approaches for mo-
bile application testing (see Section II) did not provide a suit-
able candidate for the context of the ING (i.e., effective cre-
ation of oracles, flexible addition of AUT-specific information,
open source and maintained, demonstrated application in an
industrial setting). No active open source projects for scriptless
mobile GUI testing that would suit the requirements were
found. Hence, the next option was extending an active open
source scriptless GUI testing tool that supported desktop and
Web applications but not yet mobile applications. TESTAR
tool[4] was chosen since it matched the other requirements
and had already been studied in industrial contexts and shown
to be a valuable addition to the testing process [8], [9], [10],
and some of the authors were already familiar with it.

The contributions of this paper include: 1) implementing
support for testing Android and iOS applications into open
source TESTAR tool, 2) evaluating performance of the ex-
tended TESTAR on an Android application of the ING and
comparing the results with two other scriptless testing tools
and existing scripted test automation of the ING.

The results of this paper show that our approach outper-
forms the other evaluated scriptless Android testing tools, and
reached a comparable level of code coverage with the existing
test scripts of ING. However, the combined code coverage
of TESTAR and test scripts was significantly higher than
with either approach alone, indicating that scriptless testing
complements test scripts.
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II. SCRIPTLESS GUI TESTING

This section describes the main characteristics and evaluates
the existing tools for scriptless testing of mobile applications.

A. Action Selection Mechanisms (ASM)

The action selection mechanism (ASM), or exploration
algorithm, is a core aspect of scriptless testing as it determines
how the actions are selected to generate test sequences. With
an ineffective ASM, a large part of the application might stay
uncovered, and therefore untested, compared to a smarter or
more suitable mechanism.

Random (RND) is the most basic ASM [11], [12]. It arbitrar-
ily selects one action out of all possible actions in the current
state. Least executed actions (LEA) [13], also called frequency-
based algorithm [14], selects one of the least explored UI
elements from the current state and executes an action on that
element. It requires counting how often all the UI elements
were clicked over all states. Prioritize new actions (PNA) [15]
improves RND by selecting an action in the current state that
was not available in the previous state.

More advanced ASMs require some sort of memory or
model to remember what has been explored and which actions
have been taken. A state model [4] can be used for this, but
then a concept of state is required. Moreover, state abstraction
is needed to allow skipping unnecessary details in the test
sequence generation.

Random biased by predicted probabilities (RBPP) [13],
[16] uses a learned or mined interaction model to predict
the probability of a user choosing each possible action in
the current state and then uses these probabilities as bias for
random selection.

Unvisited action first (UAF) [17], [18] looks at the current
state for actions that have not yet been visited. From these
unvisited actions, it selects at random. If there are no unvisited
actions in the current state, it uses a state model to obtain a
sequence of actions that leads to a state with unvisited actions.

Breath-First-Search (BFS) or Depth-First-Search (DFS)
ASMs aim at systematically exploring the AUT. In BFS all
actions of the current state are executed, and the resulting
states are saved on a stack. Once all actions have been
executed, the top state is pulled from the stack and the process
starts over. In DFS, each a new action is executed when it is
found. This continues until reaching a state without unexecuted
actions. The algorithm then proceeds to revert one state and
continues. This stops when no new states are discovered.

Reinforcement Learning (RL) [19] fits perfectly with script-
less testing. The objective of RL is to guide an agent in
the process of learning what action to take under different
circumstances. Executing an action in a specific state provides
the agent with a reward. The action that is optimal for each
state is the action that has the highest reward. In GUI testing,
higher rewards can be given, for example, to actions that cause
more changes to the states [20], [21], to actions that increase
state coverage and crash detection [22], to different types of
actions [23], to actions that have not been executed yet [24],

[25], or to actions that are most likely to be executed by users
on similar applications as the AUT [16], [26].

Metaheuristic search-based optimization (MSBO) mimic
some natural process (e.g., evolution [27] or ant colonies
[28], [29]) that improves over time in an attempt to search
an optimal solution. For GUI exploration this means that test
sequences are generated for which the performance is mea-
sured. From the difference in performance, the optimization
algorithm learns to create better test sequences.

Combinatorial (Com) [14] algorithms try to generate se-
quences to maximise the coverage of n-way event combina-
tions. The objective is to minimise redundant execution of
events and test as many unique event combinations as quickly
as possible.

B. Test oracles for scriptless testing

The goal of testing is to find failures in the AUT, and the
mechanism to detect them is to define test oracles [5]. Test
oracles significantly contribute to test effectiveness and reduc-
tion of costs [7]. In scriptless testing, test oracles are more
difficult to define, because the test sequences are generated
on-the-fly, during the execution.

Test oracles for scriptless testing can be classified into
online and offline oracles [30]. Online oracles are evaluated
during the test execution, and can be used also as a stopping
criteria for the test execution. Offline oracles are applied after
the test sequences have completed running, e.g., validating
the state model discovered by the test sequences. In [5], test
oracles have been classified into four categories. Below we
describe what each of them means for scriptless GUI testing.

Specified oracles use a specification of the AUT, defining
what behaviour is acceptable and what behaviour is faulty.
In GUI testing that could be, for example, a predefined state
model where all transitions are defined. If an action results
in a different transition than specified in the state model,
a failure has occurred. Specified oracles are not commonly
used in scriptless testing, except when based on invariants
or very specific system properties. In these cases, specified
oracles can be leveraged in scriptless GUI testing and require
only a little domain knowledge to be inserted into the oracle.
An example of a specified offline oracle in scriptless testing,
implemented by querying the inferred state model to find
faults after the scriptless test execution, is checking whether a
website conforms to accessibility standards [30].

Derived oracles are based on the information derived from
artefacts, e.g., documentation, system executions, or other
versions of the AUT. An example in GUI testing would be
using inferred state models derived during scriptless testing
to check the consistency of consequent versions of the same
AUT [31], [18].

Implicit oracles rely on general or implicit knowledge to
determine whether an application is in a faulty state or not.
They can be applied to almost any AUT and require little
maintenance if the AUT changes over time [5]. A common
implicit online GUI test oracle is detecting when the AUT
crashes. This is a simple oracle that can be found in almost all
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scriptless testing tools that have a fault detection component.
Similar oracles would be detecting whether the AUT becomes
unresponsive, or whether there are unhandled exceptions or
other warnings or error messages in the GUI, system output,
or logs during testing.

Human oracles are not automated oracles but rather support
systems to make it easier for humans to determine the correct-
ness of the AUT. Human oracles are not suitable for scriptless
online oracles, as it would require a human to be present
and interact with the scriptless testing tool during the test
execution. An example of an offline human oracle would be
analysing the behaviour of the SUT by visual assessment of the
inferred state models, after the scriptless test execution. That
would require visualisation of the state model, for example
using screenshots automatically captured during testing.

C. Domain or application-specific information

To get a good coverage during automated GUI exploration,
the scriptless testing tool might need domain or application-
specific information, for example username and password for
a login screen.

The flexibility to add domain-specific AUT information
to the scriptless testing tool is an important aspect for the
industrial take-up of a tool. However, because scriptless testing
aims to reduce maintenance effort compared to test scripts,
adding AUT-specific information to the tool and maintaining
it should be as easy as possible for the tester and not create
an additional maintenance burden.

Since scriptless GUI testing tools generate the test se-
quences during run-time, the tools require a way to know when
and where to use the provided application-specific information.
One option is to use triggered behaviour, specifying a unique
GUI element to recognise when, and element locators to
specify where to use the pre-specified data.

D. Concept of state

Since the more advanced ASMs often use some kind of
abstract state model for navigation, we also researched state
abstraction for mobile AUTs. Unfortunately, many approaches,
e.g., Sapienz [32], CrawlDroid [33] and DroidBot [34], do not
explain in detail how they define and abstract the state of the
AUT. The following state abstraction approaches have been
used:

• Available actions to define the state of the AUT [23].
• Android Activity as the abstract state [35].
• The same widgets on the screen (identical hierarchy tree

of widgets) [34].
• Identical hierarchy tree of widgets and identical widget

attributes [4], [36], [37].
• Identical screenshots [13], [38].
Using Android Activity as the abstract state does not work

well for dynamic Android apps as a lot of changes can occur
within one Android activity. Identical screenshots would lead
to state space explosion as any change in the pixels of the
screenshot results in a new abstract state. A tester-defined
number of widget attributes to be identical seems to be the best

approach for abstract state definition in the mobile domain. For
the tool evaluation, we checked whether any concept of state
is supported.

E. Existing tools for mobile applications

Although scriptless GUI testing of mobile applications is
not well established in the industry, there are a number
of academic (Android) scriptless GUI testing tools. In this
section, we look at existing tools that are open source and
published in the last 5 years, so that the supported Android
version is not too old. We evaluate the tools by the previously
described requirements: ASMs, flexibility for adding domain
or AUT-specific information, and support for test oracles for
failure detection. In addition, we check whether the tool is still
actively maintained.

Sapienz is a tool for search based (SB) scriptless Android
testing [32]. The search objectives are to get diversified
sequences with a minimum sequence length while maximising
the code coverage and faults found. Sapienz allows for inte-
grating application-specific knowledge of the AUT. A tester
can add actions that should be executed under some specified
conditions. Overall, the strength of Sapienz is its ability to
create a diversified set of sequences that have the potential to
cover the AUT extensively. Sapienz has oracles that check for
application crashes. The original academic code of Sapienz is
publicly available. However, since 2017 it has been developed
and used internally at Facebook.

DroidBot [34] (and its extension Humanoid [16]) is a
model-based scriptless Android testing tool. It builds a model
of the AUT at runtime and not through static (byte)code
analysis. It has several exploration methods; DFS, RND,
UAF and RBPP (only Humanoid). DroidBot allows users
to create additional exploration strategy (or edit the existing
strategies), and offers support for injecting application-specific
information of the AUT. DroidBot defined AUT states based
on the GUI information and the running process information,
and events based on the details of the test input and the
methods/logs triggered by the input. DroidBot does not look
at the correctness of the GUI states, thus lacks an oracle
component. The tool is released as an open-source tool and
at the time of writing DroidBot is still actively maintained.
Humanoid is also open source but has not been maintained
since 2019.

Stoat is a stochastic model-based scriptless Android testing
tool [36]. The approach used by Stoat contains both a dynamic
and static code analysis component to create a stochastic
finite state machine model of the GUI of the AUT whose
edges are associated with probabilities for test generation.
Once the model has been created, Stoat uses a guided search
algorithm, inspired by Markov Chain Monte Carlo (MCMC)
sampling, to search for tests that are diverse, as well as achieve
high code and model coverage. Stoat defines state of the
AUT as a widget hierarchy tree, where non-leaf nodes denote
layout widgets (e.g., LinearLayout) and leaf nodes executable
widgets (e.g., Button). When the structure (and properties)
changes, a new state is created. Stoat has no flexibility for
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TABLE I
SUMMARY OF EXISTING TOOLS FOR SCRIPTLESS MOBILE TESTING.

Sapienz [32] DroidBot [34] Humanoid [16] Stoat [36] DroidMate-2 [13] CrawlDroid [33] AutoDroid [14] AimDroid [23]
Year of publication 2016 2017 2019 2017 2018 2018 2018 2017
Actively maintained Not OS Yes No No No No No No
ASM MSBO DFS, RND, UAF RL, RBPP MSBO RND, LEA, RBPP BFS, RL RND, LEA, Com BFS, RL
Flexibility domain knowledge Yes Yes No No Yes No No No
Concept of state Yes Yes No Yes Yes Yes Yes Yes
Failure detection implicit

(crashes)
no oracle no oracle implicit

(crashes)
implicit (crashes) implicit (crashes) no oracle implicit (crashes)

injecting application-specific information without drastically
editing source code. Stoat is released as an open-source tool
but has not been maintained since early 2020.

DroidMate-2 is a scriptless Android testing tool [13].
DroidMate-2 sits between the Android OS and the AUT and
uses the native Android UIAutomater tool to retrieve the
GUI hierarchy tree (GUI state). DroidMate-2 allows testers
to develop their own action selection strategy but offers
default strategies as well: RND, LEA and RBPP. DroidMate-
2 generates state and widget identifiers using a selected set
of attributes and widgets for abstraction, trying to disregard
UI elements not belonging to the AUT. To evaluate the
performance of the exploration of the GUI and to monitor for
any crashes, DroidMate-2 intercepts all API calls between the
Android OS and the AUT. This allows for detailed information
to be retrieved as all API calls are intercepted, but it also
means instrumentation of the AUT is required. This implies
either the AUT’s code must be open source or open to repack-
aging. DroidMate-2 is a flexible tool allowing for injecting
application-specific information. Unfortunately, DroidMate-2
does not verify the correctness of the GUI state, supporting
only crash oracle. DroidMate-2 has not been under active open
source development since 2019.

CrawlDroid [33] groups the widgets in a GUI state that
it considers to be equivalent, and uses a feedback-based ex-
ploration strategy that intends to trigger actions on groups that
tend to improve code coverage. BFS has been implemented for
comparison. The open source project has not been maintained.

AutoDroid [14] is a tool for automatic exploration of GUI-
based Android applications. It uses combinatorial algorithm
to maximise the coverage of event combinations. AutoDroid
defines state based on the name of the currently running
activity and the set of available actions. Available actions
are determined based on the widget tree. Adamo et al. have
proposed also to use a reinforced learning algorithm [24] for
determining what action should be executed in each test step
for scriptless testing. Their latest tool, DeepGUIT, expands
AutoDroid into Deep Q-Network-based Android application
GUI testing tool [39]. However, the paper was published after
the evaluation, and at the time of writing, the tool was not yet
available.

AimDroid [23] is a scriptless GUI testing tool for Android,
using a mix of BFS and State–action–reward–state–action
(SARSA) reinforcement algorithm in the ASM. It uses avail-
able actions to represent the current state of the GUI and
two level state model for ASM. It supports crash oracle, and
a crash is uniquely identified by the error message and the

crashing activity. It does not seem to support domain specific
knowledge.

There are also other tools, but these are not open source,
for example ComboDroid [40], FARLEAD-Android [41] and
CrashScope [42].

UI/Application Exerciser Monkey1 [12] is a tool built into
the Android development environment and allows generating
random gestures on an Android application. It is an old tool
but often used as a benchmark of performance for scriptless
Android testing tools. Beyond randomly sending touch events
to the Android mobile device it does not possess any unique
attributes. Patel et al. evaluated the Monkey, and after empir-
ical analysis of 79 applications, they concluded that manual
GUI testing and monkey testing achieve very similar level
of code coverage. However, the costs for monkey testing are
lower than the costs for manual testing [12].

SwiftMonkey2 is a tool designed by the Zalando company
for monkey testing of iOS applications. The tool can be
classified as a dumb monkey testing tool as its only capability
is clicking on random screen coordinates of the iOS device.
SwiftMonkey seems to be the only scriptless testing tool for
iOS devices.

Table I summarises the tools we have described above.
DroidBot could be suited for extension. However, DroidBot
is limited in the domain specific information that can be
integrated. Moreover, it has no oracles. The other available
scriptless Android testing tools are not active, nor tested on
industrial systems, or lack in performance and intelligence.
For the iOS operating system there seems to be no suitable
scriptless testing tools available.

Because none of the existing scriptless mobile testing tools
matched the requirements, we decided to extend TESTAR [4],
an open source tool for scriptless GUI testing that supported
web and desktop applications but not yet mobile applications.
TESTAR was already integrated with WebDriver, and Appium
uses almost the same API, so the integration was evaluated
easier than extending the other tools that support only Android.
In addition, TESTAR was already being evaluated at ING for
testing web applications, so there were additional synergies.

After this state-of-the-art study, new related tools have been
introduced, for example [43] and App Crawler3. Unfortunately,
these tools were not available when this research was per-
formed.

1https://developer.android.com/studio/test/monkey
2https://github.com/zalando/SwiftMonkey
3https://developer.android.com/studio/test/other-testing-tools/app-crawler
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III. TESTAR

TESTAR4 is an open-source tool for the scriptless testing of
desktop and web applications [4]. TESTAR supports various
ASMs for generating test sequences on an AUT. To enable
more advanced ASMs, TESTAR supports state model infer-
ence. TESTAR allows users to define AUT-specific behaviour
in AUT-specific configuration and to programmatically define
any kind of test oracles, in addition to the default implicit
oracles and suspicious text oracle.

The suspicious text oracle is somewhere between implicit
and specified oracle. The user can specify regular expressions
that the oracle will check for every GUI state whether these
regular expressions are mentioned anywhere in the widgets.
If there is a match, the oracle logs the widget information in
which the suspicious text can be found and returns a verdict
with this information. If TESTAR default regular expressions,
e.g., error or exception, are used, then it can be classified
as an implicit oracle. The same oracle functionality has been
implemented also for monitoring operating system error output
(e.g., unhandled exceptions) or log files.

The set of possible actions on the AUT is derived auto-
matically during testing based on the structure of the GUI,
called widget tree. TESTAR retrieves the widget tree through
the accessibility application programming interface (API) for
desktop applications [44] or the Selenium Webdriver [45] for
web applications. TESTAR uses the widget tree as the state of
the AUT, and updates the state after each executed action. Each
time TESTAR updates the state of the AUT, all defined test
oracles are evaluated to check whether the new state includes
any failures.

TESTAR supports various ASMs and it is possible pro-
grammatically extend or edit the existing algorithms or add
new ones. The existing ASMs include random, prioritise new
actions (compared to previous state) [15], Q-learning algo-
rithm that rewards exploration [25], and prioritise unvisited
actions based on state model inference [15]. In addition,
other reinforcement learning, ant colony optimisation [28], and
evolutionary algorithms [46] have been used for improving
TESTAR action selection.

To reach all parts of the AUT, scriptless testing often
requires predefined AUT-specific information, for example
username and password for a login screen. AUT-specific
instructions can be also filtering specific actions so that
TESTAR will not test them, or defining regular expressions
for suspicious text oracle or log file oracle. TESTAR has
two options for AUT-specific configuration: settings file and
TESTAR protocol Java class. Most of the configuration can
be done in settings file, but the protocol Java class allows users
to programmatically overwrite or extend any default TESTAR
behaviour, including test oracles and triggered actions.

The high level logical execution flow of TESTAR is dis-
played in Figure 1. In more detail, the steps can be described
as follows:

4https://testar.org/

Figure 1. TESTAR logical execution flow.

Step 1: Start the application under test (AUT) and wait until
it is ready for interaction.

Step 2: Inspect the AUT to obtain information about
the application and the individual components present in its
current state. As a result, a tree with the structure of the current
state of the application is obtained, so-called widget tree.

Step 3: All the defined test oracles are checked for each
state. If failures are found, the report includes the sequence
that found the failure.

Step 4: Determine the available actions from the obtained
widget tree of the AUT.

Step 5: Use the configured ASM of TESTAR to select an
action from the derived list of available actions to be executed.

Step 6: Execute the selected action on the AUT.
Step 7: If no faults are found, steps 3,4,5 and 6 are repeated

until the desired sequence length has been generated.
Step 8: The resulting sequence is evaluated and the AUT

is stopped.
Step 9: If the desired number of sequences has not been

reached yet, the whole process is repeated from step 1.
Otherwise, TESTAR finishes and exits gracefully.

IV. EXTENDING TESTAR TO SUPPORT MOBILE TESTING

We have extended the previously introduced TESTAR tool
with support for Android and iOS applications. Ideally, the
tool should have a shared core for scriptless testing of both
Android and iOS to minimise maintenance costs. Therefore,
Appium5 was chosen to be integrated into TESTAR and to be
used as the API to retrieve the widget tree and execute actions

5https://appium.io/
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on the AUT. Appium is a test automation driver implementing
the WebDriver API for mobile apps.

The GUI state that Appium returns is an XML document
with all the Android or iOS widgets and their attributes in a
tree format. This tree is parsed and each element is saved as
a widget together with its corresponding attributes. Although
Appium claims that it abstracts away the OS from which
the information is obtained, in practice there are significant
differences between iOS and Android. For example, Appium
obtains different widget attributes for Android and iOS appli-
cations. Due to this difference, two engines were constructed
generating TESTAR state for Android and iOS separately.

Deriving available actions from the widget tree had to
be implemented separately for both Android and iOS, as it
depends on the widgets and their attributes.

• For Android, the actions click, long-click, scroll, type,
back, and system actions have been implemented.

• For iOS click, scroll, and type actions have been im-
plemented. iOS does not support Long-clicks and back
actions. Also, Appium does not support system actions
for IOS.

To determine which of the implemented actions are possible
on which widgets of the state, each widget in the state is
iterated over and its attributes are inspected. When predefined
widget attribute values are found, the action and the widget
on which the action can be executed are added to the derived
actions list. For example, Android widgets carry the property
clickable, if this boolean is true, we add the widget with the
click action to the derived actions list. Unfortunately, not all
actions have clear mappings between widget attributes and ac-
tions. In these cases the widget class property can be used. For
example, iOS class attribute XCUIElementTypeButton means
the widget is clickable. Which classes should be mapped to
each action may depend on the AUT, and is therefore added
into TESTAR configuration.

Once a list of possible actions has been derived for a
state, TESTAR uses the configured ASM for selecting an
action that will be executed. In principle, all TESTAR ASMs
should work also for the mobile extension. We will use the
following three AMSs during the validation (in Section V):
1) RND where an action is chosen from the derived list at
random, 2) UAF where the state model is leveraged to select
an action that has not previously been executed, and 3) the
reinforcement learning algorithm Q-learning (QL) that rewards
GUI exploration [25] by giving higher rewards to actions that
have been executed fewer times.

Although TESTAR can be configured and run from the
command line interface (CLI), it provides also a GUI with a
dialogue to help new users with the configuration. The GUI
offers a Spy mode, a tool to manually explore the AUT in real
time while being shown the attributes of the widgets in the
widget tree to help with the configuration of TESTAR. The
Spy mode is not used during test generation and execution.
For desktop and web applications, TESTAR augments the
GUI of the AUT with graphical information. Unfortunately,
this approach did not work properly with mobile applications

(in emulator). Therefore, a similar functionality had to be
implemented by creating an extra Spy screen, showing the
screenshot of the AUT and augmenting it with graphical
information in this extra screen. Figure 2 illustrates the Spy
screen on a mobile application. Part 1 of the Figure (indicated
with a red number 1) shows the screenshot of the AUT, and
the augmented green dots indicate where TESTAR recognised
a click action. Part 2 of the Figure shows a selectable list of
the widgets of the widget tree. Part 3 shows the attributes
and attribute values of the selected widget. The Spy screen is
automatically updated when the state of the AUT changes.

Figure 2. A screenshot of the TESTAR Spy screen for a mobile application
(anonymised).

It is important to mention the difference in performance for
Appium between Android and iOS. Executing operations on
the AUT does not delay TESTAR in either of the operat-
ing systems. However, retrieving the state takes significantly
longer for iOS because Appium retrieves all widgets of the
GUI state in iOS, not only the visible ones. This leads to
a massive performance hit. For Android, retrieving the GUI
state takes on average 10ms on the application used in the
validation. For iOS, it takes around 2000ms to retrieve the GUI
state on the iOS version of the same AUT. This significantly
slows down TESTAR execution for iOS applications because
obtaining the GUI state is used often within TESTAR test
generation flow. Although we tested also the iOS version of
the ING application, the poor performance of Appium on iOS
made it infeasible to get statistically significant results for the
experiments on iOS. Therefore, the experiments presented in
this paper were performed only on the Android version of the
application.

V. INDUSTRIAL VALIDATION

Context- We performed a case study at ING , a large enter-
prise having a significant IT department due to the importance
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Figure 3. Figure showing the top 20% of the packages with the most difference in coverage between TESTAR and Espresso.

Tool Alg Seqs Acs % IC % LC % MC
TESTAR UAF 10 300 34.9% 34.5% 35.8%
TESTAR UAF 30 100 37.2% 36.8% 38.0%
TESTAR UAF 100 30 37.0% 37.0% 38.5%
TESTAR UAF 60 50 34.2% 34.0% 35.4%
TESTAR UAF 6 500 35.2% 35.1% 36.7%
TESTAR RND 10 300 40.2% 39.9% 40.2%
TESTAR RND 6 500 36.7% 36.7% 37.7%
TESTAR RND 30 100 36.2% 35.6% 37.0%
TESTAR RND 100 30 35.6% 35.5% 37.1%
TESTAR RND 60 50 38.1% 38.3% 39.3%
TESTAR QL 10 300 41.0% 40.7% 40.8%
TESTAR QL 30 100 37.7% 37.9% 38.8%
TESTAR QL 100 30 39.1% 39.0% 40.0%
TESTAR QL 60 50 38.4% 38.5% 39.5%
TESTAR QL 6 500 40.4% 40.3% 40.8%
Droidbot UAF - - 34.9% 34.1% 35.7%
Droidbot RND - - 34.3% 33.7% 35.3%

Stoat - - - 23.7% 22.6% 25.7%
Espresso

scripted tests 43.9% 43.4% 45.9%
Combined

TESTAR and
Espresso 52.3% 52.1% 52.3%

TABLE II
COVERAGE RESULTS FOR THE ANDROID APPLICATION.

of digitalization. The main goal of the company is to reduce
the costs of testing - currently, a lot of manual GUI testing is
still required, in addition to the test scripts. Creating and main-
taining scripts to cover the whole application is too expensive.
Application Under Test (AUT) - It was in the interests of the
company to evaluate the approach on their own commercial
software, instead of using open source apps. The mobile
application of the ING that is used as the AUT in this case
study has 5 million active end users. Therefore, it fits well
for validating the performance of the mobile extension of
TESTAR in an industrial setting. However, due to the type of
the application and the company, some details are confidential

- also the details about the bugs found.
Research question - How do academic tools TESTAR, Stoat
and DroidBot contribute to the effectiveness of testing when
used in a real industrial environment and compared to the
current automated testing practices at the ING?
Variables measured - Test effectiveness is measured through
code coverage - Instruction Coverage (IC), Line Coverage
(LC) and Method Coverage (MC) - using JaCoCo6. COSMO
[47] is used to enable the integration of JaCoCo with scriptless
dynamically created test sequences.
Cases of the study - Comparing the performance of scriptless
testing tools TESTAR, Stoat and DroidBot, and the existing
Espresso GUI test scripts developed by the Android develop-
ment team of the AUT.

TESTAR is run with 15 different configurations. Three ex-
ploration algorithms supported by TESTAR: random (RND),
unvisited actions (UAF) and Q-learning (QL); five combina-
tions of number of test sequences (Seqs) and number of actions
per test sequence (Acs) that all amount to 3000 actions (i.e.,
6 sequences of 500 actions, 10 sequences of 300 actions, 30
sequences of 100 actions, 50 sequences of 60 actions, and 100
sequences of 30 actions.)

Stoat and DroidBot do not work with test sequences. Both
tools test until a limit for the total number of actions is reached.
To achieve a fair comparison between TESTAR, Stoat, and
DroidBot, the number of actions for Stoat and DroidBot is
also set to 3000. For TESTAR, Stoat and DroidBot, a login
sequence and the filtering of widgets are added as domain-
specific knowledge. To ensure Droidbot does not escape the
AUT, it has additional predefined actions specified.

Espresso test cases were the existing scripted test automa-
tion for the mobile application of the ING , developed by their

6https://www.jacoco.org/
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Android developers. As Espresso tests are scripted, no settings
can be modified. Although confidentiality does not allow us to
give more details on the Espresso test scripts, we can reveal
that these are the real set of test cases that the ING uses to
test the AUT.
Procedure - All experiments have been carried out on an
Android emulator running on the same device (MacBook Pro,
8-Core Intel Core i9, 2,3 GHz, 8 cores) to ensure the hardware
does not affect the test results. Due to the randomness involved
in the ASMs, the coverage results can differ between runs
with the same settings [48], and thus, runs should be repeated
many times for statistical significance. However, due to the
time restrictions, it is infeasible to run each TESTAR setting
combination. The average run-time was measured to be 287
minutes, meaning that 15 different settings would require
approximately 90 days of continuous running. Therefore, only
the best performing TESTAR settings were executed ten
additional times.
The results can be found in Table II. The best performing
setting for TESTAR was Q-learning with 10 sequences of 300
actions reaching a code coverage between 40.8-41.9%. This
code coverage is slightly worse than the performance achieved
by Espresso scripted tests. However, TESTAR achieves sig-
nificantly better performance compared to Stoat and DroidBot.

As indicated, the best performing TESTAR settings was
executed another 10 times for statistical significance. We found
that the average of ten runs is slightly lower (IC 40.4%,
LC 40.3%, MC 40.7%) than the original coverage recorded.
Additionally, the variance observed is low (IC 0.29, LC 0.34,
MC 0.28), indicating the randomness in the QL algorithm
does not have a big impact on the overall coverage results.
Together it gives us more confidence that TESTAR QL
achieves performance very close to the Espresso tests.

As the performance of the Espresso tests and TESTAR
are quite similar, it is interesting to examine the performance
of TESTAR versus Espresso in more detail. To obtain a
more detailed comparison, we investigate the code coverage
at the package level. For each package, we recorded the code
coverage of TESTAR and subtracted the code coverage of
the Espresso tests. We found some packages showing a con-
siderable difference between TESTAR or Espresso. The top
20% of the packages showing most code coverage difference
is displayed in Figure 3. The names of the packages are
anonymized as they might contain confidential information.

TESTAR achieved better code coverage for the packages
containing code that implements operations and settings for the
end users to modify and customise the information shown for
them in the AUT. These packages contain the code relevant for
customers to modify what is visible but also the code relevant
to displaying the actual information to the customer. TESTAR
is capable of covering this code as it is able to log-out from
the application during the test sequence and continue exploring
the AUT after that.

Another example of outlying packages where TESTAR
outperforms Espresso in code coverage is related to exporting
customer’s own information and data from the application.

Specifically, TESTAR covers the code related to generating
PDFs with different types of information. Depending on the
type of information to be exported, a different PDF generating
code of the AUT is called. TESTAR seems to be capable of
performing the export function from multiple contexts.

As the performance of the Espresso tests is slightly better
for the complete AUT, there are numerous packages where
Espresso outperforms TESTAR. Espresso achieves greater
code coverage for all packages related to security. A number
of the security packages are in the outliers of Figure 3. Ad-
ditionally, the packages for login obtain higher code coverage
through the Espresso tests. TESTAR has a predefined login
sequence that is triggered in login screen of the AUT. The
login was defined to always use valid credentials. This could
be the cause for the lower code coverage achieved in the login
packages. Adding more SUT-specific information about the
login procedure to TESTAR, for example adding possibility
to use wrong credentials, might increase the coverage of
scriptless approach for these security packages.

Due to the difference in coverage between packages, it
is interesting to determine what the code coverage is when
Espresso and TESTAR are used together. Using JaCoCo,
we obtain the following code coverage for Espresso and
TESTAR together: IC 52.3%, LC 52.1%, MC 52.3%. This
shows a significant increase in coverage. Moreover, we see that
the scriptless approach covers parts of the application under
test that the existing test scripts did not cover, showing the
complementarity of the approaches.

VI. DISCUSSION AND THREATS TO VALIDITY

The implemented TESTAR extension supports both An-
droid and iOS. The other reason for concentrating on Android,
in addition to poor performance of Appium on iOS, is that
there is nothing to compare with on iOS. There were no test
scripts nor scriptless tools available for iOS.

As described in Section V, both TESTAR, DroidBot and
Stoat were supplied with the same amount of domain-specific
information. Although TESTAR would allow for more, Stoat
and DroidBot do not support adding more domain-specific
information than provided in the experiments. This ensured
that the comparison between the tools can be justified.

More test runs with all the configurations would have given
more statistical confidence in the observed results. Unfortu-
nately, that would have taken too much time from the available
resources for this case study at ING. However, we did show
that the randomness of the Q-learning algorithm employed was
limited, and there was a low variance in the best performing
TESTAR settings.

Although TESTAR and Espresso test scripts achieved quite
similar code coverage results, it is complicated to fairly
compare scripted and scriptless testing. For Espresso scripts, it
is still relatively simple to leverage the domain knowledge of
the tester by having the expected results defined as test oracles
in the test scripts. This allows for testing at a functional level.
For TESTAR, creating oracles with all the domain knowledge
required to test at the same functional level as scripted testing
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would massively increase the maintenance costs, essentially
removing the advantage of scriptless testing. Instead, TES-
TAR is well suited to test for implicit requirement breaches.
Implicit oracles require very little maintenance.

The experiments showed that TESTAR requires quite a lot
of time to generate and execute the test sequences. On average,
the execution time of 3000 TESTAR actions was 287 minutes
on Android, whereas Espresso test scripts were executed for
approximately in one hour. This difference in execution time
can be an important factor affecting where in the development
cycle TESTAR can be used. For nightly builds or release
builds the execution time of TESTAR should not be an issue
as TESTAR can be run in parallel with any other tests.
However, running TESTAR every time a developer wants to
commit changes may significantly slow down the development
cycle. Although Espresso runs quicker, a significant amount of
time is required to design and create the tests, compared to
TESTAR. In addition, TESTAR supports parallel execution
of using Docker containers for web application testing. This
could be possible also for mobile testing and could signifi-
cantly reduce the time required for test execution.

Construct validity: Code coverage was applied as a metric
to evaluate the effectiveness of the testing methods. The code
coverage does not directly relate to the ability of the testing
tool to find faults within the software, but it is generally
accepted for measuring the performance of tests.

Internal validity: We evaluated which components of the
code-base should be covered by the tests together with the An-
droid developers of the ING. This ensures the code coverage
is only measured for the packages the tool should be testing.
Additionally, JaCoCo is verified by manually comparing the
results for identical test sequences and checking the code
coverage is identical.

External validity: Although the AUT is an industrial
application actively used by millions of people, it is only a
single application. Additional studies are required to show that
TESTAR works for other mobile applications too.

Reliability: For most of the evaluated settings of TESTAR,
the tool was only executed for a few times. As the algorithms
used for exploration involve randomness, the results will vary
between the runs. Due to the long execution times, it was
infeasible to repeat the execution of all the settings sufficiently
to get statistically significant results [48]. Therefore, the re-
liability threat could not be completely mitigated. However,
the best performing settings of TESTAR were executed an
additional ten times showing low variance. This indicates
that the recorded performance can consistently be achieved,
reducing the reliability threat.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we described a novel extension to the open
source TESTAR tool to support scriptless testing of Android
and iOS applications. The extension was validated on an
Android application of the ING with millions of active end
users, and compared to two other available scriptless Android
testing tools (Stoat and DroidBot) and to the existing Espresso

GUI testing scripts from Android development team of the
application.

TESTAR outperforms both Stoat and DroidBot in terms of
code coverage.When comparing TESTAR to the Espresso test
scripts, the results indicate that scriptless testing complements
test scripts, as TESTAR and the Espresso scripts covered
different parts of the code. Consequently, the combined cover-
age of both approaches was higher than with either approach
alone. Due to the type of the AUT, the end users expect that
the application can be trusted to work flawlessly in all cases.
Therefore, also the paths outside the main user scenarios are
important to be covered during testing.

Overall, we believe TESTAR has value in the process of
testing industrial applications, but should be used together with
scripted testing. TESTAR has been used in many industrial
evaluations for desktop and web applications, but this was
the first time evaluating the complementarity of scripted and
scriptless testing. In addition, this was the first evaluation in
the mobile application domain.

In the future, we will continue evaluating the extended
TESTAR on mobile applications, increasing the number of
AUTs and test runs in the experiments. The evaluation at
ING will continue, and the plan is to try to: 1) Find a
solution for the poor performance on iOS applications, so
that TESTAR could be evaluated also on iOS AUTs. 2)
Develop new test oracles specifically for the AUT together
with the Android developers, and use TESTAR as part of
the continuous integration pipeline to evaluate its fault find-
ing capabilities. 3) Research whether the GUI exploration
algorithms can be optimised in a generic way for mobile
applications. AUT-specific optimisation is possible, but might
require maintenance when the AUT changes, so a more generic
approach is preferred.

The TESTAR extension was implemented and evaluated at
ING. The source code of the extension is in the process of
being published back into the open source TESTAR project.

This collaboration was realized at the Software Engineering
and Automation chapter of the OmniChannel API Platform at
ING with support of the Open University of the Netherlands
and Universitat Politècnica de València. Moreover, it was
partly funded through the Industrial-grade Verification and
Validation of Evolving Systems (IVVES) ITEA3 project7.
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