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Abstract—In information retrieval-based (IR-based) 

requirements traceability research, a great deal of researches 
have focused on establishing trace links between requirements 
and source code. However, as the description styles of source 
code and requirements are very different, how to better 
preprocess the code is crucial for the quality of trace link 
generation. This paper aims to draw empirical conclusions 
about code feature extraction, annotation importance 
assessment, and annotation redundancy removal through 
comprehensive experiments, which impact the quality of trace 
links generated by IR-based methods between requirements and 
source code. The results show that when the average annotaion 
density is higher than 0.2, feature extraction is recommended. 
Removing redundancy from code with high annotation 
redundancy can enhance the quality of trace links. The above 
experiences can help developers to improve the quality of trace 
link generation and provide them with advice on writing code. 

Keywords- requirements traceability; software reliability; 
software engineering code feature extraction; empirical study 

I. INTRODUCTION 
Requirements Traceability (RT) is defined as ‘the ability 

to describe and follow the life of a requirement in both a 
forward and backward direction (i.e., from its origins, through 
its development and specification, to its subsequent 
deployment and use, and periods of ongoing refinement and 
iteration in any of these phases)’[1]. A large number of RT 
techniques are used in ensuring system quality and responding 
to changing requirements, effectively helping developers to 
discover inter-product dependencies, assuring requirement 
coverage, and calculating the impact of requirements 
changes[2]. 

With the increased size and complexity of software 
systems, manually recovering and maintaining trace links is 
time-consuming and costly[3,4]. Therefore, the advantage of 
using information retrieval (IR) is that it can automatically 
generate trace links through text similarity. Due to the 
specificity of code artifacts, problems such as vocabulary 
mismatch and data redundancy occur when using IR 
techniques to establish trace between requirements and source 
codes, and the result of trace link generation is often 
unsatisfactory. In recent years, researchers have proposed 
different improvement strategies in three stages: 
preprocessing stage, links generation stage, and links 
refinement stage, aiming to increase the connection between 
code and artifacts. In the preprocessing stage, researchers have 

weighted the code documents by analyzing a certain identifier 
of the code (e.g., class, annotation, etc.). The current strategies 
are creating Syntax Tree[5,6], extracting Code Annotations[7], 
Term Classification[8]. Strategies such as Class Clustering[8], 
Configuration Management Log[9] and Code Ownership[10] 
have been proposed in the link generation stage. In the link 
refinement stage, Analyzing Closeness Relations[11] and 
Commonality and Variability Analysis[9] are mainly proposed 
to refine the generated trace links by the dependencies 
between code classes. 

However, during these mentioned studies, there is little 
attention paid to how some important features of the code 
artifacts should be extracted and what impact the combination 
of different features has on the establishment of trace links 
between source code and requirements. In order to investigate 
the above issues, the following empirical studies have been 
conducted on five open-source datasets. 

1) Different feature entities such as class names (CN), 
variables names (VN), method names (MN) and annotations 
(CMT) are extracted and these code features are combined 
with different combinations. The annotations that affect the 
trace link generation the most are analyzed by calculating 
average density annotations and ablation experiments. It is 
demonstrated that code feature extraction is more effective 
when the average annotation density is higher than 0.2. The 
feature combination "CN_MN_CMT" is more effective in 
trace links generation for the Vector Space Model (VSM), and 
"CN_CMT" is more effective for the Latent Semantic 
Indexing (LSI). 

2) Annotation redundancy is analyzed. A method called 
CAJP (described in Section II-D) is proposed that further 
divides annotations. The results of the study show that the 
quality of IR-based trace link generation does not decrease 
after removing annotation redundancy. For datasets with more 
annotation redundancy, removing annotation redundancy 
improves the quality of trace link generation. 

3) In response to the above findings, research suggestions 
are made for trace link generation between requirements and 
source code. These suggestions are concluded from three 
perspectives, which are code feature extraction, annotation 
importance assessment, and annotation redundancy removal, 
to improve the quality of trace link generation. 

The rest of this paper is organized as follows: a detailed 
description of the research problem, dataset, experimental 
environment, quality assessment and the experimental process 
is introduced in Section II. The results of the experiments are 
presented and analyzed in Section III. Section IV provides 
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suggestions to researchers on code writing specifications, 
code feature extraction and annotation redundancy, and 
analyzes the validity threats and related work. Section V 
introduces the conclusion and future work.  

II. EMPIRICAL STUDY 

A. Research Questions 
To investigate how to better establish trace links 

between requirements and source code, three research 
questions (RQs) are determined, as shown in Table 1.  

Table 1. Research questions of this work 
Research Question Motivation 

RQ1: What is the impact of code 
feature extraction on the trace link 
generation between requirements 
and source code?  

In order to investigate the impact of 
extracting code features on 
improving the quality of IR-based 
trace link generation and provide 
experience for researchers on the 
feature extraction combination. 

RQ2: What is the impact of 
annotations in the source code on 
the trace link generation between 
requirements and source code? 

To further investigate the causes of 
the experimental results of RQ1 and 
help researchers to understand how 
annotations help establish trace 
links. 

RQ3: What is the impact of 
annotation redundancy on the trace 
link generation between 
requirements and source code? 

To explore whether removing 
annotation redundancy can improve 
the quality of trace link generation.  

B. Datasets 
In this study, five open-source datasets are chosen: iTrust, 

eTOUR, Albergate, EasyClinic, and SMOS. As shown in 
Table 2, the data are selected based on the following 
principles: 1) These data are obtained from the free open-
source community CoEST1, which helps other researchers to 
facilitate replication. 2) To enhance the experimental 

reliability, datasets of different sizes are selected. According 
to[12], when "Space" is larger than 3000, it is "large", 
otherwise, it is "small". Experiments of RQ1 and RQ2 use all 
datasets in the table, and experiments of RQ3 use iTrust and 
SMOS, because only the iTrust and SMOS conform to the 
java annotation specification, while the other datasets do not.  

Table 2. Experimental datasets 

Name 
Source 

Artifacts 
(Count) 

Target 
Artifacts 
(Count) 

Space Trace 
Links Scale 

ITrust Use Cases (131) Java Code (226) 29606 418 Large 

ETOUR Requirements 
(58) Code (116) 6728 308 Large 

SMOS Use Cases (67) Java Code (98) 6566 1027 Large 

EasyClinic Use Cases (30) Class 
Description (47) 1410 93 Small 

Albergate Requirements 
(17) Code (55) 935 53 Small 

C. The Process of IR-based Trace Links Generation 
This paper only considers fully automated requirements 

trace link generation without considering the refinement 
phase. According to the objectives and research questions, the 
process of trace link generation contains four steps, which are 
code feature extraction, requirements and source code pre-
processing  model selection, and threshold selection. Figure 
1 illustrates the process of IR-based trace link generation 
between requirements and source code. The yellow boxes 
indicate the method of extracting code features, a method 
called CAJP (described in the next section) is proposed to 
divide the annotations more delicately and help to remove 
annotation redundancy  The preprocessing and removing 
redundancy are the generic steps. The red boxes indicate the 
method of trace link generation, and the blue boxes indicate 
the extracted code features and corpus, which are the generic 
steps. 
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Figure 1. Process for IR-based trace links generation for requirement and source codes 

 
1 http://www.coest.org/ 
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D. The Detail of Preprocessing  
1) Code Feature Extraction 

To preprocess the source code, the textual information 
of CN, MN, VN, and CMT of each source code are extracted 
into four files as shown in Table 4. First, apply a code 
dependency analysis to the code (1). Then, according to the 
code specification, JavaParser[12], CAJP, and regular 
representation are used to extract the code features (2). The 
extraction results are shown in the figure of RQ3. JavaParser 
is used to parse each Java file into an abstract syntax tree 
using the ASTParser of Eclipse JDT[12]. Code features can 
be extracted by querying the abstract syntax tree. 

In contribution, a new method called CAJP is proposed, 
which can extract code features for CN, MN, VN, and CMT. 
The CAJP enhances block annotation extraction quality 
compared to JavaParser and has the ability to analyze the 
annotation content to remove annotation redundancy. As 
shown in Figure 3 of RQ3, CAJP first extracts each line (tag) 
in the block annotation before dividing the Tag into Context 
and DocletTag of value and DocletTag of name. Then, 
removing the redundancy of the block annotation by 
subsequently extracting the Context and Doclet of value, the 
Doclet of name is considered as the annotation redundancy 
(6). Table 3 presents the pseudo-code for the CAJP algorithm. 

Table 3. Annotation extraction algorithm 
Algorithm: Annotation content extraction 
Input Tags list (T) 
Output AnnotationDecomposer Object 
1. Function TagsDecomposer(T) 
2.     C: Save a text list of Tags text content 
3.     Contexts: Annotation Context storage list 
4.     Doclets: Document Part Storage List 
5.     While T≠Ø: 
6.         Get the Tag in the current tag list 
7.         If Tag_size>2: 
8.             Tag_TaxtContext = ExtractContext (Tag);   

// Extracting tag context 
9.             C.add (Tag_TaxtContext);   
10.        End if 
11.    End while 
12.    While C≠Ø: 
13.        Get the current Tag text content 
14.        If Tag_TaxtContext.isDocletTag(): 
15.            // The current Tag text content is DocletTag 
16.            docletTag = docletTagDecomposer (Tag_TaxtContext) 

// Creating DocletTag objects 
17.            DocletTags.add(docletTag) 
18.        End if 
19.        Else: 
20.            Contexts.add (Tag_TaxtContext) 
21.        End else 
22.    End while 
23.Return InitAnnotationDecomposer () 

Lines 2-4 initialize the relevant variables, lines 5-11 
divide the block annotation into line annotation (tags), lines 

12-22 divide the tags into Context, DocletTag of value, and 
DocletTag of name, and line 23 returns the data.  

If the JavaParser extraction method is used, there is no 
need to remove the annotation redundancy and they do not go 
through (6). For the extraction of annotations that are not 
standardized and line annotations, the regular expressions is 
used to extract annotations (3). 

Table 4. Source code sections used in experimentation 
Acronym Identifier Type 

CN Class Name 
MN All Public and Private Method Names of a Class 
VN Class and Method Variable Names of a Class 

CMT All Block and Single line Annotations of a Class 

2) Requirements and Source Code Pre-processing 
In the pre-processing of the requirement artifacts, all sub-

files and sub-files names in the artifacts are separately 
merged into one document (4). As an illustration, each line in 
document A which contains the contents of the subfiles, 
represents a subfile and each line in document B, which 
contains the names of the subfiles, corresponds to the line in 
document A (4). Then, non-alphabetic characters are 
removed, and NLTK[13] is used to split words and remove 
punctuation and stop words, label the lexicon and retain verbs 
and nouns[14]. To get Corpus, the stems are extracted and 
written to a file using the Stemming algorithm (5). 

The code feature files are combined in a total of fifteen 
combinations. After using NLTK to split the text containing 
annotations and remove punctuation and stop words, The text 
in each of the fifteen files is pre-processed. Using the 
Stemming algorithm, we extract the word stems from each 
text file to obtain the key phrase (7). 

E.  Model Selection 
According to[12], VSM and LSI are the two most used IR 

model, and standard VSM has the best performance in trace 
link generation, while LSI is an improvement to VSM that 
mainly addresses the problem of synonyms and polysemy. 
Therefore, this experiment uses the standard IR model, VSM, 
and LSI models respectively to generate trace links (8). 

VSM[13] is to represent each text as a term set 
, and then calculate the weight  for each 

term  in  by the TF-IDF algorithm, so that a dataset T is 
viewed as an n-dimensional space vector. And the values 
belonging to the weights  are the 
corresponding values for each dimension. Where  is 
calculated as follows: 

 (1) 

 denotes the frequency with which  in a 
document occurs in document , and  denotes the 
frequency with which the term  occurs in the whole corpus. 
Where  is calculated as follows. 

 (2) 
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where  denotes the overview of documents in the 
corpus and  denotes the number of documents containing 
the term . 

The above formula allows the textual relationship 
between the artifacts to be directly translated into a vector 
operation. Finally, the similarity between two documents is 
calculated by cosine similarity. The equation is as follows: 

 (3) 

LSI[15,16] is an improvement compared with VSM. 
Firstly, the weights in the words are calculated and the 
document matrix is generated by the TF-IDF. For high-
dimensional matrices, dimensionality reduction is usually 
performed using the Singular Value Decomposition (SVD) 
algorithm. The similarity of the text is calculated using cosine 
similarity, and LSI uses corpus to analyze the semantic 
relevance of the documents. However, the effect of LSI is 
dependent on the information given in the context of the 
document, and when less information is given, the LSI 
improvement is not distinct. Therefore, it is not as effective 
in creating trace links for products in requirements 
engineering. 

F. Threshold Selection 
The IR model is used to calculate the similarity in reverse 

order by size to generate the final trace links (9). For the 
threshold selection, the number of candidate links is selected 
using Selectivity Rate (SR). The equation is as follows: 

 (4) 

 represents the number of candidate trace links and  
represents the total number of trace links. As the number of 
candidate links increases, the variation of its precision and 
recall becomes smaller[17]. Therefore, when SR  [0,0.2], 
0.01 is used as the interval point, when SR  [0.2,1], 0.05 is 
used as the interval point, which is a total of 36 points. 

G. Quality Measures 
In the field of IR, there are many different metrics that 

can be used to assess the quality of IR models. Among them, 
the most commonly used are  and . 
When the  is 100%, it means that all recovered trace links 
have been found; when the  is 100%, it means that all 
recovered trace links are correct. The equation for these two 
metrics is as follows: 

 (5) 

 (6) 

Where  represents the total number of candidate 
trace links.  represents the total number of trace links in 
the true set. The intersection of both indicates which 
candidate trace links are in the true set.  

When  and  are equally effective, there is a need for 
another metric to measure. Therefore, a third metric is used: 

. This metric is the summed average of  
and . The equation is as follows: 

 (7) 

In order to systematically measure automated RT 
techniques, the criteria are shown in Table 5. The metric is a 

 and  measure proposed by Hayes et al.[17], which is 
based on industrial practice. The criterion measures the 
results obtained by the IR model without any refinement 
strategy and considers  to be more important than . In 
addition,  and  cannot be separated and need to meet the 
criteria at the same time. 

Table 5. Standards from Hayes[17] 
Measure Acceptable Good Excellent 

Recall 60% — 69% 70% — 79% 80% — 100% 
Precision 20% — 29% 30% — 49% 50% — 100% 

III. RESULTS AND ANALYSIS 

A. RQ1: What is the impact of code feature extraction on the  
trace link generation between requirements and source 
code?  

For RQ1, JavaParser is used to extract VN, CN, and MN 
in the code, and regular expressions to extract line 
annotations and block annotations in the code, and then 
combine them into 15 kinds of patterns of feature 
combinations to build trace links through IR model. Instead 
of code slicing, code files are regarded as text files and then 
establish trace links through IR model. This experiment 
considers  as more important by Hayes et al.[17]. The 
intercept points close to "Acceptable", "Good", and 
"Excellent" are taken separately for the , and then the  and 

 are compared.  
Table 6 represents the results of the code feature 

extraction experiment for VSM, while Table 7 represents the 
results of the experiment for LSI. The first row of "VSM" and 
"LSI" in the table indicates that no feature extraction is done. 
From the experimental results of both models, it can be seen 
that the results of generating trace links for IR model are 
generally better for extracting code features than for not 
extracting codes. Among the four datasets TOUR, iTrust, 
SMOS, and EasyClinic, the feature combination 
"CN_MN_CMT" performs better in the VSM model. In LSI, 
the feature combination with "CN_CMT" works better. In 
addition, the combination of the features with CMT generally 
better. Therefore, the extraction of features has reduced the 
noise of the code information and extracted the useful 
information more precisely. In particular, the comments 
provide a more standardized introduction to the code and 
their extraction helps to establish the links between 
requirements and source code. 

For the Albergate, the effect of not extracting the code 
features is better than extracting the code features. Upon 
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analyzing the datasets, the annotations in Albergate are 
sparse, which plays a significant role in the poor trace link 
generation between requirements and source code. 

Above all, for most datasets, code feature extraction can  

improve the effectiveness in trace link generation. The 
feature combination with "CN_MN_CMT" is better in the 
VSM model. In LSI, the feature combination with 
"CN_CMT" performs better. 

 
Table 6. Code feature extraction experiment results for VSM 

 Albergate eTOUR iTrust SMOS EasyClinic 
R P F R P F R P F R P F R P F 

VSM 

0.6226  0.1416  0.2308  0.6006  0.1100  0.1859  0.6077  0.1073  0.1823  0.6339  0.1983  0.3021  0.6559  0.6224  0.6387  

0.7170  0.1357  0.2282  0.7435  0.0851  0.1527  0.7177  0.0780  0.1406  0.7108  0.1853  0.2940  0.7097  0.5238  0.6027  

0.8113  0.1024  0.1818  0.8214  0.0752  0.1378  0.8254  0.0466  0.0882  0.8043  0.1677  0.2776  0.8172  0.3858  0.5241  

CN 

0.6226  0.0642  0.1164  0.6071  0.0463  0.0861  0.6100  0.0157  0.0305  0.6290  0.1789  0.2786  0.6129  0.0899  0.1568  

0.7359  0.0643  0.1182  0.7143  0.0467  0.0877  0.7033  0.0153  0.0299  0.8130  0.1696  0.2806  0.7419  0.0816  0.1470  

0.8679  0.0656  0.1220  0.8084  0.0463  0.0875  0.8110  0.0143  0.0281  0.7352  0.1769  0.2852  0.8172  0.0771  0.1409  

MN 

0.6604  0.0750  0.1346  0.6007  0.0458  0.0852  0.6196  0.0159  0.0310  0.6232  0.1772  0.2760  0.6344  0.0697  0.1257  

0.7359  0.0759  0.1376  0.7046  0.0461  0.0865  0.7129  0.0155  0.0303  0.7322  0.1762  0.2841  0.7312  0.0690  0.1260  

0.8302  0.0673  0.1245  0.8182  0.0468  0.0886  0.8206  0.0145  0.0285  0.8121  0.1694  0.2803  0.8172  0.0674  0.1245  

VN 

0.6038  0.0775  0.1373  0.6234  0.0571  0.1046  0.6603  0.0155  0.0304  0.6222  0.1770  0.2755  0.6129  0.0674  0.1214  

0.7170  0.0691  0.1260  0.7013  0.0494  0.0923  0.7034  0.0153  0.0299  0.7274  0.1751  0.2822  0.7527  0.0662  0.1217  

0.8491  0.0577  0.1080  0.8409  0.0481  0.0910  0.8230  0.0145  0.0285  0.8062  0.1682  0.2783  0.8172  0.0674  0.1245  

CMT 

0.6038  0.0570  0.1042  0.6136  0.1124  0.1900  0.6053  0.1068  0.1816  0.6378  0.1995  0.3039  0.6344  0.6020  0.6178  

0.7925  0.0642  0.1188  0.7403  0.0847  0.1521  0.7034  0.0764  0.1378  0.7050  0.1838  0.2916  0.7097  0.5238  0.6027  

0.8302  0.0628  0.1167  0.8279  0.0689  0.1272  0.8206  0.0386  0.0738  0.8092  0.1688  0.2793  0.8280  0.3909  0.5310  

CN_MN 

0.6226  0.0707  0.1269  0.6039  0.0461  0.0856  0.6172  0.0158  0.0309  0.6280  0.1786  0.2781  0.6344  0.0837  0.1479  

0.7359  0.0695  0.1270  0.7046  0.0461  0.0865  0.7129  0.0155  0.0303  0.7361  0.1772  0.2856  0.7312  0.0804  0.1448  

0.8302  0.0673  0.1245  0.8214  0.0470  0.0889  0.8206  0.0145  0.0285  0.8121  0.1694  0.2803  0.8172  0.0771  0.1409  

CN_VN 

0.6038  0.0775  0.1373  0.6266  0.0574  0.1051  0.6603  0.0155  0.0304  0.6329  0.1800  0.2803  0.6344  0.1046  0.1796  

0.7170  0.0691  0.1260  0.7078  0.0499  0.0931  0.7057  0.0153  0.0300  0.7381  0.1776  0.2864  0.7204  0.0792  0.1427  

0.8113  0.0625  0.1161  0.8442  0.0483  0.0914  0.8230  0.0145  0.0285  0.8150  0.1700  0.2813  0.8172  0.0771  0.1409  

CN_CMT 

0.6038  0.0623  0.1129  0.6136  0.1124  0.1900  0.6172  0.1090  0.1852  0.6349  0.1986  0.3026  0.6452  0.6122  0.6283  

0.7547  0.0612  0.1132  0.7305  0.0836  0.1500  0.7034  0.0828  0.1481  0.7040  0.1835  0.2912  0.7097  0.5893  0.6439  

0.8679  0.0656  0.1220  0.8182  0.0681  0.1258  0.8206  0.0386  0.0738  0.8092  0.1688  0.2793  0.8495  0.4010  0.5448  

MN_VN 

0.6415  0.0728  0.1308  0.6266  0.0574  0.1051  0.6699  0.0158  0.0308  0.6271  0.1783  0.2777  0.6022  0.0662  0.1193  

0.7736  0.0731  0.1335  0.7078  0.0499  0.0931  0.7034  0.0828  0.1481  0.7352  0.1769  0.2852  0.7204  0.0680  0.1242  

0.8302  0.0673  0.1245  0.8409  0.0481  0.0910  0.8206  0.0386  0.0738  0.8111  0.1692  0.2800  0.8065  0.0665  0.1229  

MN_CMT 

0.6226  0.0642  0.1164  0.6169  0.1130  0.1910  0.6148  0.1240  0.2064  0.6027  0.2095  0.3110  0.6237  0.5918  0.6073  

0.7547  0.0612  0.1132  0.7013  0.0918  0.1623  0.7034  0.0903  0.1600  0.7147  0.1863  0.2956  0.7419  0.4894  0.5897  

0.8679  0.0656  0.1220  0.8052  0.0737  0.1351  0.8278  0.0390  0.0744  0.8072  0.1684  0.2786  0.8280  0.3909  0.5310  

VN_CMT 

0.6981  0.0660  0.1205  0.6169  0.1130  0.1910  0.6172  0.1090  0.1852  0.6368  0.1992  0.3035  0.6129  0.5816  0.5969  

0.7547  0.0659  0.1212  0.7403  0.0847  0.1521  0.7105  0.0717  0.1302  0.7079  0.1846  0.2928  0.7312  0.4387  0.5484  

0.8491  0.0642  0.1194  0.8117  0.0743  0.1362  0.8182  0.0385  0.0736  0.8092  0.1688  0.2793  0.8065  0.3555  0.4934  

CN_MN_VN 

0.6415  0.0728  0.1308  0.6266  0.0574  0.1051  0.6675  0.0157  0.0307  0.6329  0.1800  0.2803  0.6129  0.1011  0.1735  

0.7736  0.0731  0.1335  0.7078  0.0499  0.0931  0.7105  0.0154  0.0302  0.7390  0.1779  0.2867  0.7097  0.0780  0.1406  

0.8113  0.0658  0.1216  0.8377  0.0479  0.0907  0.8325  0.0147  0.0289  0.8150  0.1700  0.2813  0.8172  0.0771  0.1409  

CN_MN_CMT 

0.5849  0.0603  0.1093  0.6104  0.1118  0.1889  0.6412  0.1293  0.2153  0.6329  0.1980  0.3016  0.6344  0.6020  0.6178  

0.7170  0.0677  0.1238  0.7305  0.0836  0.1500  0.7057  0.0906  0.1606  0.7108  0.1853  0.2940  0.7419  0.5476  0.6301  

0.8113  0.0613  0.1141  0.8020  0.0734  0.1345  0.8038  0.0454  0.0859  0.8043  0.1677  0.2776  0.8280  0.4208  0.5580  

CN_VN_CMT 

0.6415  0.0675  0.1221  0.6104  0.1118  0.1889  0.6005  0.1211  0.2016  0.6280  0.1965  0.2993  0.6452  0.6122  0.6283  

0.7547  0.0623  0.1151  0.7305  0.0836  0.1500  0.7081  0.0769  0.1388  0.7089  0.1848  0.2932  0.7097  0.5238  0.6027  

0.8113  0.0586  0.1093  0.8020  0.0734  0.1345  0.8182  0.0385  0.0736  0.8043  0.1677  0.2776  0.8065  0.4098  0.5435  

MN_VN_CMT 

0.6415  0.0662  0.1199  0.6071  0.1112  0.1879  0.6148  0.1240  0.2064  0.6018  0.2092  0.3105  0.6129  0.5816  0.5969  

0.7736  0.0676  0.1243  0.7305  0.0836  0.1500  0.7081  0.0769  0.1388  0.7137  0.1861  0.2952  0.7204  0.4752  0.5726  

0.8491  0.0642  0.1194  0.8020  0.0734  0.1345  0.8254  0.0389  0.0742  0.8072  0.1684  0.2786  0.8172  0.3602  0.5000  

CN_MN_VN_CMT 

0.6038  0.0685  0.1231  0.6071  0.1112  0.1879  0.6172  0.1245  0.2072  0.6339  0.1983  0.3021  0.6344  0.6020  0.6178  

0.7547  0.0659  0.1212  0.7208  0.0825  0.1481  0.7105  0.0772  0.1392  0.7108  0.1853  0.2940  0.7204  0.5317  0.6119  

0.8302  0.0628  0.1167  0.8312  0.0692  0.1277  0.8230  0.0387  0.0740  0.8043  0.1677  0.2776  0.8172  0.4153  0.5507  
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Table 7.  Code feature extraction experiment results for LSI 

 
Albergate eTOUR iTrust SMOS EasyClinic 

R P F R P F R P F R P F R P F 

LSI 
0.6415  0.1459  0.2378  0.6234  0.1141  0.1930  0.6077  0.1073  0.1823  0.6047  0.2102  0.3120  0.6237  0.5918  0.6073  
0.7547  0.1223  0.2105  0.7078  0.0926  0.1638  0.7177  0.0780  0.1406  0.7215  0.1881  0.2984  0.7204  0.5317  0.6119  
0.8302  0.0942  0.1692  0.8084  0.0740  0.1356  0.8254  0.0466  0.0882  0.8228  0.1716  0.2840  0.8065  0.4438  0.5725  

CN 
0.6415  0.0662  0.1199  0.6071  0.0463  0.0861  0.6124  0.1081  0.1838  0.6008  0.1709  0.2661  0.6774  0.0813  0.1452  
0.7170  0.0677  0.1238  0.7013  0.0459  0.0861  0.7081  0.0714  0.1298  0.7098  0.1586  0.2593  0.7097  0.0721  0.1308  
0.8868  0.0592  0.1110  0.8734  0.0470  0.0893  0.8206  0.0386  0.0738  0.8033  0.1571  0.2628  0.8710  0.0676  0.1255  

MN 
0.6604  0.0750  0.1346  0.6104  0.0466  0.0866  0.6292  0.0162  0.0315  0.6368  0.1811  0.2820  0.6129  0.0735  0.1313  
0.7359  0.0759  0.1376  0.7240  0.0474  0.0889  0.7249  0.0158  0.0308  0.7322  0.1762  0.2841  0.7204  0.0731  0.1328  
0.8868  0.0671  0.1247  0.8312  0.0476  0.0900  0.8206  0.0145  0.0285  0.8199  0.1710  0.2830  0.8065  0.0710  0.1304  

VN 
0.6415  0.0741  0.1328  0.6136  0.0511  0.0943  0.6890  0.0122  0.0239  0.6241  0.1627  0.2582  0.6022  0.0662  0.1193  
0.7170  0.0691  0.1260  0.7468  0.0488  0.0917  0.6172  0.0125  0.0244  0.7235  0.1617  0.2643  0.7312  0.0603  0.1114  
0.8491  0.0577  0.1080  0.8377  0.0479  0.0907  0.8062  0.0134  0.0263  0.8062  0.1577  0.2637  0.8065  0.0626  0.1162  

CMT 
0.6038  0.0570  0.1042  0.6169  0.1130  0.1910  0.6124  0.1081  0.1838  0.6660  0.1894  0.2950  0.6344  0.6020  0.6178  
0.7925  0.0642  0.1188  0.7013  0.0918  0.1623  0.7081  0.0714  0.1298  0.7020  0.1830  0.2904  0.7097  0.5238  0.6027  
0.8302  0.0628  0.1167  0.8247  0.0687  0.1267  0.8206  0.0386  0.0738  0.8179  0.1706  0.2823  0.8065  0.4098  0.5435  

CN_MN 
0.6226  0.0707  0.1269  0.6169  0.0471  0.0875  0.6005  0.0170  0.0330  0.6388  0.1817  0.2829  0.6022  0.0794  0.1404  
0.7359  0.0695  0.1270  0.7435  0.0486  0.0913  0.7345  0.0148  0.0290  0.7313  0.1760  0.2837  0.6989  0.0710  0.1288  
0.8302  0.0673  0.1245  0.8474  0.0485  0.0917  0.8325  0.0138  0.0272  0.8257  0.1722  0.2850  0.8065  0.0761  0.1390  

CN_VN 
0.6038  0.0775  0.1373  0.6169  0.0514  0.0948  0.6340  0.0119  0.0234  0.6368  0.1660  0.2634  0.6667  0.0879  0.1554  
0.7170  0.0691  0.1260  0.7727  0.0505  0.0949  0.7345  0.0122  0.0240  0.7390  0.1651  0.2700  0.7527  0.0827  0.1491  
0.8113  0.0625  0.1161  0.8182  0.0499  0.0941  0.9043  0.0134  0.0265  0.8296  0.1622  0.2714  0.8280  0.0781  0.1427  

CN_CMT 
0.6038  0.0623  0.1129  0.6201  0.1136  0.1920  0.6268  0.1106  0.1881  0.6329  0.1980  0.3016  0.6452  0.6122  0.6283  
0.7547  0.0612  0.1132  0.7013  0.0918  0.1623  0.7081  0.0769  0.1388  0.7030  0.1833  0.2908  0.7097  0.5893  0.6439  
0.8679  0.0656  0.1220  0.8247  0.0687  0.1267  0.8014  0.0453  0.0857  0.8160  0.1702  0.2816  0.8065  0.4839  0.6048  

MN_VN 
0.6415  0.0662  0.1199  0.6266  0.0522  0.0963  0.6148  0.0145  0.0283  0.6680  0.1608  0.2592  0.6129  0.0735  0.1313  
0.7547  0.0612  0.1132  0.7208  0.0508  0.0949  0.7416  0.0131  0.0257  0.7137  0.1595  0.2607  0.7097  0.0624  0.1148  
0.8491  0.0602  0.1124  0.8117  0.0495  0.0934  0.8158  0.0136  0.0267  0.8354  0.1634  0.2733  0.8280  0.0643  0.1193  

MN_CMT 
0.6038  0.0570  0.1042  0.6201  0.1136  0.1920  0.6531  0.1153  0.1960  0.6056  0.2106  0.3125  0.6129  0.5816  0.5969  
0.7359  0.0556  0.1034  0.7078  0.0926  0.1638  0.7225  0.0785  0.1416  0.7108  0.1853  0.2940  0.7097  0.5238  0.6027  
0.8679  0.0579  0.1086  0.8344  0.0695  0.1282  0.8086  0.0457  0.0865  0.8160  0.1702  0.2816  0.8065  0.4098  0.5435  

VN_CMT 
0.6793  0.0642  0.1173  0.6169  0.1130  0.1910  0.6148  0.1085  0.1845  0.6047  0.2102  0.3120  0.6129  0.5816  0.5969  
0.7736  0.0676  0.1243  0.7013  0.0918  0.1623  0.7010  0.0761  0.1374  0.7020  0.1830  0.2904  0.7312  0.4823  0.5812  
0.8679  0.0615  0.1149  0.8344  0.0695  0.1282  0.8182  0.0385  0.0736  0.8130  0.1696  0.2806  0.8065  0.4098  0.5435  

CN_MN_VN 
0.6793  0.0642  0.1173  0.6136  0.0511  0.0943  0.6029  0.0131  0.0256  0.6465  0.1556  0.2509  0.5699  0.0752  0.1328  
0.7547  0.0659  0.1212  0.7046  0.0496  0.0927  0.7177  0.0135  0.0265  0.7254  0.1513  0.2504  0.7097  0.0780  0.1406  
0.8302  0.0588  0.1099  0.8344  0.0509  0.0960  0.8254  0.0137  0.0270  0.8559  0.1575  0.2660  0.8065  0.0665  0.1229  

CN_MN_CMT 
0.5849  0.0603  0.1093  0.6201  0.1136  0.1920  0.6201  0.1136  0.1920  0.6290  0.1968  0.2998  0.6237  0.5918  0.6073  
0.7170  0.0677  0.1238  0.7013  0.0918  0.1623  0.7013  0.0918  0.1623  0.7059  0.1841  0.2920  0.7419  0.5476  0.6301  
0.8113  0.0613  0.1141  0.8344  0.0695  0.1282  0.8344  0.0695  0.1282  0.8169  0.1704  0.2820  0.8065  0.4438  0.5725  

CN_VN_CMT 
0.6415  0.0675  0.1221  0.6169  0.1130  0.1910  0.6244  0.1102  0.1874  0.6222  0.1946  0.2965  0.6452  0.6122  0.6283  
0.7547  0.0623  0.1151  0.7013  0.0918  0.1623  0.7034  0.0764  0.1378  0.7040  0.1835  0.2912  0.7312  0.5397  0.6210  
0.8113  0.0586  0.1093  0.8312  0.0692  0.1277  0.8038  0.0454  0.0859  0.8140  0.1698  0.2810  0.8065  0.4098  0.5435  

MN_VN_CMT 
0.6415  0.0662  0.1199  0.6136  0.1124  0.1900  0.6483  0.1144  0.1945  0.6339  0.1983  0.3021  0.6022  0.5714  0.5864  
0.7736  0.0676  0.1243  0.7110  0.0930  0.1645  0.7034  0.0764  0.1378  0.7098  0.1851  0.2936  0.7312  0.4823  0.5812  
0.8491  0.0642  0.1194  0.8377  0.0697  0.1287  0.8062  0.0455  0.0862  0.8189  0.1708  0.2826  0.8065  0.3807  0.5172  

CN_MN_VN_CMT 
0.6038  0.0685  0.1231  0.6104  0.1118  0.1889  0.7153  0.0777  0.1402  0.6300  0.1971  0.3002  0.6344  0.6020  0.6178  
0.7547  0.0659  0.1212  0.7013  0.0918  0.1623  0.8062  0.0455  0.0862  0.7079  0.1846  0.2928  0.7204  0.5317  0.6119  
0.8302  0.0628  0.1167  0.8344  0.0695  0.1282  0.6005  0.1211  0.2016  0.8111  0.1692  0.2800  0.8065  0.3807  0.5172  

B. RQ2: What is the impact of annotations in the source 
code on the trace link generation between requirements and 
source code? 
    As a result of the Albergate in RQ1, which found that the 
annotation is sparse, RQ2 aims to further verify whether 
annotation density is an important factor in code feature 
extraction. RQ2 verified the effect of annotation by 
calculating the average annotation density and ablation 
experiments. In the ablation experiments, their experimental 
measures are selected by Hayes et al. [17], which considers 
the  more important. The intercept points close to 
"Acceptable", "Good", and "Excellent" for  are taken 
separately and then compared for  and . 

The density of annotation lines is calculated by the 
following formula: 

(8) 

where  denotes the number of annotations and  
denotes the number of codes. The average annotation density 
is the average of the annotation density for each document.  

Table 8. Average annotation density values 
 Albergate eTOUR iTrust SMOS EasyClinic 

Average Annotation 
Density 0.0155 0.7057 0.2283 0.2123 0.6319 

 
As shown in Table 8 and Figure 2, (after), (after), and 

(after) represents represent the , , and  of trace link 
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generation after code removal of annotations respectively. 
Albergate has the lowest average annotation density, and its 
ablation experiments have a low impact on the experimental 
results. For SMOS, the annotation density is close to 0.2, so 
the annotation has a small impact on trace link generation for 
VSM, and the  and  decreased when the  reached the 
point of 0.8.  For iTrust, eTOUR, and EasyClinic, the quality 
of the generated trace links is reduced after removing the 
annotations. When extracting the annotations, it is found that 
eTOUR has a high proportion of annotations, but most of 
them are annotations on useless code and contained less 

information to trace link generation. In EasyClinic, the 
comments contain descriptions of the code, which can better 
help to build links between the requirements and the source 
code. 

Above all, when the average annotation density is greater 
than 0.2, the quality of annotations will have an impact on the 
established trace links. The better the quality of its 
annotations, the better the trace link generation using the 
method of code feature extraction. 
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Figure 2. The experiment results after removing annotation for VSM and LSI

C. RQ3: What is the impact of annotation redundancy on 
the trace link generation between requirements and source 
code? 

For RQ3, an example of code feature extraction is shown 
in Figure 3, where the extraction of block annotations. The 
annotations is extracted directly by using JavaParser and 
regular expressions. The CAJP method is used to further 

divide the block annotations, and the redundancy of block 
annotations is removed by subsequent extraction of Context 
and Doclet of value. The Doclet of name is considered 
annotation redundancy. 

Because the annotation specifications of eTOUR, 
EasyClinic, and Albergate do not conform to the java writing 
specification, RQ3 extracts the annotations for iTrust and 
SMOS, which conform to the java writing specification. 
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Source code

CMT(Javaparser or regular expression)

The typical constructor.@param factory 
The {@link DAOFactory} associated with 
this DAO, which is used for obtaining SQL 
connections, etc.

CMT(CAJP)

Content The typical constructor.
Doclet of name param
Doclet of value: factory The {@link 
DAOFactory} associated with this DAO, 
which is used for obtaining SQL 

Code feature extraction

annotation 
redundancy

 
Figure 3. An example for code features, the left is the source code, the right is the result after feature extraction 

Table 9. Comparison of experimental results for VSM without annotation redundancy and with annotation redundancy removal 
 iTrust iTrust (new) SMOS SMOS (new) 

R P F R P F R P F R P F 

VSM 
0.6077  0.1073  0.1823     0.6339  0.1983  0.3021     
0.7177  0.0780  0.1406     0.7108  0.1853  0.2940     
0.8254  0.0466  0.0882     0.8043  0.1677  0.2776     

CMT 
0.6053  0.1068  0.1816  0.6029  0.1216  0.2024  0.6378  0.1995  0.3039  0.6271  0.1962  0.2988  
0.7034  0.0764  0.1378  0.7105  0.0772  0.1392  0.7050  0.1838  0.2916  0.7468  0.1798  0.2898  
0.8206  0.0386  0.0738  0.8158  0.0384  0.0733  0.8092  0.1688  0.2793  0.8286  0.1620  0.2711  

CN_CMT 
0.6172  0.1090  0.1852  0.6053  0.1221  0.2032  0.6349  0.1986  0.3026  0.6105  0.1910  0.2910  
0.7034  0.0828  0.1481  0.7010  0.0900  0.1595  0.7040  0.1835  0.2912  0.7507  0.1807  0.2913  
0.8206  0.0386  0.0738  0.8158  0.0384  0.0733  0.8092  0.1688  0.2793  0.8335  0.1630  0.2727  

MN_CMT 
0.6148  0.1240  0.2064  0.6005  0.1413  0.2288  0.6027  0.2095  0.3110  0.6280  0.1965  0.2993  
0.7034  0.0903  0.1600  0.7057  0.0997  0.1747  0.7147  0.1863  0.2956  0.7488  0.1802  0.2905  
0.8278  0.0390  0.0744  0.8014  0.0453  0.0857  0.8072  0.1684  0.2786  0.8354  0.1634  0.2733  

VN_CMT 
0.6172  0.1090  0.1852  0.6053  0.1221  0.2032  0.6368  0.1992  0.3035  0.6261  0.1959  0.2984  
0.7105  0.0717  0.1302  0.7081  0.0769  0.1388  0.7079  0.1846  0.2928  0.7488  0.1802  0.2905  
0.8182  0.0385  0.0736  0.8158  0.0384  0.0733  0.8092  0.1688  0.2793  0.8286  0.1620  0.2711  

CN_MN_CMT 
0.6412  0.1293  0.2153  0.6124  0.1441  0.2334  0.6329  0.1980  0.3016  0.6319  0.1865  0.2881  
0.7057  0.0906  0.1606  0.7081  0.1000  0.1753  0.7108  0.1853  0.2940  0.7537  0.1814  0.2924  
0.8038  0.0454  0.0859  0.8014  0.0453  0.0857  0.8043  0.1677  0.2776  0.8335  0.1630  0.2727  

CN_VN_CMT 
0.6005  0.1211  0.2016  0.6172  0.1245  0.2072  0.6280  0.1965  0.2993  0.6105  0.1910  0.2910  
0.7081  0.0769  0.1388  0.7010  0.0825  0.1476  0.7089  0.1848  0.2932  0.7527  0.1812  0.2920  
0.8182  0.0385  0.0736  0.8110  0.0382  0.0729  0.8043  0.1677  0.2776  0.8335  0.1630  0.2727  

MN_VN_CMT 
0.6148  0.1240  0.2064  0.6411  0.1293  0.2153  0.6018  0.2092  0.3105  0.6261  0.1959  0.2984  
0.7081  0.0769  0.1388  0.7033  0.0903  0.1600  0.7137  0.1861  0.2952  0.7478  0.1800  0.2901  
0.8254  0.0389  0.0742  0.8182  0.0385  0.0736  0.8072  0.1684  0.2786  0.8335  0.1630  0.2727  

CN_MN_VN_CMT 
0.6172  0.1245  0.2072  0.6100  0.1436  0.2325  0.6339  0.1983  0.3021  0.6018  0.1961  0.2958  
0.7105  0.0772  0.1392  0.7057  0.0906  0.1606  0.7108  0.1853  0.2940  0.7537  0.1814  0.2924  
0.8230  0.0387  0.0740  0.8158  0.0384  0.0733  0.8043  0.1677  0.2776  0.8335  0.1630  0.2727  

 
Table 10. Comparison of experimental results for LSI without annotation redundancy and with annotation redundancy removal 

 iTrust iTrust (new) SMOS SMOS (new) 
R P F R P F R P F R P F 

LSI 
0.6077  0.1073  0.1823     0.6047  0.2102  0.3120     
0.7177  0.0780  0.1406     0.7215  0.1881  0.2984     
0.8254  0.0466  0.0882     0.8228  0.1716  0.2840     

CMT 
0.6124  0.1081  0.1838  0.6244  0.1102  0.1874  0.6660  0.1894  0.2950  0.6241  0.1952  0.2974  
0.7081  0.0714  0.1298  0.7081  0.0714  0.1298  0.7020  0.1830  0.2904  0.7468  0.1798  0.2898  
0.8206  0.0386  0.0738  0.8062  0.0455  0.0862  0.8179  0.1706  0.2823  0.8393  0.1751  0.2897  

CN_CMT 
0.6268  0.1106  0.1881  0.6029  0.1216  0.2024  0.6329  0.1980  0.3016  0.6076  0.1901  0.2896  
0.7081  0.0769  0.1388  0.7033  0.0764  0.1378  0.7030  0.1833  0.2908  0.7488  0.1802  0.2905  
0.8014  0.0453  0.0857  0.8110  0.0458  0.0867  0.8160  0.1702  0.2816  0.8004  0.1789  0.2924  

MN_CMT 
0.6531  0.1153  0.1960  0.6148  0.1240  0.2064  0.6056  0.2106  0.3125  0.6261  0.1959  0.2984  
0.7225  0.0785  0.1416  0.7081  0.0833  0.1491  0.7108  0.1853  0.2940  0.7507  0.1807  0.2913  
0.8086  0.0457  0.0865  0.8134  0.0459  0.0870  0.8160  0.1702  0.2816  0.8442  0.1761  0.2914  

VN_CMT 
0.6148  0.1085  0.1845  0.6196  0.1094  0.1859  0.6047  0.2102  0.3120  0.6232  0.1949  0.2970  
0.7010  0.0761  0.1374  0.7033  0.0764  0.1378  0.7020  0.1830  0.2904  0.7478  0.1800  0.2901  
0.8182  0.0385  0.0736  0.8062  0.0455  0.0862  0.8130  0.1696  0.2806  0.8130  0.1696  0.2806  

CN_MN_CMT 
0.6201  0.1136  0.1920  0.6364  0.1284  0.2137  0.6290  0.1968  0.2998  0.6164  0.1928  0.2937  
0.7013  0.0918  0.1623  0.7057  0.0906  0.1606  0.7059  0.1841  0.2920  0.7498  0.1805  0.2909  
0.8344  0.0695  0.1282  0.8182  0.0462  0.0875  0.8169  0.1704  0.2820  0.8247  0.1720  0.2847  

CN_VN_CMT 
0.6244  0.1102  0.1874  0.6053  0.1221  0.2032  0.6222  0.1946  0.2965  0.6086  0.1904  0.2900  
0.7034  0.0764  0.1378  0.7057  0.0767  0.1383  0.7040  0.1835  0.2912  0.7498  0.1805  0.2909  
0.8038  0.0454  0.0859  0.8062  0.0455  0.0862  0.8140  0.1698  0.2810  0.8345  0.1740  0.2880  

MN_VN_CMT 
0.6483  0.1144  0.1945  0.6029  0.1216  0.2024  0.6339  0.1983  0.3021  0.6232  0.1949  0.2970  
0.7034  0.0764  0.1378  0.7057  0.0831  0.1486  0.7098  0.1851  0.2936  0.7498  0.1805  0.2909  
0.8062  0.0455  0.0862  0.8134  0.0459  0.0870  0.8189  0.1708  0.2826  0.8325  0.1736  0.2873  

CN_MN_VN_CMT 
0.7153  0.0777  0.1402  0.6459  0.1303  0.2169  0.6300  0.1971  0.3002  0.6144  0.1922  0.2928  
0.8062  0.0455  0.0862  0.7105  0.0836  0.1496  0.7079  0.1846  0.2928  0.7507  0.1807  0.2913  
0.6005  0.1211  0.2016  0.8110  0.0458  0.0867  0.8111  0.1692  0.2800  0.8179  0.1706  0.2823  
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As shown in Table 9 and Table 10, the first row of the 
table, "VSM" and "LSI", indicates the datasets without code 
feature extraction. The "dataset name (new)" represents the 
result of removing annotation redundancy.  

In the iTrust, the combination of code features with 
annotation redundancy removed results for VSM and LSI 
better than without annotation redundancy. The combination 
with “CN_MN_CMT” performs best. This experiment 
considers  to be more important. Comparing  and  with 
approximately the .  and  are negatively correlated and 

 is lost when  is increased. When the gap between  and 
 increases, it leads to a decrease in . Therefore, in the 

SMOS, the combination with “CN_MN” performs best, and 
because the  for annotation redundancy removal is higher 
than the results without annotation redundancy removal and 
code feature exaction, which resulted in a loss of  and , the 
experiments concluded that there is no degradation in the 
quality of trace link generation. In addition, analysis of the 
code annotation shows that there is more annotation 
redundancy in iTrust than in SMOS. 

The results show that there is no reduction in the 
effectiveness of the trace link generation for the IR model 
after removing the annotation redundancy. For the dataset 
with more annotation redundancy, removing the annotation 
redundancy can significantly improve the performance of the 
IR-based traceability recovery method. 

IV. DISCUSSION   

A. Research Suggestions 
This empirical study applies feature extraction for source 

code to improve the performance of IR-based trace links 
generation. It is shown that feature extraction works best for 
source code with different annotation densities, because 
annotations contain a large amount of information that can 
improve the quality of trace links, but not all features are 
equally effective in recovering traceability links.  

As shown in Table 11, to improve the effectiveness of 
trace links, different feature extraction methods are used 
depending on the code features. When the average annotation 
density is higher than 0.2, it is more effective to perform 
feature extraction and then generate trace links. The code 
feature combination with "CN_MN_CMT" is recommended 
for VSM, and "CN_CMT" is recommended for LSI. In terms 
of the feature extraction method, JavaParser or CAJP is used 
to extract code that conforms to the java writing specification. 
Otherwise, regular expressions are used, where the CAJP can 
help remove annotation redundancy. For developers, the 
specification and number of code annotations can greatly 
improve the effectiveness of generating trace links. 

Table 11. Recommendations for the treatment of different code feature 

Code Specification Average Annotations 
Density Annotations 

Redundancy Yes No 0.2 0.2 

JavaParser, 
CAJP 

regular 
expressions 

code 
feature 

extraction 

not code 
feature 

extraction 
CAJP 

B. Validity Threats Discussion 
There are a number of threats that could limit the validity 

of the experiments, so this section is primarily devoted to 
discussing potential threats to the experiments and how we 
can alleviate or mitigate the following four validity threats. 

Conclusion validity: A detailed research design is 
devised for this empirical study. As shown in Section II, the 
research questions, datasets selection, data preprocessing, 
threshold selection, and quality measure selection are 
reasonably designed to ensure the validity of the conclusions. 

Construct validity: The IR-based approach includes pre-
processing phase, links generation phase, links refinement 
phase, etc. For the model selection, VSM and LSI are the most 
used in IR[18], whereas pure VSM is the most effective in 
trace link generation[17]. In this study, the links generation 
stage, as shown in Figure 1, is devised in accordance with the 
research objectives and research questions, which can 
effectively support empirical studies on code feature 
extraction, annotation density, and annotation redundancy. In 
addition, three widely adopted metrics of , , and  are used 
to analyze the results of this experiment and they are effective 
to quantify the various situations. 

Internal validity: The experimental results show that 
code feature extraction, annotation density, and annotation 
redundancy have impacts on the trace link generation from 
requirements to code, and the empirical study conducted on 
these three aspects does not have the problem that the 
impacting factors are inappropriately selected. 

External validity: In the experimental section, five 
commonly used datasets are selected, which reduces the threat 
of this empirical study producing different results on different 
systems or projects. In addition, the experimental results show 
that the study achieves consistent conclusions on both "small" 
and "large" scale datasets. Therefore, the empirical 
conclusions presented have a great opportunity and potential 
to be extended to real software systems and projects. In order 
for reproducibility verifications, the source code of the 
experiments can be downloaded from WTU-intelligent-
software-development/code-feature-extraction (github.com). 

C. Related Works 
Researchers have done a great deal of research on trace 

link generation between requirements and source code, and 
many IR-based approaches have been proposed. These works 
are described below. 

Kuang et al. target the refinement of the recovery links 
generated by the IR model through class invocation, class 
inheritance, class usage, and class data basis[11]. Shao et al. 
improve the documentation based on LSI by weighting each 
code document by the inclusion relationship of classes in the 
code document and refining the generated candidate links 
through class clustering[8]; all of the above methods are used 
to class names in the code improves the quality of the IR 
model for trace link generation. Others argue that annotations 
would be richer than the information contained in pure code. 
Therefore, Diaz et al. propose to improve the quality of trace 
link between code and artifacts by using code ownership 
information, i.e., developer name and text information pairs in 
annotations[10]. Nagano et al. use a source code parser to 
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create syntax trees as a way to establish the link between 
identifier keywords and keywords in annotations[5]. Shen et 
al. investigated different types of annotations to compensate 
for the problem of lexical matching between pure source 
codes and requirements through the contribution of different 
types of annotations[7]. All of the above methods are analyzed 
through a single code feature, which can lead to some 
important information in the code being overlooked. 
Therefore, these empirical conclusions provide developers 
with an empirical study on how to extract code features. 

V. CONCLUSION AND FUTURE WORK 
This paper aims to draw empirical conclusions about code 

feature extraction to help improve the quality of trace links 
between requirements and source code generated by IR-based 
approach. Five datasets are used in this experiment, and three 
experiments are designed for the IR-based approach in three 
aspects: code feature extraction, annotation importance 
assessment, and annotation redundancy removal.  

Firstly, it is concluded that code feature extraction can 
improve the quality of trace links when the average annotation 
density is higher than 0.2. The code feature combination with 
"CN_MN_CMT" is recommended for VSM, and "CN_CMT" 
is recommended for LSI.  

Secondly, the method called CAJP is proposed that can 
help remove annotation redundancy. The results show that 
annotation redundancy removal does not reduce the quality of 
trace links. For datasets with high redundancy in code 
annotations, the annotation redundancy removal can 
significantly improve the quality of trace link generation. 

Finally, the study concludes suggestions for researchers 
and developers about code writing specifications and feature 
extraction methods.  

In the future, the following two aspects will be worked on. 
Firstly, the code features will be analyzed with other 
programming languages, because the code artifacts selected 
for this paper are all java source code. Secondly, the quality 
of the IR model may be improved by using different weighting 
methods or relationships between the code features. 
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