
A Proactive Self-Adaptation Approach for Software Systems
based on Environment-Aware Model Predictive Control

Zhengyin Chen1,2 and Wenpin Jiao1,2,∗
1Institute of Software, School of Computer Science, Peking University, Beijing 100871, China
2Key Laboratory of High Confidence Software Technology (Peking University), MOE, China

chenzy512@pku.edu.cn, jwp@pku.edu.cn
*corresponding author

Abstract—Modern software systems need to maintain their
goals in a highly dynamic environment, which requires self-
adaptation. Many existing self-adaptive approaches are reactive,
they execute the adaptation behavior after the goal violation.
However, proactive adaptation can adapt before the goal violation
to avoid adverse consequence so it has attracted more and more
attention. Model predictive control is a widely used method
to implement proactive adaptation. However, these works often
ignore uncertainty of environment, which makes the prediction
of the system inaccurate and affect the control effectiveness.
Therefore, we propose an environment-aware model predictive
control method. Its main idea is to add the environment state
to the system model, predict the future state of the system
according to the predicted environment state and the current
state of the system, and solve the optimal control strategy. We use
a web application simulation platform to evaluate our method.
The results show that our method can achieve better adaptation
results and reduce the occurrence of goal violation.

Keywords—software adaptation; proactive adaptation; model
predictive control; environment prediction

I. INTRODUCTIONS

Modern software systems need to complete tasks indepen-
dently in a complex and dynamic environment, which makes
people have high requirements for reliability, robustness, se-
curity and other trustworthy properties of software systems. In
this case, self-adaptation is considered as an effective approach
to improve the trustworthiness of the software systems. Self-
adaptive system can continuously monitor the environment
and system state, and adjust the behavior or structure of the
system when the goal is violated [1]. The traditional self-
adaptive system usually adopts a reactive structure, that is, the
system will conduct compensation behavior after the system
goal violation so that the goal can be satisfied again. In some
critical tasks, reactive adaptation may miss the best adaptation
opportunity, resulting in large losses. Moreover, it cannot
obtain the optimal solution over a period of time so it may
need frequent adaptation. Above all, it is difficult to provide a
valid guarantee for the trustworthiness of the software system
by reactive self-adaptation.

In recent years, proactive self-adaptation has attracted more
and more researchers’ attention [2][3][4][5][6]. The key dif-
ference between proactive adaptation and reactive adaptation
is that reactive adaptation makes adjustment after detecting
the violation of the goal, while proactive adaptation intends
to avoid the possible violation in the future and make ad-
justment before the violation [7]. A system with proactive

self-adaptive ability needs to predict the future state of the
system and conduct adaptation behavior in advance to avoid
adverse consequences, rather than just compensate for the
adverse consequences. In many cases, for example, when the
loss is unacceptable if the target is violated or the effect
of adaptation has a long delay, it is more valuable to use
proactive adaptation, and thus more effectively improve the
trustworthiness of the software system.

Besides, control theory based methods are increasingly used
in the construction of self-adaptive systems, because control
theory has a good mathematical theoretical foundation and can
provide formal guarantees [8]. Among control theory based
methods, Model Predictive Control (MPC) is a commonly used
control technique in the industry [9], in which a model is used
to predict the behavior of a system over a period of time in
the future. The optimal control input is obtained by solving
an optimization problem with constraints to make output close
to the set point. In each control loop, the above calculation
process is repeated. MPC can be applied to multiple input
and multiple output systems, corresponding to the situation of
multiple effectors and multiple goals in software system. And
the prediction of the future state of the system through the
system dynamic model is consistent with the idea of proactive
self-adaptation, so it is a natural idea to use MPC for proactive
self-adaptation and has been implemented in some existing
works [3][5][10].

However, in these MPC-based self-adaptation works, a
nominal system model is generally used to model the software
system [11], only considering how the current state of the
system and the control signal affect the future state of the
system, while ignoring the influence of other factors on the
system [12]. This is usually not a problem when applied to
physical devices, however, when studying software systems,
due to the close interaction between the software system and
the environment, the environment has a great influence on the
software system. If the environment factors are not considered,
the general nominal system model cannot accurately represent
the behavior of the software system, which in turn affects
the effectiveness of the self-adaptation. In addition, the en-
vironment itself is also dynamic and uncertain. We need to
consider changes and randomness of the environment when
making predictions.

Therefore, in this paper, we propose a proactive self-
adaptation approach based on environment-aware model pre-

992

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS57517.2022.00103

dictive control. Unlike the traditional MPC method, we ex-
plicitly predict how the environment will change in the future
and use an environment-aware system dynamic model instead
of a nominal system model to predict the system more
accurately, which makes the control more effectively. In the
design phase, we use dynamic Bayesian model to build the
environment model based on the collected historical data of
the environment. Moreover, we add the environment factors to
the system dynamic model, and the resulting system dynamic
model can predict the future state of the system according to
the current system state, control signals, and environment state.
At runtime, we use the model predictive control method, in
each control loop, to solve a constrained optimization problem,
that is, calculate a set of control inputs so that the state of the
system in the future period of time is close to the set goal, in
order to achieve proactive self-adaptation.

The main contributions of this paper include: Firstly,
we summarize the main steps of proactive self-adaptation
and propose a proactive self-adaptation approach. Secondly,
we implement our proactive self-adaptation approach using
environment-aware model predictive control. We take advan-
tage of dynamic Bayesian model to model the dynamics and
randomness of the environment and use the environment-aware
system dynamic model to obtain more accurate system state
predictions and we adopt the model predictive control method
to realize the runtime control. Finally, we conduct experiments
on a simulated web application to evaluate our method.

The remainder of this paper is structured as follows. In
Section II we introduce background knowledge. In Section III
we describe the overview of the proactive adaptation method
we propose and further demonstrate the details in Section IV.
We conduct experiments to evaluate our method in Section
V and discuss the threat to validity in Section VI. Finally, we
introduce related work in Section VII and summarize our work
in Section VIII.

II. BACKGROUND KNOWLEDGE

A. MAPE-K model

The conceptual model of a self-adaptive software system
consists of three parts: the environment, the managing system,
and the managed system [8]. The managing system includes
control loops and adaptation goals. The environment refers
to the external world that interacts with the system and its
impact on the system can be observed. The managed system
contains application software to implement the functions of
the system. The managing system is the main component for
the realization of the self-adaptation, it needs to monitor the
state of the environment and the managed system and adjust
the managed system.

A widely used classical control loop is the MAPE-K model,
which represents four components, the Monitor, Analyzer,
Planner, and Executor, they implement the four functions of
the managing system, (i) the monitor is responsible for mon-
itoring the environment and the system; (ii) the analyzer uses
the most recent information collected to determine whether
adaptation is needed; (iii) the planner makes an adaptation

plan; (iv) the executor adjusts the managed system to perform
the adaptation plan. At the same time, the four components
share a knowledge base, which maintains information such as
adaptation goals, system state, and environmental state.

B. Model Predictive Control
Model Predictive Control is a widely used modern control

strategy as it offers a compromise between optimality and
computation cost [13]. It uses a system dynamic model to
predict the future state of a system. In each control loop,
the controller requires to solve a constrained optimization
problem, that is to find a set of control input signals that
make the objective function optimal under certain constraints.
This objective function is usually related to the state of the
system in the future, which needs to be calculated through the
system dynamic model. In general, MPC follows the receding
horizon principle, that is, in each control loop, the controller
will calculate a sequence of control signals, but the controller
will only retain the first term of this sequence as a control
signal and discard the rest, and repeat the calculation process
in the subsequent control loop. Therefore, MPC is also known
as Receding Horizon Control.

C. Dynamic Bayesian Network
Dynamic Bayesian Network (DBN) is a stochastic model

that is based on probabilistic network and combines the
original static network structure with time information to
process time series data [14]. The advantage of using DBN
for environment modeling is that it can support multiple
environment variables and characterize the randomness of the
environment.

Dynamic Bayesian Network is defined as follows:
First we define the static Bayesian Network (BN). There

is a set of random variables X = {X1, X2, ..., Xn}, BN
is a directed acyclic graph BN = {G, θ}, consisting of
graph structure G and related parameters θ. The nodes in the
graph represent the random variables, and the edges represent
the conditional dependencies between the variables. BN’s
parameters refer to the conditional probability table for each
variable. DBN extends BN in time, using Xt

i to represent Xi at
t time. DBN is usually represented as < B0, B→ >, as shown
in Figure 1, where B0 is a BN representing the probability
distribution of random variables at the initial moment, and
B→ representing the transfer network of two BNs at two
adjacent moments. In a DBN, the conditional dependency
between random variables depends not only on the variable
at the current moment, but also on the value of the variable
at the previous moment. The main researches in DBN are
the learning problem and the reasoning problem, the learning
problem is to explore the network structure and estimate the
parameters in the network based on the existing data; the
reasoning problem is to calculate the probability distribution
of Xt+h with known observation value X1, ..., Xt.

III. PROACTIVE SELF-ADAPTATION MECHANISM

Classified from the temporal characteristics, self-adaptive
methods can be divided into reactive and proactive [15]. And

993

Figure 1. Dynamic Bayesian Network

most of the current self-adaptive methods are reactive, that is,
the system will monitor the environment and system state, and
adjust the system after the goals are violated, so that the goals
are re-satisfied. This will not pose a problem when the system
adapts quickly or is highly tolerant of goal violations.

However, in some scenarios, the software system needs
to complete critical tasks and has a strict requirement, or
the adaptation has a relatively long delay, then we hope to
know the future state of the system in advance, plan and
initiate adaptation early, in order to adapt more timely and
reduce the loss caused by goal violations and improve the
robustness, reliability and performance of the software system.
The proactive self-adaptive system can predict the changes
in the environment state and system state in advance, judge
the completion of future system goals in advance, and make
preventive actions in advance to avoid the goals violation when
changes occur.

Some studies have focused on giving software systems the
ability of proactive adaptation, but there is no clear definition.
Combined with the existing works, we summarize the three
main steps of proactive adaptation: (1) Pre-judgment, that is,
the system needs to predict the state of the system over a
future period of time in advance, and judge whether the system
requirements can be met in the future; (2) Pre-planning, the
system generates an adaptation plan in advance according to
the results of pre-judgment, so that the system can avoid the
occurrence of the previously predicted situation after executing
the plan; (3) Pre-execution, considering the possible delay in
the execution of the adaptive plan, the system often needs to
initiate the plan in advance.

The overview of our proposed proactive adaptation method
is shown in Figure 2. Our method follows the classic con-
ceptual model of the self-adaptive system, adding a managing
system outside the software system to ensure the continuous
satisfaction of the goal. It is composed of a monitor, an adap-
tation decision maker which consists of an analyze-predictor
and a planner, an executor and a knowledge base to complete
the pre-judgment, pre-planning, and pre-execution steps of the
proactive adaptation.

In the design phase, we need to learn the environment model
and the system model to prepare for the proactive adaptation
at runtime. For the environment model, we need to collect the

historical data of the environment, and train the environment
model to predict the future changes of the environment; and
for the system model, it requires data sampling of the software
system to obtain the output of the system under a given
environment and control input to train the system model. The
environment model and system model will be stored in the
knowledge base for use in runtime pre-judgment and pre-
planning steps.

In each control loop, the monitor needs to get the latest
environment state env0 and system state s0 and pass them to
the adaptation decision maker. The adaptation decision maker
consists of an analyze-predictor and a planner, and the analyze-
predictor takes env0 and s0 as inputs, using the system model
and the environment model, to predict the value of the system
state s1...h over the future period h, thus it completes the pre-
judgment step. In the planner, we use MPC to compute the
control signal. In proactive adaptation, our adaptation goal is
to keep the goal of the system satisfied in the future time
period h, so we define an objective function that is related
to the system state in the future time period h. The planner
needs to solve a constrained optimization problem and find
a set of control inputs u0...h to make the objective function
optimal, that is, the pre-planning of the adaptation behavior.
According to the receding horizon principle, the adaptation
decision maker transmits the first term of planning results u0

to the executor, which adjusts the software system to complete
the pre-execution of proactive adaptation.

IV. ENVIRONMENT-AWARE MODEL PREDICTIVE CONTROL

A. environment model

Environment refers to the part of the external world that
interacts with the system and can be measured by the system
[16]. It can be divided into three categories according to its
characteristics, physical environment, computing environment
and user-related environment [17]. The dynamic and uncertain
environment will influence the system behaviours and the
satisfaction of the user goals, which makes it one of the main
reasons for self-adaptation. Especially when we want software
systems to have proactive adaptation ability, knowing how the
environment will change and how these changes will affect
the system is one of the important prerequisites for achieving
proactive adaptation.

We consider the environment as a set of environment factors,
and each environment factor has a constant or a variable to
represent its value. In our study, we focus on the time-varying
environment factor, so we use the variable evti to represent the
value of environment factor i at time t. Furthermore, we define
environment state as the values of all environment factors at
time t: est = [evt1, ev

t
2, ..., ev

t
p], and define environment history

as the sequence of environment states at time t and l time units
before: eht =< est, est−1, ..., est−l >.

Environment prediction is the mapping from the environ-
ment history to a future environment state. Some of the exist-
ing works do not directly predict the environment, but instead
observe and infer how the state of the system will change [18]
or adjust the state of the system affected by the environment

994

Figure 2. Overview of our proactive adaptation method

by Kalman filtering [3]. Auto-regressive methods are used for
environment prediction in the work of [19]. In most cases,
we cannot obtain all the knowledge about the environment,
which makes it impossible to completely eliminate uncertainty,
so the stochastic approach is more suitable for environment
prediction.

In this paper, we use the dynamic Bayesian network to
model the environment. Compared with other methods, DBN
has two main advantages: (i) The environment has natural
uncertainty, and DBN can describe this uncertainty in a
probabilistic way. (ii) There might be multiple environment
factors affecting software systems that are not independent,
while DBN can make multivariate predictions.

As mentioned earlier, DBN can be expressed as <
B0, B→ >. When using DBN to model the environment, the
n environment variables we study are the random variables in
DBN, that is, the X in the figure 1. For the case of n = 1, that
is, when there is only a single environment factor, the value
of the environment variable is affected only by the value of
that environment variable at the previous moment, thus auto-
regressive model can be used. For the case of n ≥ 1, it is a
general form of DBN, while the hidden Markov model is a
commonly used model.

Environment modeling corresponds to the learning problem
in DBN. It requires to collect historical data of the environment
in the design phase, and to find the conditional dependence be-
tween the environment variables, as well as the dependencies
between the environment variables at different times through
these data, to build the network structure of the DBN and
the corresponding conditional probability table. It is usually
realized by applying the maximum likelihood principle. Using
the learned model to predict the future state of the environment
is the reasoning problem in DBN. The observation value re-
quired for the reasoning problem is the environment historical
value collected by the software system at runtime, and the
future probability distribution of the environment variables are

obtained by the DBN inference algorithm, and the result can
be obtained by unrolling the DBN by time slice. More related
algorithms can be found in [14].

B. environment-aware system dynamic model
The system dynamic model represents how the system

changes through time. In MPC, the system dynamic model is
used to predict the future changes of the system. The system
dynamic model can be divided into two categories, one is
the white box analytical model by analyzing the physical
behavior of the system, such as the queuing network model
[20] applied in the software system, but in the software field,
it is usually difficult to represent complex software behavior
as an analytical model; the other one is the black-box model
that is commonly used in software systems. The black-box
model describes the system changes through the input-output
relationship, while the internal behavior of the system is
regarded as an unknown black box, and the learning method
is used to fit the model.

In traditional MPC works, state space model is used for
system dynamic model, which is:

xt+1 = Axt +But (1)

yt = Cxt +Dut (2)

where the superscript t indicates the time; y represents the
system outputs, which are some measurable performance
indicators in the software system; the system has n state
variables, represented by the state vector x = [x1, x2, ..., xn].
The state vector x does not necessarily represent measurable
variables, and may not even be a meaningful explanatory value
for the user, but may just an abstract variable that connects
input and output; u is a control vector u = [u1, u2, . . . , um],
representing the m effectors available for adjustment in the
software system. A,B,C,D are coefficient matrices, in most
cases, y and u are irrelevant, that is, the coefficient matrix D
is a zero matrix.

995

The system dynamic model used in traditional MPC does
not consider the influence of environment factors on the
system performance. However, self-adaptive software systems
usually run in a dynamic environment, and the performance
of the system depends highly on the state of the environment.
For example, the computational consumption required for an
unmanned vehicle to plan a route in a complex terrain will
be greater than in a simple terrain. If the same system model
is used in the environment, the prediction of the future state
of the system will inevitably be inaccurate, thus affecting the
controller to generate an effective adaptation plan. Therefore,
we hope to consider the environment factors in the system
dynamic model.

Thus, we change the environment-aware system dynamic
model to the following form:

xt+1 = Axt +But + Eest (3)

yt = Cxt +Dut (4)

foreach evti in est,

Vi = {v1, ..., vs}, evti ∈ Vi,
s∑

j=1

Pr[evti = vj] = 1

(5)

where es represents the environment state, assuming we have
p environment factors, then es = [ev1, ev2, ..., evp], E is
the coefficient matrix corresponding to the environment, and
the environment is added to the system state model as a
separate item to reflect the relation between the system state
and the environment state. And Vi represents the value range
of the environment variable evi. Here, the uncertainty of
the environment state is reflected in the discrete form of
probability. It is worth noting that the continuous form of
probability also works. When using this system state model
for prediction, the value of the environment in the future needs
to be predicted using the environment model obtained in the
previous step.

This form is inspired by the system model form in Robust
Model Predictive Control [11], which adds the disturbance as a
separate item to the system dynamic model. The environment
is similar to the disturbance, but the environment has its
own characteristics. First of all, although the system cannot
directly control the environment, it can obtain the state of the
environment, that is to say, the environment is measurable to
the system. Secondly, although the change of the environment
is random, it also has certain laws, and we can predict
the change of the environment. Therefore, this gives us the
possibility to directly incorporate environment factors into the
system dynamic model. On the other hand, the disturbance
term is usually related to measurement error or noise, and
needs to be considered independently for different software
systems, while the environment affecting the software system
is objective for all software systems.

Regarding how to build a system model, system identifi-
cation [21] is a widely used method for building a black-
box model. System identification is to input specific signals

to the system and collect the corresponding output results,
and then estimate the coefficient matrix in the system model
according to the collected input and output data. When we
identify the software system, first of all, we need to determine
the input and output of the software system, that is, determine
what y and u are in the system model, and obtain < u,y >
values as training data through simulation or other methods.
The estimation process is to first determine the order of the
model, that is, the number of system states x. Generally, we
select the smallest order that provides the most key information
through Hankel singular values. Then, it is necessary to find
a set of optimal coefficient matrices to minimize the error
between the system output predicted by the model and the
actual system output. The possible search methods include the
Gauss-Newton method, the Levenberg-Marquardt method, and
the gradient descent method.

When using an environment-aware system dynamic model,
the above-mentioned system identification method can also be
used to estimate the system model, but two more steps are
required: (1) In addition to the control input and system output,
we also need to obtain the value of the environment state
as an item of training data, the training data becomes in the
form of < u, es,y > at this time; (2) We need to convert the
model as follows, so that it can be converted into the model
form required by the general system identification method. It
is noted that the model of this form is only used in the stage
of system identification for convenient calculation.

xt+1 = Axt +But + Eest

= Axt +
[
B E

] [ut

est

]
= Axt +B′u′t

(6)

C. control logic

In the design phase, we obtain the system dynamic model
and the environment model, and in the runtime, we can use
them to build the controller to perform proactive adaptation
of the system, so that the software system can keep the goal
satisfaction in the dynamically changing environment.

Our controller adopts the MPC method to achieve multiple
objectives by adjusting multiple control inputs. In each control
loop, the controller needs to solve an online optimization
problem, that is, to find a set of control inputs ut such
that the objective function is optimal, while satisfying some
constraints. In MPC, we usually define the error between
the predicted output and the predefined target output as the
objective function to be optimized, and sometimes we need
to add the control input to comprehensively consider the cost
and benefit trade-offs. In general, the objective function is of
the form:

Jt =

H∑
i=1

[yt+i − rt+i]TQi[y
t+i − rt+i] + ut+iTPiu

t+i (7)

where yt+i is the predicted output at time t+ i, obtained from
the system dynamic model, rt+i is the reference output, that

996

is, the goal of the system. Q and P are the matrix used to
control the weights, which can be obtained by the Analytic
Hierarchy Process [22]. H is the time horizon for prediction
and control.

Since randomness is added to the environment model and
the system dynamic model, the design of the objective function
should also consider the randomness, so the expectation form
is adopted:

Jt = Eest

(H∑
i=1

[yt+i − rt+i]TQi[y
t+i − rt+i]

+ ut+iTPiu
t+i

) (8)

It represents the expectation of the value of the corresponding
objective function under the possible values of the environ-
ment. That is to say, the change of the environment in the
future time period H is uncertain, corresponding to multiple
possibilities for the state and output of the system. The
objective function of this form is the expectation of the value
of the objective function corresponding to each possibility.

At time t, the optimization problem that the controller needs
to solve can be expressed as follows:

minimizeut+i Jt

subject to uj,min ≤ ut+i
j ≤ uj,max,

yj,min ≤ yt+i
j ≤ yj,max,

xt+1 = Axt +But + Eest,

yt = Cxt +Dut,

foreach evti in est,

Vi = {v1, ..., vs}, evti ∈ Vi,
s∑

j=1

Pr[evti = vj] = 1

Environment Model :< B0, B→ >

(9)

When the controller solves the solution ut+i, i = 1, ...,H of
the above optimization problem, according to the receding
horizon principle, only the first item is applied to the software
system, and the subsequent items are discarded. The receding
horizon principle is used because the estimation of the future
system state at the current moment is not accurate, and the
controller will solve the optimization problem again according
to the latest obtained system state at the next moment to
obtain a new solution. When in real applications, the controller
may have a limited solution time, and the previously obtained
solution can be saved for use when the solution cannot be
obtained within the limited time.

Although the MPC uses the receding horizon principle,
it can use the latest measured data for calculation in each
loop, which avoids the large prediction range that results in
a decrease in the prediction accuracy, and provides a certain
degree of robustness. However, neither the environment model
nor the system model can predict without error. Therefore, we
hope to deal with the uncertainty brought by prediction using

the Kalman filter. The calculation formula is as follows:

x̂t+1 = Ax̂t +But +K(yt − ŷt) (10)

ŷt = Cx̂t (11)

where x̂, ŷ are the estimated values calculated by the
Kalman filter, K is the Kalman gain, which is used to measure
the error between the predicted value and the measured value.
For the calculation method of the Kalman gain, please refer
to [21]. On the one hand, the Kalman filter can help us obtain
the estimated value of the system state. On the other hand,
since the system is affected by unknown disturbances during
the actual operation, there is an error between the dynamic
model of the system and the actual operation. Using the actual
measured values of the system to estimate the state of the
system can make the system dynamic model closer to the
actual situation of the system.

V. EXPERIMENTS

In this section, we will evaluate our method compared with
a traditional reactive self-adaptive method and a traditional
MPC method. First, we verify the SASO properties (Stability,
Accuracy, Settling time, and Overshoot) in control theory
under simulation conditions. Then, we use real request traces
to evaluate the effectiveness of our method.

A. SWIM Case

We use SWIM [23] for evaluation, SWIM simulates a
general multi-layer web application similar to Znn.com and
RUBiS, such application consists of a web server layer and
a database layer. The web server layer receives requests from
clients. A load balancer is used to support multiple servers
in the web tier. When a client requests a web page using a
browser, the web server that handles the request accesses the
database tier to get the data needed to render the web page.
User requests arrival rate changes with time, which leads to
changes in the system work load. We hope that the system can
adapt to better handle this changing environment, so that the
response time can be guaranteed to be within an acceptable
range when the work load increases.

SWIM has two ways to deal with work load changes. First,
the system can add or remove servers from the server pool
connected to the load balancer. Second, the system can choose
whether to return optional content (such as advertisements or
recommendations), not returning optional content can reduce
the computational overhead of the system. This means SWIM
system can cope with the increase in load by degrading
the user experience, namely, brownout-compliant [24]. SWIM
uses ”dimmer” value to control the proportion of returned
optional content. When the dimmer value is 1, all responses
contain optional content. On the contrary, when the dimmer
value is 0, all responses do not contain optional content.

In general, the system needs to keep the response time
within a certain threshold. Increasing the server number and
reducing the optional content can reduce the response time. At
the same time, the cost of the system is related to the number

997

of servers, and the system revenue is related to the proportion
of optional content.

In order to simulate the user sending the request, we use the
real network request data and scale it to fit SWIM, the system
will read the timestamp of each request in the user request file,
and send the request according to the arrival time interval.
After reaching the load balancer, it is sent to one of the
servers according to the round robin method. The server only
randomly generates the service time by the normal distribution,
without actually returning the content, the mean of the service
time depends on whether it contains optional content and
database access time. In order to simplify the calculation,
in this case, resource utilization rate is used to represent the
impact of database access on the service time. When resource
utilization rate is high, the service time is longer. Similarly,
resource utilization rate is also an environmental factor and
is related to the number of user requests. After the request
arrives at the server, it will be queued to wait to be processed.
When the number of requests is large, the queuing time may
be so long that the response time of the request may exceed the
threshold. We hope that SWIM can keep the request response
time within the threshold, meanwhile maximizing revenue and
reducing costs as much as possible.

In this case, if we use reactive adaptation, SWIM will adjust
after the response time of the request exceeds the threshold, at
which time the revenue has dropped due to a large number of
request timeouts. Besides, reactive adaptation only considers
the current utility. When the environment is constantly chang-
ing, extra adaptations are required, and frequent adaptation
behaviors will not only increase the operating cost (such
as the server booting), but also affect the user experience
(such as SWIM changing the proportion of optional content).
Therefore, in the case of SWIM, the proactive adaptation
method is used to predict changes in user requests and resource
utilization rate in advance, and adjust the number of servers
and dimmer value before the system violates the goal, so that
the system can keep the response within the threshold for
a long period. Since proactive adaptation will consider the
optimal utility for a period of time, frequent adaptations will
not be carried out, which increases the stability of the system
operation.

B. Experiment setting

The setting for SWIM is shown in Table I. We choose the
timeout rate of the request and the average response time as
the outputs of the system. We set the timeout threshold to
0.75 seconds, the controllable parameters of the system are
the number of servers and the dimmer value. The range of
the number of servers is [1,3] and the dimmer value is in the
range [0,1]. The environment factors in SWIM are the request
rate and the resource utilization rate. The predict horizon is
set to 3 and we get the weights Q,P using AHP.

In terms of implementation, first of all, we use python
pgmpy package to implement the dynamic Bayesian network
of the environment. Next, we take the environment factors into
account in the system dynamic model, and use the System

TABLE I
SWIM SETTING

Name Type Value

Timeout rate Output [0,1]
Average response time Output -

Dimmer Control input [0,1]
Server number Control input [1,3]
Request rate Environment -

Resource utilization rate Environment [0,1]
Predict horizon H Controller parameter 3

Weights Q Controller parameter [0.4 0.4]
Weights P Controller parameter [0.1 0.1]

Figure 3. DBN structure of SWIM

Identification Toolbox in Matlab to obtain environment-aware
system dynamic model. For the controller, we use python’s
do-mpc package, which uses the IPOPT package as the solver
of the optimization problem.

In the first set of experiments, we use a fixed user requests
number and resource utilization rate, with only one change
point at runtime, to test the SASO property of our method.
In this scenario, the SASO property is defined as follows,
stability refers to whether the system output converges to a
constant value, accuracy refers to the average response time
of the system, settling time refers to the time it takes for the
output to converge to a constant value, and overshoot refers
to the maximum response time.

In the second set of experiments, we used ClarkNet [25]
and WorldCup’98 [26] access data as request sources, which
are real data collected from network nodes and websites and
used in many web-related studies. We take the disk usage data
characteristics of a real website as a reference to generate
the corresponding resource utilization rate data for these two
datasets. Since the resource utilization rate is related to the
number of user requests, the DBN structure of our designed
environment is as Figure 3, where X1 represents the number
of user requests, and X2 represents the resource utilization
rate.

We chose a reactive method provided by SWIM and a

998

traditional MPC method as the baseline. The principle of
the reactive method is that when the average response time
exceeds the threshold, a server is added, and when it does not
exceed the threshold, it increases the dimmer value. For the
traditional MPC method, we choose the CobRA method [3].
CobRA uses the nominal system model to model the system
without considering the impact of the environment. In the
case of SWIM, it is difficult to predict the actual changes
of the system based on the nominal model, so we modified
the CobRA method according to the method in [27], adding
environment factors, but no environment prediction.

In order to facilitate the comparison of the effect of each
method, we selected three evaluation metrics, timeout rate,
average response time and utility value. The timeout rate is
the ratio of the number of requests that timed out to the total
number of requests; the average response time is the average
response time of all requests, including timeout requests; the
utility value per control loop is calculated by the following
formula:

U ≜ UR + UP + UC (12)

where UR, UP , UC represent the revenue, penalty and cost
respectively, and the specific calculation is as follows.

UR ≜ (1−rt)∗a∗(d∗RO+(1−d)∗RM), where rt represents
the timeout rate, a represents the average number of requests,
d is the dimmer value, RO and RM are the revenue brought by
a single request for optional content and mandatory content,
and the total revenue is the revenue that can be brought by
requests that do not time out; UP ≜ rt ∗ a ∗ P , where P is
a negative number represents the penalty for a single timeout
request. This part of the utility represents the penalty for the
timeout requests; UC ≜ C ∗ (smax − s), where C is the cost
per server, smax and s are the maximum number of servers
and the number of servers used, this part of the utility is used
to measure the cost of the server.

C. Results

The results of the first set of experiments are shown in Table
II. We generated two different scenarios, one is to suddenly
increase the requests number and the resource utilization rate
at time 50, and the other one is the opposite, to decrease the
value of these two environment factors. The initial configura-
tion is 2 servers and 0.5 dimmer value. From the results, we
can see that our method can stabilize the output of the system
in two control loops. Meanwhile, it achieves good results in
accuracy and overshoot properties. From the results of the
SASO properties we can tell that our method has shown good
control ability.

In the second set of experiments, we want to evaluate
the effectiveness of our proposed environment-aware model
predictive control for proactive adaptation. We compare the
three adaptation methods under the two requested data traces,
the results are shown in Figure 4, and other statistical data
about the experiments are shown in Table III. The results of
the first two control loop are not included in the statistics to
eliminate the influence of the inappropriate initial setting.

TABLE II
SASO RESULTS

SASO property Scenario1 Scenario2

Stability Y Y
Accuracy 0.025 0.015

Settling Time 2 loop 2 loop
Overshoot 0.053 0.025

We can find that in both scenarios, our method can achieve
the highest cumulative utility value, and there is no obvious
decrease in utility value, which indicates that our method
has a good adaptation ability. Meanwhile, our method also
has the lowest average timeout rate and the lowest average
response time. In the ClarkNet data scenario, the pressure of
user requests on the web application is relatively large, but
the change range is not drastic, so the reactive method has
more timeouts, while the CobRA method and our method
control the number of timeouts to a low degree. In the
WorldCup’98 data scenario, due to the small load pressure
in the early stage of the experiment, all methods can achieve
good utility values, but when the experiment progresses to
about 50 time units, user requests suddenly start to rise, along
with the suddenly increasing work load pressure, thanks to
our method’s prediction of the environment, we can choose
to increase the number of servers in advance, thus avoiding
the occurrence of timeouts. As for the reactive method or
MPC method without environment prediction, the timeout
rate increases because the server is not added in time, which
reduces the utility value.

Besides, in Table III, we collect the average changing value
of dimmer and server number. Although we did not consider
the change of control input into the utility value, in the actual
software system, frequent adaptation behavior will also lead to
the increase of cost and the decrease of user experience. From
the results, we can find that our method has fewer changes in
the number of servers and fewer changes in dimmer value in
the ClarkNet case. It enables the system to run in a relatively
stable condition.

D. Summary

From the experiments, it can be found that our environment-
aware model predictive control method can effectively achieve
proactive self-adaptation. It has the following advantages:(1)
It can avoid possible goal violations, so that the system can
keep the goal satisfied, which is valuable if the violation leads
to a large penalty. (2) When considering the impact of the
environment on the software system and making environment
predictions, the future performance of the software system
can be predicted accurately and timely, which improves the
effectiveness of proactive self-adaptation. (3) This method can
realize adaptation with a small change of control input, so that
the system can maintain stability.

999

(a) WorldCup’98 trace (b) ClarkNet trace

Figure 4. SWIM results of real request traces

TABLE III
STATISTICS OF RESULTS

request trace method average
∆dimmer

average
∆server

average
timeout rate

maximum
timeout rate

average
response
time

maximum
response
time

accumulated
utility

Reactive 0.049 0.068 0.081 0.99 0.80 11.99 3297
WorldCup’98 CobRA 0.028 0.029 0.00012 0.0050 0.032 0.081 3345

Ours 0.037 0.019 0 0 0.031 0.045 3688

Reactive 0.099 0.15 0.22 1.0 1.62 17.71 3891
ClrakNet CobRA 0.73 0.048 0.012 0.23 0.071 1.52 5053

Ours 0.046 0.039 0.0019 0.076 0.019 0.18 5368

VI. THREAT TO VALIDITY

This section mainly discusses the internal validity and
external validity of our work. A major threat to the internal
validity is the parameters of MPC, such as the choice of
prediction and control horizon and the choice of the objective
function. A too short horizon may result in difficulty to
predict the risks that the system may face, and a too long
horizon will bring higher computational overhead and the risk
of inaccurate prediction. While setting the objective function
requires specifying the weight of the system output and

control input, which is usually related to user requirements.
The main threat to external validity comes from the single
experimental object. We hope to select the request trace
data that can represent the real situation and the changes of
the data itself also have certain characteristics. At the same
time, we also hope that the experiment object can represent
the real software system, so the web simulator is chosen.
Another aspect that affects the external validity is the scope
of application of software adaptation based on control theory,
which requires a model that can represent the mathematical
relationship between the input and output of the software

1000

system. Because of the complexity of the software system,
some software systems are difficult to express in this form
or to obtain accurate mathematical relationships. Besides, our
approach mainly applies to parameter-level adaptation while
some software systems are more suitable for architecture-
based adaptation.

VII. RELATED WORK

In the field of software adaptation, many studies try to use
control theory or control theory based methods. In [12] the
authors reviewed the software self-adaptation based on control
theory and proposed a classification framework from the
perspective of control engineering and software engineering.
Existing researches are discussed and compared from the
aspects of control structure, conceptual framework, theoretical
basis, development method, evaluation and verification, etc.
The review summarizes the problems in the control theory
based self-adaptation works, such as the difficulty in establish-
ing an accurate model of the software system, the emphasis
on control strategies but the lack of software engineering
oriented methods, and the lack of consideration of uncertainty.
In [28] the authors proposed the SimCA* method, which
uses PID controllers to support set-point goals, optimization
goals and threshold goals. It also deals with uncertainty and
goal changes. The CobRA method in [3] combined MPC
with requirement engineering. It expresses the goals and
adjustable points of the software system through the extended
requirement model, so as to control. The ProDSPL method in
[5] combined MPC and feature model, and find the optimal
configuration of key performance indicators through control
theory while satisfying the constraints of the feature model.
As mentioned above, the influence of the environment on
the system is rarely considered in these works, while our
work uses the prediction of the environment to obtain a more
accurate system model.

In the field of proactive self-adaptation, predicting the future
performance of the system is an important part. In the MPC-
based method, the state-space model is generally used as the
system dynamic model for prediction. It can be an analytical
model [20] or a black-box model [5] obtained by learning. In
our work, the learned system dynamics model is also used, and
environment factors are added. The main reason for using this
model is that this model can show the dynamics of the software
system, that is, the influence of the previous system state on
the later system state, and the learning method does not need
to know the details of the system operation. The limitation of
this system model is that the input and output of the system
are quantifiable and measurable. Other prediction methods
include: In service-based systems, the availability of a service
itself and the structure of the control flow is usually used to
predict the availability of the entire service [29]. The limitation
of this method is the service and control flow information
must be known in advance. In FUSION [30], a machine
learning method is used to obtain the relationship between
configuration and system performance indicators. This method
shows the static relationship between configuration and system

performance indicators, which is easily affected by other
factors in the actual system. In the work of PLA [4], the
Markov decision process is used to model the system to predict
the future changes of the system, and the probability model is
also used to consider the uncertainty. This method requires
understanding the operating details of the software system
and related modeling techniques. Some studies try to improve
the effectiveness of the prediction from the perspective of
improving the learning method. The study of [31] used a deep
learning ensemble model, to solve the contradiction between
efficiency and accuracy, while the study of [32] used a flexible
analyzer to select the optimal algorithm and parameters for
time series forecasting in different scenarios.

However, not all system models consider the influence
of the environment. In some studies, the influence of the
environment is implicitly considered, by observing changes
in some behaviors of the system, inferring that how the
environment changes will affect the overall operation of the
system. For example, [2] use discrete-time Markov chains to
model the system and its components, and then infer how the
transition probabilities in the Markov chains change when the
environment changes through a hidden Markov model, so as
to speculate overall reliability. In [18], the authors use a label
transition system to represent the behavior of the environment
and the system, and then used stochastic gradient descent to
update the model at runtime. In the PLA work [4], environment
prediction is made explicitly, it uses the average value of the
past period as the prediction of the future state, and uses the
probability tree to deal with the uncertainty, but this method
may not be able to achieve accurate prediction results when
the environment changes drastically. PASTAA presented in [6]
is based on statistical model checking, which uses historical
environmental data to predict the environment, but does not
model the influence of the environment on the system. Instead,
they sample the environment prediction results and conduct
a system simulation, evaluate the effect of the adaptation
strategy and find the best strategy based on the simulation
results. In our work, we directly consider the environment
factors in the system dynamic model so that the impact of
the environment on the system can be predicted. In terms
of environment prediction, the dynamic Bayesian network
can not only describe the changes of the environment in the
time dimension, but can also express the relationship between
multiple environment factors.

VIII. CONCLUSION

In this paper, we propose an environment-aware model pre-
dictive control method to realize the proactive self-adaptation
of the software system. We consider the environment factors
in the system dynamic model and carry out environment
prediction to solve the problem in traditional model predictive
control that the prediction of the system is not accurate because
the environment impact is not considered. In each control
loop, the controller needs to solve a constrained optimization
problem and find a set of control inputs to make the system
performance optimal for a period of time in the future. It is

1001

because not only the current system state, but also the expected
future state of the system is considered when solving the
optimization problem, which endows the software system with
proactive adaptation capability.

We evaluate the effectiveness of the method through the
experiments of the SWIM case. In a dynamically changing
environment, using our method can effectively avoid the
system’s utility decline due to environment changes, so that
the software system can continue to meet the requirements.
Compared with the reactive method and traditional model
predictive control methods without environment prediction,
our method can achieve better utility value and make the
system run more stably thanks to the more accurate prediction
of software system performance.

The main limitation of our work is that it is difficult to
obtain the system dynamic model of the software system, not
all software systems can be represented in the form required
in control theory. In addition, both environment prediction and
system prediction are not fully accurate. Inaccurate predictions
may lead to a decline in the adaptation effect or even negative
effects. In future work, we will focus on how to improve the
accuracy of predictions, and we hope to use our methods in
more cases, and deploy it to real experimental scenarios to
study its effectiveness.

ACKNOWLEDGMENT

The research was supported by National Science and Tech-
nology Major Project (2020AAA0109401), and Natural Sci-
ence Foundation of China (62192731).

REFERENCES

[1] R. d. Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel et al., “Software
engineering for self-adaptive systems: A second research roadmap,” in
Software engineering for self-adaptive systems II. Springer, 2013, pp.
1–32.

[2] D. Cooray, E. Kouroshfar, S. Malek, and R. Roshandel, “Proactive self-
adaptation for improving the reliability of mission-critical, embedded,
and mobile software,” IEEE Transactions on Software Engineering,
vol. 39, no. 12, pp. 1714–1735, 2013.

[3] K. Angelopoulos, A. V. Papadopoulos, V. E. S. Souza, and J. Mylopou-
los, “Model predictive control for software systems with cobra,” in 2016
IEEE/ACM 11th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). IEEE, 2016, pp. 35–46.

[4] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive self-
adaptation under uncertainty: a probabilistic model checking approach,”
in Proceedings of the 2015 10th joint meeting on foundations of software
engineering, 2015, pp. 1–12.

[5] I. Ayala, A. V. Papadopoulos, M. Amor, and L. Fuentes, “Prodspl:
Proactive self-adaptation based on dynamic software product lines,”
Journal of Systems and Software, vol. 175, p. 110909, 2021.

[6] Y.-J. Shin, E. Cho, and D.-H. Bae, “Pasta: An efficient proactive
adaptation approach based on statistical model checking for self-adaptive
systems,” in International Conference on Fundamental Approaches to
Software Engineering. Springer, Cham, 2021, pp. 292–312.

[7] M. Handte, G. Schiele, V. Matjuntke, C. Becker, and P. J. Marrón, “3pc:
System support for adaptive peer-to-peer pervasive computing,” ACM
Transactions on Autonomous and Adaptive Systems (TAAS), vol. 7, no. 1,
pp. 1–19, 2012.

[8] D. Weyns, An Introduction to Self-adaptive Systems: A Contemporary
Software Engineering Perspective. John Wiley & Sons, 2020.

[9] A. Filieri, M. Maggio, K. Angelopoulos, N. D’ippolito,
I. Gerostathopoulos, A. B. Hempel, H. Hoffmann, P. Jamshidi,
E. Kalyvianaki, C. Klein et al., “Control strategies for self-adaptive
software systems,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 11, no. 4, pp. 1–31, 2017.

[10] L. Wang, J. Xu, H. A. Duran-Limon, and M. Zhao, “Qos-driven cloud
resource management through fuzzy model predictive control,” in 2015
IEEE International Conference on Autonomic Computing. IEEE, 2015,
pp. 81–90.

[11] A. Bemporad and M. Morari, “Robust model predictive control: A
survey,” in Robustness in identification and control. Springer, 1999,
pp. 207–226.

[12] Q. Yang, X. Ma, J. Xing, H. Hu, P. Wang, and D. Han, “Software
self-adaptation: Control theory based approach,” Chinese Journal of
Computers, vol. 39, no. 11, pp. 2189–2215, 2016.

[13] B. Kouvaritakis and M. Cannon, “Model predictive control,” Switzer-
land: Springer International Publishing, vol. 38, 2016.

[14] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[15] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM transactions on autonomous and adaptive
systems (TAAS), vol. 4, no. 2, pp. 1–42, 2009.

[16] Y.-J. Shin, J.-Y. Bae, and D.-H. Bae, “Concepts and models of environ-
ment of self-adaptive systems: A systematic literature review,” in 2021
28th Asia-Pacific Software Engineering Conference (APSEC). IEEE,
2021, pp. 296–305.

[17] T. Zhao, H. Zhao, W. Zhang, and Z. Jin, “Survey of model-based self-
adaptation methods,” Ruan Jian Xue Bao / Journal of Software (in
Chinese), vol. 29, no. 1, p. 19, 2018.

[18] M. Tanabe, K. Tei, Y. Fukazawa, and S. Honiden, “Learning environment
model at runtime for self-adaptive systems,” in Proceedings of the
Symposium on Applied Computing, 2017, pp. 1198–1204.

[19] J. Palmerino, Q. Yu, T. Desell, and D. Krutz, “Improving the decision-
making process of self-adaptive systems by accounting for tactic volatil-
ity,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 949–961.

[20] E. Incerto, M. Tribastone, and C. Trubiani, “Software performance self-
adaptation through efficient model predictive control,” in 2017 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2017, pp. 485–496.

[21] L. Ljung, System Identification: Theory for the User. Pearson Educa-
tion, 1998.

[22] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE software, vol. 14, no. 5, pp. 67–74, 1997.

[23] G. A. Moreno, B. Schmerl, and D. Garlan, “Swim: an exemplar for
evaluation and comparison of self-adaptation approaches for web appli-
cations,” in 2018 IEEE/ACM 13th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,
2018, pp. 137–143.

[24] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Brownout: Building more robust cloud applications,” in Proceedings
of the 36th International Conference on Software Engineering, 2014,
pp. 700–711.

[25] M. F. Arlitt and C. L. Williamson, “Web server workload character-
ization: The search for invariants,” ACM SIGMETRICS Performance
Evaluation Review, vol. 24, no. 1, pp. 126–137, 1996.

[26] M. Arlitt and T. Jin, “A workload characterization study of the 1998
world cup web site,” IEEE network, vol. 14, no. 3, pp. 30–37, 2000.

[27] G. A. Moreno, A. V. Papadopoulos, K. Angelopoulos, J. Cámara, and
B. Schmerl, “Comparing model-based predictive approaches to self-
adaptation: Cobra and pla,” in 2017 IEEE/ACM 12th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE, 2017, pp. 42–53.

[28] S. Shevtsov, D. Weyns, and M. Maggio, “Simca* a control-theoretic
approach to handle uncertainty in self-adaptive systems with guaran-
tees,” ACM Transactions on Autonomous and Adaptive Systems (TAAS),
vol. 13, no. 4, pp. 1–34, 2019.

[29] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “Monitoring,
prediction and prevention of sla violations in composite services,” in
2010 IEEE International Conference on Web Services. IEEE, 2010,
pp. 369–376.

[30] A. Elkhodary, N. Esfahani, and S. Malek, “Fusion: a framework for en-
gineering self-tuning self-adaptive software systems,” in Proceedings of

1002

the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering, 2010, pp. 7–16.

[31] A. Metzger, A. Neubauer, P. Bohn, and K. Pohl, “Proactive process
adaptation using deep learning ensembles,” in International Conference
on Advanced Information Systems Engineering. Springer, 2019, pp.
547–562.

[32] C. Krupitzer, M. Pfannemüller, J. Kaddour, and C. Becker, “Satisfy:
Towards a self-learning analyzer for time series forecasting in self-
improving systems,” in 2018 IEEE 3rd International Workshops on
Foundations and Applications of Self* Systems (FAS* W). IEEE, 2018,
pp. 182–189.

1003

