
An Empirical Study on Source Code Feature Extraction in
 Preprocessing of IR-Based Requirements Traceability

Bangchao Wang1,2, Yang Deng1, Ruiqi Luo1,2,*, and Huan Jin1

1School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
2Engineering Research Center of Hubei Province for Clothing Information, Wuhan Textile University, Wuhan, China

wangbc@whu.edu.cn, dd0028y@163.com, rqluo@wtu.edu.cn, jh_0230@163.com
*corresponding author

Abstract—In information retrieval-based (IR-based)

requirements traceability research, a great deal of researches
have focused on establishing trace links between requirements
and source code. However, as the description styles of source
code and requirements are very different, how to better
preprocess the code is crucial for the quality of trace link
generation. This paper aims to draw empirical conclusions
about code feature extraction, annotation importance
assessment, and annotation redundancy removal through
comprehensive experiments, which impact the quality of trace
links generated by IR-based methods between requirements and
source code. The results show that when the average annotaion
density is higher than 0.2, feature extraction is recommended.
Removing redundancy from code with high annotation
redundancy can enhance the quality of trace links. The above
experiences can help developers to improve the quality of trace
link generation and provide them with advice on writing code.

Keywords- requirements traceability; software reliability;
software engineering code feature extraction; empirical study

I. INTRODUCTION
Requirements Traceability (RT) is defined as ‘the ability

to describe and follow the life of a requirement in both a
forward and backward direction (i.e., from its origins, through
its development and specification, to its subsequent
deployment and use, and periods of ongoing refinement and
iteration in any of these phases)’[1]. A large number of RT
techniques are used in ensuring system quality and responding
to changing requirements, effectively helping developers to
discover inter-product dependencies, assuring requirement
coverage, and calculating the impact of requirements
changes[2].

With the increased size and complexity of software
systems, manually recovering and maintaining trace links is
time-consuming and costly[3,4]. Therefore, the advantage of
using information retrieval (IR) is that it can automatically
generate trace links through text similarity. Due to the
specificity of code artifacts, problems such as vocabulary
mismatch and data redundancy occur when using IR
techniques to establish trace between requirements and source
codes, and the result of trace link generation is often
unsatisfactory. In recent years, researchers have proposed
different improvement strategies in three stages:
preprocessing stage, links generation stage, and links
refinement stage, aiming to increase the connection between
code and artifacts. In the preprocessing stage, researchers have

weighted the code documents by analyzing a certain identifier
of the code (e.g., class, annotation, etc.). The current strategies
are creating Syntax Tree[5,6], extracting Code Annotations[7],
Term Classification[8]. Strategies such as Class Clustering[8],
Configuration Management Log[9] and Code Ownership[10]
have been proposed in the link generation stage. In the link
refinement stage, Analyzing Closeness Relations[11] and
Commonality and Variability Analysis[9] are mainly proposed
to refine the generated trace links by the dependencies
between code classes.

However, during these mentioned studies, there is little
attention paid to how some important features of the code
artifacts should be extracted and what impact the combination
of different features has on the establishment of trace links
between source code and requirements. In order to investigate
the above issues, the following empirical studies have been
conducted on five open-source datasets.

1) Different feature entities such as class names (CN),
variables names (VN), method names (MN) and annotations
(CMT) are extracted and these code features are combined
with different combinations. The annotations that affect the
trace link generation the most are analyzed by calculating
average density annotations and ablation experiments. It is
demonstrated that code feature extraction is more effective
when the average annotation density is higher than 0.2. The
feature combination "CN_MN_CMT" is more effective in
trace links generation for the Vector Space Model (VSM), and
"CN_CMT" is more effective for the Latent Semantic
Indexing (LSI).

2) Annotation redundancy is analyzed. A method called
CAJP (described in Section II-D) is proposed that further
divides annotations. The results of the study show that the
quality of IR-based trace link generation does not decrease
after removing annotation redundancy. For datasets with more
annotation redundancy, removing annotation redundancy
improves the quality of trace link generation.

3) In response to the above findings, research suggestions
are made for trace link generation between requirements and
source code. These suggestions are concluded from three
perspectives, which are code feature extraction, annotation
importance assessment, and annotation redundancy removal,
to improve the quality of trace link generation.

The rest of this paper is organized as follows: a detailed
description of the research problem, dataset, experimental
environment, quality assessment and the experimental process
is introduced in Section II. The results of the experiments are
presented and analyzed in Section III. Section IV provides

1069

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS57517.2022.00110

suggestions to researchers on code writing specifications,
code feature extraction and annotation redundancy, and
analyzes the validity threats and related work. Section V
introduces the conclusion and future work.

II. EMPIRICAL STUDY

A. Research Questions
To investigate how to better establish trace links

between requirements and source code, three research
questions (RQs) are determined, as shown in Table 1.

Table 1. Research questions of this work
Research Question Motivation

RQ1: What is the impact of code
feature extraction on the trace link
generation between requirements
and source code?

In order to investigate the impact of
extracting code features on
improving the quality of IR-based
trace link generation and provide
experience for researchers on the
feature extraction combination.

RQ2: What is the impact of
annotations in the source code on
the trace link generation between
requirements and source code?

To further investigate the causes of
the experimental results of RQ1 and
help researchers to understand how
annotations help establish trace
links.

RQ3: What is the impact of
annotation redundancy on the trace
link generation between
requirements and source code?

To explore whether removing
annotation redundancy can improve
the quality of trace link generation.

B. Datasets
In this study, five open-source datasets are chosen: iTrust,

eTOUR, Albergate, EasyClinic, and SMOS. As shown in
Table 2, the data are selected based on the following
principles: 1) These data are obtained from the free open-
source community CoEST1, which helps other researchers to
facilitate replication. 2) To enhance the experimental

reliability, datasets of different sizes are selected. According
to[12], when "Space" is larger than 3000, it is "large",
otherwise, it is "small". Experiments of RQ1 and RQ2 use all
datasets in the table, and experiments of RQ3 use iTrust and
SMOS, because only the iTrust and SMOS conform to the
java annotation specification, while the other datasets do not.

Table 2. Experimental datasets

Name
Source

Artifacts
(Count)

Target
Artifacts
(Count)

Space Trace
Links Scale

ITrust Use Cases (131) Java Code (226) 29606 418 Large

ETOUR Requirements
(58) Code (116) 6728 308 Large

SMOS Use Cases (67) Java Code (98) 6566 1027 Large

EasyClinic Use Cases (30) Class
Description (47) 1410 93 Small

Albergate Requirements
(17) Code (55) 935 53 Small

C. The Process of IR-based Trace Links Generation
This paper only considers fully automated requirements

trace link generation without considering the refinement
phase. According to the objectives and research questions, the
process of trace link generation contains four steps, which are
code feature extraction, requirements and source code pre-
processing model selection, and threshold selection. Figure
1 illustrates the process of IR-based trace link generation
between requirements and source code. The yellow boxes
indicate the method of extracting code features, a method
called CAJP (described in the next section) is proposed to
divide the annotations more delicately and help to remove
annotation redundancy The preprocessing and removing
redundancy are the generic steps. The red boxes indicate the
method of trace link generation, and the blue boxes indicate
the extracted code features and corpus, which are the generic
steps.

IR modelSource code

Annotations

Class Names

Method
Names

Variable
Names

 Regular
Expression

CAJP

Key phrases

Preprocessing

C
ode dependency analysis

Corpus

Removing
redundancy

LSIVSM

Traceability links

Javaparser
CAJP

Key phrases
extraction

1

2

3

54

6
8

7

9

Figure 1. Process for IR-based trace links generation for requirement and source codes

1 http://www.coest.org/

1070

D. The Detail of Preprocessing
1) Code Feature Extraction

To preprocess the source code, the textual information
of CN, MN, VN, and CMT of each source code are extracted
into four files as shown in Table 4. First, apply a code
dependency analysis to the code (1). Then, according to the
code specification, JavaParser[12], CAJP, and regular
representation are used to extract the code features (2). The
extraction results are shown in the figure of RQ3. JavaParser
is used to parse each Java file into an abstract syntax tree
using the ASTParser of Eclipse JDT[12]. Code features can
be extracted by querying the abstract syntax tree.

In contribution, a new method called CAJP is proposed,
which can extract code features for CN, MN, VN, and CMT.
The CAJP enhances block annotation extraction quality
compared to JavaParser and has the ability to analyze the
annotation content to remove annotation redundancy. As
shown in Figure 3 of RQ3, CAJP first extracts each line (tag)
in the block annotation before dividing the Tag into Context
and DocletTag of value and DocletTag of name. Then,
removing the redundancy of the block annotation by
subsequently extracting the Context and Doclet of value, the
Doclet of name is considered as the annotation redundancy
(6). Table 3 presents the pseudo-code for the CAJP algorithm.

Table 3. Annotation extraction algorithm
Algorithm: Annotation content extraction
Input Tags list (T)
Output AnnotationDecomposer Object
1. Function TagsDecomposer(T)
2. C: Save a text list of Tags text content
3. Contexts: Annotation Context storage list
4. Doclets: Document Part Storage List
5. While T≠Ø:
6. Get the Tag in the current tag list
7. If Tag_size>2:
8. Tag_TaxtContext = ExtractContext (Tag);

// Extracting tag context
9. C.add (Tag_TaxtContext);
10. End if
11. End while
12. While C≠Ø:
13. Get the current Tag text content
14. If Tag_TaxtContext.isDocletTag():
15. // The current Tag text content is DocletTag
16. docletTag = docletTagDecomposer (Tag_TaxtContext)

// Creating DocletTag objects
17. DocletTags.add(docletTag)
18. End if
19. Else:
20. Contexts.add (Tag_TaxtContext)
21. End else
22. End while
23.Return InitAnnotationDecomposer ()

Lines 2-4 initialize the relevant variables, lines 5-11
divide the block annotation into line annotation (tags), lines

12-22 divide the tags into Context, DocletTag of value, and
DocletTag of name, and line 23 returns the data.

If the JavaParser extraction method is used, there is no
need to remove the annotation redundancy and they do not go
through (6). For the extraction of annotations that are not
standardized and line annotations, the regular expressions is
used to extract annotations (3).

Table 4. Source code sections used in experimentation
Acronym Identifier Type

CN Class Name
MN All Public and Private Method Names of a Class
VN Class and Method Variable Names of a Class

CMT All Block and Single line Annotations of a Class

2) Requirements and Source Code Pre-processing
In the pre-processing of the requirement artifacts, all sub-

files and sub-files names in the artifacts are separately
merged into one document (4). As an illustration, each line in
document A which contains the contents of the subfiles,
represents a subfile and each line in document B, which
contains the names of the subfiles, corresponds to the line in
document A (4). Then, non-alphabetic characters are
removed, and NLTK[13] is used to split words and remove
punctuation and stop words, label the lexicon and retain verbs
and nouns[14]. To get Corpus, the stems are extracted and
written to a file using the Stemming algorithm (5).

The code feature files are combined in a total of fifteen
combinations. After using NLTK to split the text containing
annotations and remove punctuation and stop words, The text
in each of the fifteen files is pre-processed. Using the
Stemming algorithm, we extract the word stems from each
text file to obtain the key phrase (7).

E. Model Selection
According to[12], VSM and LSI are the two most used IR

model, and standard VSM has the best performance in trace
link generation, while LSI is an improvement to VSM that
mainly addresses the problem of synonyms and polysemy.
Therefore, this experiment uses the standard IR model, VSM,
and LSI models respectively to generate trace links (8).

VSM[13] is to represent each text as a term set
, and then calculate the weight for each

term in by the TF-IDF algorithm, so that a dataset T is
viewed as an n-dimensional space vector. And the values
belonging to the weights are the
corresponding values for each dimension. Where is
calculated as follows:

 (1)

 denotes the frequency with which in a
document occurs in document , and denotes the
frequency with which the term occurs in the whole corpus.
Where is calculated as follows.

 (2)

1071

where denotes the overview of documents in the
corpus and denotes the number of documents containing
the term .

The above formula allows the textual relationship
between the artifacts to be directly translated into a vector
operation. Finally, the similarity between two documents is
calculated by cosine similarity. The equation is as follows:

 (3)

LSI[15,16] is an improvement compared with VSM.
Firstly, the weights in the words are calculated and the
document matrix is generated by the TF-IDF. For high-
dimensional matrices, dimensionality reduction is usually
performed using the Singular Value Decomposition (SVD)
algorithm. The similarity of the text is calculated using cosine
similarity, and LSI uses corpus to analyze the semantic
relevance of the documents. However, the effect of LSI is
dependent on the information given in the context of the
document, and when less information is given, the LSI
improvement is not distinct. Therefore, it is not as effective
in creating trace links for products in requirements
engineering.

F. Threshold Selection
The IR model is used to calculate the similarity in reverse

order by size to generate the final trace links (9). For the
threshold selection, the number of candidate links is selected
using Selectivity Rate (SR). The equation is as follows:

 (4)

 represents the number of candidate trace links and
represents the total number of trace links. As the number of
candidate links increases, the variation of its precision and
recall becomes smaller[17]. Therefore, when SR [0,0.2],
0.01 is used as the interval point, when SR [0.2,1], 0.05 is
used as the interval point, which is a total of 36 points.

G. Quality Measures
In the field of IR, there are many different metrics that

can be used to assess the quality of IR models. Among them,
the most commonly used are and .
When the is 100%, it means that all recovered trace links
have been found; when the is 100%, it means that all
recovered trace links are correct. The equation for these two
metrics is as follows:

 (5)

 (6)

Where represents the total number of candidate
trace links. represents the total number of trace links in
the true set. The intersection of both indicates which
candidate trace links are in the true set.

When and are equally effective, there is a need for
another metric to measure. Therefore, a third metric is used:

. This metric is the summed average of
and . The equation is as follows:

 (7)

In order to systematically measure automated RT
techniques, the criteria are shown in Table 5. The metric is a

 and measure proposed by Hayes et al.[17], which is
based on industrial practice. The criterion measures the
results obtained by the IR model without any refinement
strategy and considers to be more important than . In
addition, and cannot be separated and need to meet the
criteria at the same time.

Table 5. Standards from Hayes[17]
Measure Acceptable Good Excellent

Recall 60% — 69% 70% — 79% 80% — 100%
Precision 20% — 29% 30% — 49% 50% — 100%

III. RESULTS AND ANALYSIS

A. RQ1: What is the impact of code feature extraction on the
trace link generation between requirements and source
code?

For RQ1, JavaParser is used to extract VN, CN, and MN
in the code, and regular expressions to extract line
annotations and block annotations in the code, and then
combine them into 15 kinds of patterns of feature
combinations to build trace links through IR model. Instead
of code slicing, code files are regarded as text files and then
establish trace links through IR model. This experiment
considers as more important by Hayes et al.[17]. The
intercept points close to "Acceptable", "Good", and
"Excellent" are taken separately for the , and then the and

 are compared.
Table 6 represents the results of the code feature

extraction experiment for VSM, while Table 7 represents the
results of the experiment for LSI. The first row of "VSM" and
"LSI" in the table indicates that no feature extraction is done.
From the experimental results of both models, it can be seen
that the results of generating trace links for IR model are
generally better for extracting code features than for not
extracting codes. Among the four datasets TOUR, iTrust,
SMOS, and EasyClinic, the feature combination
"CN_MN_CMT" performs better in the VSM model. In LSI,
the feature combination with "CN_CMT" works better. In
addition, the combination of the features with CMT generally
better. Therefore, the extraction of features has reduced the
noise of the code information and extracted the useful
information more precisely. In particular, the comments
provide a more standardized introduction to the code and
their extraction helps to establish the links between
requirements and source code.

For the Albergate, the effect of not extracting the code
features is better than extracting the code features. Upon

1072

analyzing the datasets, the annotations in Albergate are
sparse, which plays a significant role in the poor trace link
generation between requirements and source code.

Above all, for most datasets, code feature extraction can

improve the effectiveness in trace link generation. The
feature combination with "CN_MN_CMT" is better in the
VSM model. In LSI, the feature combination with
"CN_CMT" performs better.

Table 6. Code feature extraction experiment results for VSM

 Albergate eTOUR iTrust SMOS EasyClinic
R P F R P F R P F R P F R P F

VSM

0.6226 0.1416 0.2308 0.6006 0.1100 0.1859 0.6077 0.1073 0.1823 0.6339 0.1983 0.3021 0.6559 0.6224 0.6387

0.7170 0.1357 0.2282 0.7435 0.0851 0.1527 0.7177 0.0780 0.1406 0.7108 0.1853 0.2940 0.7097 0.5238 0.6027

0.8113 0.1024 0.1818 0.8214 0.0752 0.1378 0.8254 0.0466 0.0882 0.8043 0.1677 0.2776 0.8172 0.3858 0.5241

CN

0.6226 0.0642 0.1164 0.6071 0.0463 0.0861 0.6100 0.0157 0.0305 0.6290 0.1789 0.2786 0.6129 0.0899 0.1568

0.7359 0.0643 0.1182 0.7143 0.0467 0.0877 0.7033 0.0153 0.0299 0.8130 0.1696 0.2806 0.7419 0.0816 0.1470

0.8679 0.0656 0.1220 0.8084 0.0463 0.0875 0.8110 0.0143 0.0281 0.7352 0.1769 0.2852 0.8172 0.0771 0.1409

MN

0.6604 0.0750 0.1346 0.6007 0.0458 0.0852 0.6196 0.0159 0.0310 0.6232 0.1772 0.2760 0.6344 0.0697 0.1257

0.7359 0.0759 0.1376 0.7046 0.0461 0.0865 0.7129 0.0155 0.0303 0.7322 0.1762 0.2841 0.7312 0.0690 0.1260

0.8302 0.0673 0.1245 0.8182 0.0468 0.0886 0.8206 0.0145 0.0285 0.8121 0.1694 0.2803 0.8172 0.0674 0.1245

VN

0.6038 0.0775 0.1373 0.6234 0.0571 0.1046 0.6603 0.0155 0.0304 0.6222 0.1770 0.2755 0.6129 0.0674 0.1214

0.7170 0.0691 0.1260 0.7013 0.0494 0.0923 0.7034 0.0153 0.0299 0.7274 0.1751 0.2822 0.7527 0.0662 0.1217

0.8491 0.0577 0.1080 0.8409 0.0481 0.0910 0.8230 0.0145 0.0285 0.8062 0.1682 0.2783 0.8172 0.0674 0.1245

CMT

0.6038 0.0570 0.1042 0.6136 0.1124 0.1900 0.6053 0.1068 0.1816 0.6378 0.1995 0.3039 0.6344 0.6020 0.6178

0.7925 0.0642 0.1188 0.7403 0.0847 0.1521 0.7034 0.0764 0.1378 0.7050 0.1838 0.2916 0.7097 0.5238 0.6027

0.8302 0.0628 0.1167 0.8279 0.0689 0.1272 0.8206 0.0386 0.0738 0.8092 0.1688 0.2793 0.8280 0.3909 0.5310

CN_MN

0.6226 0.0707 0.1269 0.6039 0.0461 0.0856 0.6172 0.0158 0.0309 0.6280 0.1786 0.2781 0.6344 0.0837 0.1479

0.7359 0.0695 0.1270 0.7046 0.0461 0.0865 0.7129 0.0155 0.0303 0.7361 0.1772 0.2856 0.7312 0.0804 0.1448

0.8302 0.0673 0.1245 0.8214 0.0470 0.0889 0.8206 0.0145 0.0285 0.8121 0.1694 0.2803 0.8172 0.0771 0.1409

CN_VN

0.6038 0.0775 0.1373 0.6266 0.0574 0.1051 0.6603 0.0155 0.0304 0.6329 0.1800 0.2803 0.6344 0.1046 0.1796

0.7170 0.0691 0.1260 0.7078 0.0499 0.0931 0.7057 0.0153 0.0300 0.7381 0.1776 0.2864 0.7204 0.0792 0.1427

0.8113 0.0625 0.1161 0.8442 0.0483 0.0914 0.8230 0.0145 0.0285 0.8150 0.1700 0.2813 0.8172 0.0771 0.1409

CN_CMT

0.6038 0.0623 0.1129 0.6136 0.1124 0.1900 0.6172 0.1090 0.1852 0.6349 0.1986 0.3026 0.6452 0.6122 0.6283

0.7547 0.0612 0.1132 0.7305 0.0836 0.1500 0.7034 0.0828 0.1481 0.7040 0.1835 0.2912 0.7097 0.5893 0.6439

0.8679 0.0656 0.1220 0.8182 0.0681 0.1258 0.8206 0.0386 0.0738 0.8092 0.1688 0.2793 0.8495 0.4010 0.5448

MN_VN

0.6415 0.0728 0.1308 0.6266 0.0574 0.1051 0.6699 0.0158 0.0308 0.6271 0.1783 0.2777 0.6022 0.0662 0.1193

0.7736 0.0731 0.1335 0.7078 0.0499 0.0931 0.7034 0.0828 0.1481 0.7352 0.1769 0.2852 0.7204 0.0680 0.1242

0.8302 0.0673 0.1245 0.8409 0.0481 0.0910 0.8206 0.0386 0.0738 0.8111 0.1692 0.2800 0.8065 0.0665 0.1229

MN_CMT

0.6226 0.0642 0.1164 0.6169 0.1130 0.1910 0.6148 0.1240 0.2064 0.6027 0.2095 0.3110 0.6237 0.5918 0.6073

0.7547 0.0612 0.1132 0.7013 0.0918 0.1623 0.7034 0.0903 0.1600 0.7147 0.1863 0.2956 0.7419 0.4894 0.5897

0.8679 0.0656 0.1220 0.8052 0.0737 0.1351 0.8278 0.0390 0.0744 0.8072 0.1684 0.2786 0.8280 0.3909 0.5310

VN_CMT

0.6981 0.0660 0.1205 0.6169 0.1130 0.1910 0.6172 0.1090 0.1852 0.6368 0.1992 0.3035 0.6129 0.5816 0.5969

0.7547 0.0659 0.1212 0.7403 0.0847 0.1521 0.7105 0.0717 0.1302 0.7079 0.1846 0.2928 0.7312 0.4387 0.5484

0.8491 0.0642 0.1194 0.8117 0.0743 0.1362 0.8182 0.0385 0.0736 0.8092 0.1688 0.2793 0.8065 0.3555 0.4934

CN_MN_VN

0.6415 0.0728 0.1308 0.6266 0.0574 0.1051 0.6675 0.0157 0.0307 0.6329 0.1800 0.2803 0.6129 0.1011 0.1735

0.7736 0.0731 0.1335 0.7078 0.0499 0.0931 0.7105 0.0154 0.0302 0.7390 0.1779 0.2867 0.7097 0.0780 0.1406

0.8113 0.0658 0.1216 0.8377 0.0479 0.0907 0.8325 0.0147 0.0289 0.8150 0.1700 0.2813 0.8172 0.0771 0.1409

CN_MN_CMT

0.5849 0.0603 0.1093 0.6104 0.1118 0.1889 0.6412 0.1293 0.2153 0.6329 0.1980 0.3016 0.6344 0.6020 0.6178

0.7170 0.0677 0.1238 0.7305 0.0836 0.1500 0.7057 0.0906 0.1606 0.7108 0.1853 0.2940 0.7419 0.5476 0.6301

0.8113 0.0613 0.1141 0.8020 0.0734 0.1345 0.8038 0.0454 0.0859 0.8043 0.1677 0.2776 0.8280 0.4208 0.5580

CN_VN_CMT

0.6415 0.0675 0.1221 0.6104 0.1118 0.1889 0.6005 0.1211 0.2016 0.6280 0.1965 0.2993 0.6452 0.6122 0.6283

0.7547 0.0623 0.1151 0.7305 0.0836 0.1500 0.7081 0.0769 0.1388 0.7089 0.1848 0.2932 0.7097 0.5238 0.6027

0.8113 0.0586 0.1093 0.8020 0.0734 0.1345 0.8182 0.0385 0.0736 0.8043 0.1677 0.2776 0.8065 0.4098 0.5435

MN_VN_CMT

0.6415 0.0662 0.1199 0.6071 0.1112 0.1879 0.6148 0.1240 0.2064 0.6018 0.2092 0.3105 0.6129 0.5816 0.5969

0.7736 0.0676 0.1243 0.7305 0.0836 0.1500 0.7081 0.0769 0.1388 0.7137 0.1861 0.2952 0.7204 0.4752 0.5726

0.8491 0.0642 0.1194 0.8020 0.0734 0.1345 0.8254 0.0389 0.0742 0.8072 0.1684 0.2786 0.8172 0.3602 0.5000

CN_MN_VN_CMT

0.6038 0.0685 0.1231 0.6071 0.1112 0.1879 0.6172 0.1245 0.2072 0.6339 0.1983 0.3021 0.6344 0.6020 0.6178

0.7547 0.0659 0.1212 0.7208 0.0825 0.1481 0.7105 0.0772 0.1392 0.7108 0.1853 0.2940 0.7204 0.5317 0.6119

0.8302 0.0628 0.1167 0.8312 0.0692 0.1277 0.8230 0.0387 0.0740 0.8043 0.1677 0.2776 0.8172 0.4153 0.5507

1073

Table 7. Code feature extraction experiment results for LSI

Albergate eTOUR iTrust SMOS EasyClinic

R P F R P F R P F R P F R P F

LSI
0.6415 0.1459 0.2378 0.6234 0.1141 0.1930 0.6077 0.1073 0.1823 0.6047 0.2102 0.3120 0.6237 0.5918 0.6073
0.7547 0.1223 0.2105 0.7078 0.0926 0.1638 0.7177 0.0780 0.1406 0.7215 0.1881 0.2984 0.7204 0.5317 0.6119
0.8302 0.0942 0.1692 0.8084 0.0740 0.1356 0.8254 0.0466 0.0882 0.8228 0.1716 0.2840 0.8065 0.4438 0.5725

CN
0.6415 0.0662 0.1199 0.6071 0.0463 0.0861 0.6124 0.1081 0.1838 0.6008 0.1709 0.2661 0.6774 0.0813 0.1452
0.7170 0.0677 0.1238 0.7013 0.0459 0.0861 0.7081 0.0714 0.1298 0.7098 0.1586 0.2593 0.7097 0.0721 0.1308
0.8868 0.0592 0.1110 0.8734 0.0470 0.0893 0.8206 0.0386 0.0738 0.8033 0.1571 0.2628 0.8710 0.0676 0.1255

MN
0.6604 0.0750 0.1346 0.6104 0.0466 0.0866 0.6292 0.0162 0.0315 0.6368 0.1811 0.2820 0.6129 0.0735 0.1313
0.7359 0.0759 0.1376 0.7240 0.0474 0.0889 0.7249 0.0158 0.0308 0.7322 0.1762 0.2841 0.7204 0.0731 0.1328
0.8868 0.0671 0.1247 0.8312 0.0476 0.0900 0.8206 0.0145 0.0285 0.8199 0.1710 0.2830 0.8065 0.0710 0.1304

VN
0.6415 0.0741 0.1328 0.6136 0.0511 0.0943 0.6890 0.0122 0.0239 0.6241 0.1627 0.2582 0.6022 0.0662 0.1193
0.7170 0.0691 0.1260 0.7468 0.0488 0.0917 0.6172 0.0125 0.0244 0.7235 0.1617 0.2643 0.7312 0.0603 0.1114
0.8491 0.0577 0.1080 0.8377 0.0479 0.0907 0.8062 0.0134 0.0263 0.8062 0.1577 0.2637 0.8065 0.0626 0.1162

CMT
0.6038 0.0570 0.1042 0.6169 0.1130 0.1910 0.6124 0.1081 0.1838 0.6660 0.1894 0.2950 0.6344 0.6020 0.6178
0.7925 0.0642 0.1188 0.7013 0.0918 0.1623 0.7081 0.0714 0.1298 0.7020 0.1830 0.2904 0.7097 0.5238 0.6027
0.8302 0.0628 0.1167 0.8247 0.0687 0.1267 0.8206 0.0386 0.0738 0.8179 0.1706 0.2823 0.8065 0.4098 0.5435

CN_MN
0.6226 0.0707 0.1269 0.6169 0.0471 0.0875 0.6005 0.0170 0.0330 0.6388 0.1817 0.2829 0.6022 0.0794 0.1404
0.7359 0.0695 0.1270 0.7435 0.0486 0.0913 0.7345 0.0148 0.0290 0.7313 0.1760 0.2837 0.6989 0.0710 0.1288
0.8302 0.0673 0.1245 0.8474 0.0485 0.0917 0.8325 0.0138 0.0272 0.8257 0.1722 0.2850 0.8065 0.0761 0.1390

CN_VN
0.6038 0.0775 0.1373 0.6169 0.0514 0.0948 0.6340 0.0119 0.0234 0.6368 0.1660 0.2634 0.6667 0.0879 0.1554
0.7170 0.0691 0.1260 0.7727 0.0505 0.0949 0.7345 0.0122 0.0240 0.7390 0.1651 0.2700 0.7527 0.0827 0.1491
0.8113 0.0625 0.1161 0.8182 0.0499 0.0941 0.9043 0.0134 0.0265 0.8296 0.1622 0.2714 0.8280 0.0781 0.1427

CN_CMT
0.6038 0.0623 0.1129 0.6201 0.1136 0.1920 0.6268 0.1106 0.1881 0.6329 0.1980 0.3016 0.6452 0.6122 0.6283
0.7547 0.0612 0.1132 0.7013 0.0918 0.1623 0.7081 0.0769 0.1388 0.7030 0.1833 0.2908 0.7097 0.5893 0.6439
0.8679 0.0656 0.1220 0.8247 0.0687 0.1267 0.8014 0.0453 0.0857 0.8160 0.1702 0.2816 0.8065 0.4839 0.6048

MN_VN
0.6415 0.0662 0.1199 0.6266 0.0522 0.0963 0.6148 0.0145 0.0283 0.6680 0.1608 0.2592 0.6129 0.0735 0.1313
0.7547 0.0612 0.1132 0.7208 0.0508 0.0949 0.7416 0.0131 0.0257 0.7137 0.1595 0.2607 0.7097 0.0624 0.1148
0.8491 0.0602 0.1124 0.8117 0.0495 0.0934 0.8158 0.0136 0.0267 0.8354 0.1634 0.2733 0.8280 0.0643 0.1193

MN_CMT
0.6038 0.0570 0.1042 0.6201 0.1136 0.1920 0.6531 0.1153 0.1960 0.6056 0.2106 0.3125 0.6129 0.5816 0.5969
0.7359 0.0556 0.1034 0.7078 0.0926 0.1638 0.7225 0.0785 0.1416 0.7108 0.1853 0.2940 0.7097 0.5238 0.6027
0.8679 0.0579 0.1086 0.8344 0.0695 0.1282 0.8086 0.0457 0.0865 0.8160 0.1702 0.2816 0.8065 0.4098 0.5435

VN_CMT
0.6793 0.0642 0.1173 0.6169 0.1130 0.1910 0.6148 0.1085 0.1845 0.6047 0.2102 0.3120 0.6129 0.5816 0.5969
0.7736 0.0676 0.1243 0.7013 0.0918 0.1623 0.7010 0.0761 0.1374 0.7020 0.1830 0.2904 0.7312 0.4823 0.5812
0.8679 0.0615 0.1149 0.8344 0.0695 0.1282 0.8182 0.0385 0.0736 0.8130 0.1696 0.2806 0.8065 0.4098 0.5435

CN_MN_VN
0.6793 0.0642 0.1173 0.6136 0.0511 0.0943 0.6029 0.0131 0.0256 0.6465 0.1556 0.2509 0.5699 0.0752 0.1328
0.7547 0.0659 0.1212 0.7046 0.0496 0.0927 0.7177 0.0135 0.0265 0.7254 0.1513 0.2504 0.7097 0.0780 0.1406
0.8302 0.0588 0.1099 0.8344 0.0509 0.0960 0.8254 0.0137 0.0270 0.8559 0.1575 0.2660 0.8065 0.0665 0.1229

CN_MN_CMT
0.5849 0.0603 0.1093 0.6201 0.1136 0.1920 0.6201 0.1136 0.1920 0.6290 0.1968 0.2998 0.6237 0.5918 0.6073
0.7170 0.0677 0.1238 0.7013 0.0918 0.1623 0.7013 0.0918 0.1623 0.7059 0.1841 0.2920 0.7419 0.5476 0.6301
0.8113 0.0613 0.1141 0.8344 0.0695 0.1282 0.8344 0.0695 0.1282 0.8169 0.1704 0.2820 0.8065 0.4438 0.5725

CN_VN_CMT
0.6415 0.0675 0.1221 0.6169 0.1130 0.1910 0.6244 0.1102 0.1874 0.6222 0.1946 0.2965 0.6452 0.6122 0.6283
0.7547 0.0623 0.1151 0.7013 0.0918 0.1623 0.7034 0.0764 0.1378 0.7040 0.1835 0.2912 0.7312 0.5397 0.6210
0.8113 0.0586 0.1093 0.8312 0.0692 0.1277 0.8038 0.0454 0.0859 0.8140 0.1698 0.2810 0.8065 0.4098 0.5435

MN_VN_CMT
0.6415 0.0662 0.1199 0.6136 0.1124 0.1900 0.6483 0.1144 0.1945 0.6339 0.1983 0.3021 0.6022 0.5714 0.5864
0.7736 0.0676 0.1243 0.7110 0.0930 0.1645 0.7034 0.0764 0.1378 0.7098 0.1851 0.2936 0.7312 0.4823 0.5812
0.8491 0.0642 0.1194 0.8377 0.0697 0.1287 0.8062 0.0455 0.0862 0.8189 0.1708 0.2826 0.8065 0.3807 0.5172

CN_MN_VN_CMT
0.6038 0.0685 0.1231 0.6104 0.1118 0.1889 0.7153 0.0777 0.1402 0.6300 0.1971 0.3002 0.6344 0.6020 0.6178
0.7547 0.0659 0.1212 0.7013 0.0918 0.1623 0.8062 0.0455 0.0862 0.7079 0.1846 0.2928 0.7204 0.5317 0.6119
0.8302 0.0628 0.1167 0.8344 0.0695 0.1282 0.6005 0.1211 0.2016 0.8111 0.1692 0.2800 0.8065 0.3807 0.5172

B. RQ2: What is the impact of annotations in the source
code on the trace link generation between requirements and
source code?
 As a result of the Albergate in RQ1, which found that the
annotation is sparse, RQ2 aims to further verify whether
annotation density is an important factor in code feature
extraction. RQ2 verified the effect of annotation by
calculating the average annotation density and ablation
experiments. In the ablation experiments, their experimental
measures are selected by Hayes et al. [17], which considers
the more important. The intercept points close to
"Acceptable", "Good", and "Excellent" for are taken
separately and then compared for and .

The density of annotation lines is calculated by the
following formula:

(8)

where denotes the number of annotations and
denotes the number of codes. The average annotation density
is the average of the annotation density for each document.

Table 8. Average annotation density values
 Albergate eTOUR iTrust SMOS EasyClinic

Average Annotation
Density 0.0155 0.7057 0.2283 0.2123 0.6319

As shown in Table 8 and Figure 2, (after), (after), and

(after) represents represent the , , and of trace link

1074

generation after code removal of annotations respectively.
Albergate has the lowest average annotation density, and its
ablation experiments have a low impact on the experimental
results. For SMOS, the annotation density is close to 0.2, so
the annotation has a small impact on trace link generation for
VSM, and the and decreased when the reached the
point of 0.8. For iTrust, eTOUR, and EasyClinic, the quality
of the generated trace links is reduced after removing the
annotations. When extracting the annotations, it is found that
eTOUR has a high proportion of annotations, but most of
them are annotations on useless code and contained less

information to trace link generation. In EasyClinic, the
comments contain descriptions of the code, which can better
help to build links between the requirements and the source
code.

Above all, when the average annotation density is greater
than 0.2, the quality of annotations will have an impact on the
established trace links. The better the quality of its
annotations, the better the trace link generation using the
method of code feature extraction.

0.6226

0.7170

0.8302

0.1416 0.1357 0.1048

0.2308 0.2282
0.1860

0.6226

0.7170

0.8113

0.1416 0.1357 0.1024

0.2308 0.2282
0.1818

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Acceptable good excellent

Albergate (VSM)

P R F P (after) R (after) F (after)

0.6201

0.7403
0.8214

0.0568 0.0521 0.0470
0.1040 0.0974 0.0889

0.6006

0.7435
0.8214

0.1100 0.0851 0.0752

0.1859 0.1527 0.1378

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Acceptable good excellent

eTOUR (VSM)

P R F P (after) R (after) F (after)

0.6053

0.7344

0.8373

0.0475 0.0415 0.0338
0.0880 0.0785 0.0649

0.6077

0.7177

0.8254

0.1073 0.0780 0.0466

0.1823
0.1406

0.0882

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Acceptable good excellent

iTrust (VSM)

P R F P (after) R (after) F (after)

0.6559
0.7097

0.8065

0.0865 0.0852 0.0819
0.1529 0.1521 0.1487

0.6559
0.7097

0.8172

0.6224
0.5238

0.3858

0.6387 0.6027
0.5241

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Acceptable good excellent

EasyClinic (VSM)

P R F P (after) R (after) F (after)

0.6136
0.7045

0.8117

0.0562 0.0538 0.0495
0.1029 0.0999 0.0934

0.6234
0.7078

0.8084

0.1141 0.0926 0.0740

0.1930 0.1638 0.1356

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Acceptable good excellent

eTOUR (LSI)

P R F P (after) R (after) F (after)

0.6667
0.7204

0.8602

0.0879 0.0865 0.0757
0.1554 0.1544 0.1391

0.6047

0.7215
0.8228

0.2102 0.1881 0.1716

0.3120 0.2984 0.2840

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Acceptable good excellent

SMOS (LSI)

P R F P (after) R (after) F (after)

0.6407
0.7176

0.8169

0.2506 0.2245 0.1966

0.3603 0.3420 0.3170

0.6237

0.7204
0.8065

0.5918 0.5317
0.4438

0.6073 0.6119
0.5725

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Acceptable good excellent

EasyClinic (LSI)

P R F P (after) R (after) F (after)

R P F R(after) P(after) F (after) R P F R(after) P(after) F (after)

R P F R(after) P(after) F (after)

R P F R(after) P(after) F (after)

R P F R(after) P(after) F (after)

R P F R(after) P(after) F (after) R P F R(after) P(after) F (after)

0.6038

0.7547
0.8302

0.1711
0.1223 0.0942

0.2667
0.2105

0.1692

0.6415

0.7547
0.8302

0.1459 0.1223 0.0942

0.2378 0.2105
0.1692

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Acceptable good excellent

Albergate (LSI)

R(after) P(after) F(after) R P F R(after) P(after) F(after) R P F

R(after) P(after) F(after) R P F

R(after) P(after) F(after) R P FR(after) P(after) F(after) R P F

R(after) P(after) F(after) R P F R(after) P(after) F(after) R P F

R(after) P(after) F(after) R P F R(after) P(after) F(after) R P F

R(after) P(after) F(after) R P F R(after) P(after) F(after) R P F

0.6008

0.7011

0.8053

0.1879 0.1599 0.1799

0.2863 0.2900 0.2669

0.6339
0.7108

0.8043

0.1983 0.1853 0.1677

0.3021 0.2940 0.2776

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Acceptable good excellent

SMOS (VSM)

R(after) P(after) F(after) R P F

0.6124

0.7153
0.8014

0.0509 0.0439 0.0377
0.0939 0.0827 0.0721

0.6077

0.7177

0.8254

0.1073 0.0780 0.0466

0.1823 0.1406
0.0882

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Acceptable good excellent

iTrust (LSI)

R(after) P(after) F(after) R P F

Figure 2. The experiment results after removing annotation for VSM and LSI

C. RQ3: What is the impact of annotation redundancy on
the trace link generation between requirements and source
code?

For RQ3, an example of code feature extraction is shown
in Figure 3, where the extraction of block annotations. The
annotations is extracted directly by using JavaParser and
regular expressions. The CAJP method is used to further

divide the block annotations, and the redundancy of block
annotations is removed by subsequent extraction of Context
and Doclet of value. The Doclet of name is considered
annotation redundancy.

Because the annotation specifications of eTOUR,
EasyClinic, and Albergate do not conform to the java writing
specification, RQ3 extracts the annotations for iTrust and
SMOS, which conform to the java writing specification.

1075

CN
AccessDAO

VN
DAOFactory factory

conn

MN
getSessionTimeoutMins

Source code

CMT(Javaparser or regular expression)

The typical constructor.@param factory
The {@link DAOFactory} associated with
this DAO, which is used for obtaining SQL
connections, etc.

CMT(CAJP)

Content The typical constructor.
Doclet of name param
Doclet of value: factory The {@link
DAOFactory} associated with this DAO,
which is used for obtaining SQL

Code feature extraction

annotation
redundancy

Figure 3. An example for code features, the left is the source code, the right is the result after feature extraction

Table 9. Comparison of experimental results for VSM without annotation redundancy and with annotation redundancy removal
 iTrust iTrust (new) SMOS SMOS (new)

R P F R P F R P F R P F

VSM
0.6077 0.1073 0.1823 0.6339 0.1983 0.3021
0.7177 0.0780 0.1406 0.7108 0.1853 0.2940
0.8254 0.0466 0.0882 0.8043 0.1677 0.2776

CMT
0.6053 0.1068 0.1816 0.6029 0.1216 0.2024 0.6378 0.1995 0.3039 0.6271 0.1962 0.2988
0.7034 0.0764 0.1378 0.7105 0.0772 0.1392 0.7050 0.1838 0.2916 0.7468 0.1798 0.2898
0.8206 0.0386 0.0738 0.8158 0.0384 0.0733 0.8092 0.1688 0.2793 0.8286 0.1620 0.2711

CN_CMT
0.6172 0.1090 0.1852 0.6053 0.1221 0.2032 0.6349 0.1986 0.3026 0.6105 0.1910 0.2910
0.7034 0.0828 0.1481 0.7010 0.0900 0.1595 0.7040 0.1835 0.2912 0.7507 0.1807 0.2913
0.8206 0.0386 0.0738 0.8158 0.0384 0.0733 0.8092 0.1688 0.2793 0.8335 0.1630 0.2727

MN_CMT
0.6148 0.1240 0.2064 0.6005 0.1413 0.2288 0.6027 0.2095 0.3110 0.6280 0.1965 0.2993
0.7034 0.0903 0.1600 0.7057 0.0997 0.1747 0.7147 0.1863 0.2956 0.7488 0.1802 0.2905
0.8278 0.0390 0.0744 0.8014 0.0453 0.0857 0.8072 0.1684 0.2786 0.8354 0.1634 0.2733

VN_CMT
0.6172 0.1090 0.1852 0.6053 0.1221 0.2032 0.6368 0.1992 0.3035 0.6261 0.1959 0.2984
0.7105 0.0717 0.1302 0.7081 0.0769 0.1388 0.7079 0.1846 0.2928 0.7488 0.1802 0.2905
0.8182 0.0385 0.0736 0.8158 0.0384 0.0733 0.8092 0.1688 0.2793 0.8286 0.1620 0.2711

CN_MN_CMT
0.6412 0.1293 0.2153 0.6124 0.1441 0.2334 0.6329 0.1980 0.3016 0.6319 0.1865 0.2881
0.7057 0.0906 0.1606 0.7081 0.1000 0.1753 0.7108 0.1853 0.2940 0.7537 0.1814 0.2924
0.8038 0.0454 0.0859 0.8014 0.0453 0.0857 0.8043 0.1677 0.2776 0.8335 0.1630 0.2727

CN_VN_CMT
0.6005 0.1211 0.2016 0.6172 0.1245 0.2072 0.6280 0.1965 0.2993 0.6105 0.1910 0.2910
0.7081 0.0769 0.1388 0.7010 0.0825 0.1476 0.7089 0.1848 0.2932 0.7527 0.1812 0.2920
0.8182 0.0385 0.0736 0.8110 0.0382 0.0729 0.8043 0.1677 0.2776 0.8335 0.1630 0.2727

MN_VN_CMT
0.6148 0.1240 0.2064 0.6411 0.1293 0.2153 0.6018 0.2092 0.3105 0.6261 0.1959 0.2984
0.7081 0.0769 0.1388 0.7033 0.0903 0.1600 0.7137 0.1861 0.2952 0.7478 0.1800 0.2901
0.8254 0.0389 0.0742 0.8182 0.0385 0.0736 0.8072 0.1684 0.2786 0.8335 0.1630 0.2727

CN_MN_VN_CMT
0.6172 0.1245 0.2072 0.6100 0.1436 0.2325 0.6339 0.1983 0.3021 0.6018 0.1961 0.2958
0.7105 0.0772 0.1392 0.7057 0.0906 0.1606 0.7108 0.1853 0.2940 0.7537 0.1814 0.2924
0.8230 0.0387 0.0740 0.8158 0.0384 0.0733 0.8043 0.1677 0.2776 0.8335 0.1630 0.2727

Table 10. Comparison of experimental results for LSI without annotation redundancy and with annotation redundancy removal

 iTrust iTrust (new) SMOS SMOS (new)
R P F R P F R P F R P F

LSI
0.6077 0.1073 0.1823 0.6047 0.2102 0.3120
0.7177 0.0780 0.1406 0.7215 0.1881 0.2984
0.8254 0.0466 0.0882 0.8228 0.1716 0.2840

CMT
0.6124 0.1081 0.1838 0.6244 0.1102 0.1874 0.6660 0.1894 0.2950 0.6241 0.1952 0.2974
0.7081 0.0714 0.1298 0.7081 0.0714 0.1298 0.7020 0.1830 0.2904 0.7468 0.1798 0.2898
0.8206 0.0386 0.0738 0.8062 0.0455 0.0862 0.8179 0.1706 0.2823 0.8393 0.1751 0.2897

CN_CMT
0.6268 0.1106 0.1881 0.6029 0.1216 0.2024 0.6329 0.1980 0.3016 0.6076 0.1901 0.2896
0.7081 0.0769 0.1388 0.7033 0.0764 0.1378 0.7030 0.1833 0.2908 0.7488 0.1802 0.2905
0.8014 0.0453 0.0857 0.8110 0.0458 0.0867 0.8160 0.1702 0.2816 0.8004 0.1789 0.2924

MN_CMT
0.6531 0.1153 0.1960 0.6148 0.1240 0.2064 0.6056 0.2106 0.3125 0.6261 0.1959 0.2984
0.7225 0.0785 0.1416 0.7081 0.0833 0.1491 0.7108 0.1853 0.2940 0.7507 0.1807 0.2913
0.8086 0.0457 0.0865 0.8134 0.0459 0.0870 0.8160 0.1702 0.2816 0.8442 0.1761 0.2914

VN_CMT
0.6148 0.1085 0.1845 0.6196 0.1094 0.1859 0.6047 0.2102 0.3120 0.6232 0.1949 0.2970
0.7010 0.0761 0.1374 0.7033 0.0764 0.1378 0.7020 0.1830 0.2904 0.7478 0.1800 0.2901
0.8182 0.0385 0.0736 0.8062 0.0455 0.0862 0.8130 0.1696 0.2806 0.8130 0.1696 0.2806

CN_MN_CMT
0.6201 0.1136 0.1920 0.6364 0.1284 0.2137 0.6290 0.1968 0.2998 0.6164 0.1928 0.2937
0.7013 0.0918 0.1623 0.7057 0.0906 0.1606 0.7059 0.1841 0.2920 0.7498 0.1805 0.2909
0.8344 0.0695 0.1282 0.8182 0.0462 0.0875 0.8169 0.1704 0.2820 0.8247 0.1720 0.2847

CN_VN_CMT
0.6244 0.1102 0.1874 0.6053 0.1221 0.2032 0.6222 0.1946 0.2965 0.6086 0.1904 0.2900
0.7034 0.0764 0.1378 0.7057 0.0767 0.1383 0.7040 0.1835 0.2912 0.7498 0.1805 0.2909
0.8038 0.0454 0.0859 0.8062 0.0455 0.0862 0.8140 0.1698 0.2810 0.8345 0.1740 0.2880

MN_VN_CMT
0.6483 0.1144 0.1945 0.6029 0.1216 0.2024 0.6339 0.1983 0.3021 0.6232 0.1949 0.2970
0.7034 0.0764 0.1378 0.7057 0.0831 0.1486 0.7098 0.1851 0.2936 0.7498 0.1805 0.2909
0.8062 0.0455 0.0862 0.8134 0.0459 0.0870 0.8189 0.1708 0.2826 0.8325 0.1736 0.2873

CN_MN_VN_CMT
0.7153 0.0777 0.1402 0.6459 0.1303 0.2169 0.6300 0.1971 0.3002 0.6144 0.1922 0.2928
0.8062 0.0455 0.0862 0.7105 0.0836 0.1496 0.7079 0.1846 0.2928 0.7507 0.1807 0.2913
0.6005 0.1211 0.2016 0.8110 0.0458 0.0867 0.8111 0.1692 0.2800 0.8179 0.1706 0.2823

1076

As shown in Table 9 and Table 10, the first row of the
table, "VSM" and "LSI", indicates the datasets without code
feature extraction. The "dataset name (new)" represents the
result of removing annotation redundancy.

In the iTrust, the combination of code features with
annotation redundancy removed results for VSM and LSI
better than without annotation redundancy. The combination
with “CN_MN_CMT” performs best. This experiment
considers to be more important. Comparing and with
approximately the . and are negatively correlated and

 is lost when is increased. When the gap between and
 increases, it leads to a decrease in . Therefore, in the

SMOS, the combination with “CN_MN” performs best, and
because the for annotation redundancy removal is higher
than the results without annotation redundancy removal and
code feature exaction, which resulted in a loss of and , the
experiments concluded that there is no degradation in the
quality of trace link generation. In addition, analysis of the
code annotation shows that there is more annotation
redundancy in iTrust than in SMOS.

The results show that there is no reduction in the
effectiveness of the trace link generation for the IR model
after removing the annotation redundancy. For the dataset
with more annotation redundancy, removing the annotation
redundancy can significantly improve the performance of the
IR-based traceability recovery method.

IV. DISCUSSION

A. Research Suggestions
This empirical study applies feature extraction for source

code to improve the performance of IR-based trace links
generation. It is shown that feature extraction works best for
source code with different annotation densities, because
annotations contain a large amount of information that can
improve the quality of trace links, but not all features are
equally effective in recovering traceability links.

As shown in Table 11, to improve the effectiveness of
trace links, different feature extraction methods are used
depending on the code features. When the average annotation
density is higher than 0.2, it is more effective to perform
feature extraction and then generate trace links. The code
feature combination with "CN_MN_CMT" is recommended
for VSM, and "CN_CMT" is recommended for LSI. In terms
of the feature extraction method, JavaParser or CAJP is used
to extract code that conforms to the java writing specification.
Otherwise, regular expressions are used, where the CAJP can
help remove annotation redundancy. For developers, the
specification and number of code annotations can greatly
improve the effectiveness of generating trace links.

Table 11. Recommendations for the treatment of different code feature

Code Specification Average Annotations
Density Annotations

Redundancy Yes No 0.2 0.2

JavaParser,
CAJP

regular
expressions

code
feature

extraction

not code
feature

extraction
CAJP

B. Validity Threats Discussion
There are a number of threats that could limit the validity

of the experiments, so this section is primarily devoted to
discussing potential threats to the experiments and how we
can alleviate or mitigate the following four validity threats.

Conclusion validity: A detailed research design is
devised for this empirical study. As shown in Section II, the
research questions, datasets selection, data preprocessing,
threshold selection, and quality measure selection are
reasonably designed to ensure the validity of the conclusions.

Construct validity: The IR-based approach includes pre-
processing phase, links generation phase, links refinement
phase, etc. For the model selection, VSM and LSI are the most
used in IR[18], whereas pure VSM is the most effective in
trace link generation[17]. In this study, the links generation
stage, as shown in Figure 1, is devised in accordance with the
research objectives and research questions, which can
effectively support empirical studies on code feature
extraction, annotation density, and annotation redundancy. In
addition, three widely adopted metrics of , , and are used
to analyze the results of this experiment and they are effective
to quantify the various situations.

Internal validity: The experimental results show that
code feature extraction, annotation density, and annotation
redundancy have impacts on the trace link generation from
requirements to code, and the empirical study conducted on
these three aspects does not have the problem that the
impacting factors are inappropriately selected.

External validity: In the experimental section, five
commonly used datasets are selected, which reduces the threat
of this empirical study producing different results on different
systems or projects. In addition, the experimental results show
that the study achieves consistent conclusions on both "small"
and "large" scale datasets. Therefore, the empirical
conclusions presented have a great opportunity and potential
to be extended to real software systems and projects. In order
for reproducibility verifications, the source code of the
experiments can be downloaded from WTU-intelligent-
software-development/code-feature-extraction (github.com).

C. Related Works
Researchers have done a great deal of research on trace

link generation between requirements and source code, and
many IR-based approaches have been proposed. These works
are described below.

Kuang et al. target the refinement of the recovery links
generated by the IR model through class invocation, class
inheritance, class usage, and class data basis[11]. Shao et al.
improve the documentation based on LSI by weighting each
code document by the inclusion relationship of classes in the
code document and refining the generated candidate links
through class clustering[8]; all of the above methods are used
to class names in the code improves the quality of the IR
model for trace link generation. Others argue that annotations
would be richer than the information contained in pure code.
Therefore, Diaz et al. propose to improve the quality of trace
link between code and artifacts by using code ownership
information, i.e., developer name and text information pairs in
annotations[10]. Nagano et al. use a source code parser to

1077

create syntax trees as a way to establish the link between
identifier keywords and keywords in annotations[5]. Shen et
al. investigated different types of annotations to compensate
for the problem of lexical matching between pure source
codes and requirements through the contribution of different
types of annotations[7]. All of the above methods are analyzed
through a single code feature, which can lead to some
important information in the code being overlooked.
Therefore, these empirical conclusions provide developers
with an empirical study on how to extract code features.

V. CONCLUSION AND FUTURE WORK
This paper aims to draw empirical conclusions about code

feature extraction to help improve the quality of trace links
between requirements and source code generated by IR-based
approach. Five datasets are used in this experiment, and three
experiments are designed for the IR-based approach in three
aspects: code feature extraction, annotation importance
assessment, and annotation redundancy removal.

Firstly, it is concluded that code feature extraction can
improve the quality of trace links when the average annotation
density is higher than 0.2. The code feature combination with
"CN_MN_CMT" is recommended for VSM, and "CN_CMT"
is recommended for LSI.

Secondly, the method called CAJP is proposed that can
help remove annotation redundancy. The results show that
annotation redundancy removal does not reduce the quality of
trace links. For datasets with high redundancy in code
annotations, the annotation redundancy removal can
significantly improve the quality of trace link generation.

Finally, the study concludes suggestions for researchers
and developers about code writing specifications and feature
extraction methods.

In the future, the following two aspects will be worked on.
Firstly, the code features will be analyzed with other
programming languages, because the code artifacts selected
for this paper are all java source code. Secondly, the quality
of the IR model may be improved by using different weighting
methods or relationships between the code features.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China Project (No. 62102291), the Young
Talents Programmer of Scientific Research Program of the
Hubei Education Department (Project No. Q20211711) and
the Opening Foundation of Engineering Research Center of
Hubei Province for Clothing Information (No. 2022HBCI02,
No. 2022HBCI05).

REFERENCES
[1] O. Gotel and C. W. Finkelstein, "An analysis of the requirements

traceability problem," Proceedings of IEEE International Conference
on Requirements Engineering, pp. 94-101, 1994.

[2] B. Wang, R. Peng, Y. Li, et al.,"Requirements traceability technologies
and technology transfer decision support: A systematic review,"
Journal of Systems and Software, vol.146, pp.59-79, 2018.

[3] D. Li, W. E. Wong, S. Pan, L.-S. Koh, S. Li, and M. Chau, “Automatic
test case generation using many-objective search and principal
component analysis,” IEEE Access, vol. 10, pp. 85518–85529, 2022.

[4] S. Maza and O. Megouas, “Framework for trustworthiness in software
development,” International Journal of Performability Engineering,
vol. 17, no. 2, pp. 241–252, 2021.

[5] S. Nagano, Y. Ichikawa and T. Kobayashi, "Recovering Traceability
Links between Code and Documentation for Enterprise Project
Artifacts," 2012 IEEE 36th Annual Computer Software and
Applications Conference, 2012, pp. 11-18.

[6] D. Li, W. E. Wong, M. Jian, Y. Geng, and M. Chau, “Improving
search-based automatic program repair with Neural Machine
Translation,” IEEE Access, vol. 10, pp. 51167–51175, 2022.

[7] G. Shen, H. Wang, Z. Huang, Y. Yu, K. Chen, "Supporting
Requirements to Code Traceability Creation by Code Annotations,"
International Journal of Software Engineering and Knowledge
Engineering, vol.31, pp.1099-1118, 2021

[8] J. Shao, W. Wu and P. Geng, "An Improved Approach to the Recovery
of Traceability Links between Requirement Documents and Source
Codes Based on Latent Semantic Indexing," 13th International
Conference on Computational Science & Its Applications, Springer
Berlin Heidelberg, 2013.

[9] R. Tsuchiya, H. Ishizaki, Y. Fukazawa, T. Kato, M. Kawakami, K
Yoshimura, "Recovering Traceability Links between Requirements
and Source Code Using the Configuration Management Log,"
IEICETransactions on Information and Systems, vol.98-D, pp, 852-
862 ,2015.

[10] D. Diaz, G. Bavota, A. Marcus, et al., "Using code ownership to
improve IR-based Traceability Link Recovery," 2013 21st
International Conference on Program Comprehension (ICPC), pp. 123-
132, 2013.

[11] H. Kuang, J. Nie, H. Hu, et al., "Analyzing closeness of code
dependencies for improving IR-based Traceability Recovery". 2017
IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 68-78, 2017.

[12] Nasir Ali Yann-Gael Gu ¨ eh´ eneuc, Giuliano Antoniol,
“Requirements Traceability for Object Oriented Systems by
Partitioning Source Code”, IEEE, 2011.

[13] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613–620, Nov. 1975

[14] Mahmoud, A., Niu, N. “On the role of semantics in automated
requirements tracing”. Requirements Eng 20, 281–300 (2015).

[15] S. Eder, H. Femmer, B. Hauptmann and M. Junker, "Configuring
Latent Semantic Indexing for Requirements Tracing," 2015
IEEE/ACM 2nd International Workshop on Requirements Engineering
and Testing, pp. 27-33, 2015.

[16] B. Wang, R. Peng, Z. Wang, et al., “An Automated Hybrid Approach
for Generating Requirements Trace Links,” International Journal of
Software Engineering and Knowledge Engineering, 2020.

[17] J. H. Hayes, A. Dekhtyar and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods”, IEEE
Trans. Software Eng. Vol.32, pp.4-19, 2006

[18] B. Wang, H. Wang, R. Luo, S. Zhang, Q. Zhu, A Systematic Mapping
Study on Information Retrieval Approaches in Requirements
Traceability, pp.1-6, July, 2022.

1078

