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Abstract—Rust is an emerging programming language de-
signed for secure system programming that provides both secu-
rity guarantees and runtime efficiency and has been increasingly
used to build software infrastructures such as OS kernels, web
browsers, databases, and blockchains. To support arbitrary low-
level programming and to provide more flexibility, Rust intro-
duced the unsafe feature, which may lead to security issues such
as memory or concurrency vulnerabilities. Although there have
been a significant number of studies on Rust security utilizing
diverse techniques such as program analysis, fuzzing, privilege
separation, and formal verification, existing studies suffer from
three problems: 1) they only partially solve specific security issues
but lack comprehensiveness; 2) most of them require manual
interventions or annotations thus are not automated; and 3) they
only cover a specific phase instead of the full lifecycle.

In this perspective paper, we first survey current research
progress on Rust security from 5 aspects, namely, empirical
studies, vulnerability prevention, vulnerability detection, vul-
nerability rectification, and formal verification, and note the
limitations of current studies. Then, we point out key challenges
for Rust security. Finally, we offer our vision of a Rust security
infrastructure guided by three principles: Comprehensiveness,
Automation, and Lifecycle (CAL). Our work intends to promote
the Rust security studies by proposing new research challenges
and future research directions.
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I. INTRODUCTION

Rust [1] is an emerging secure system-level programming
language designed to address the security issues of low-level
programming languages such as C/C++. Due to its success-
ful combination of security and efficiency, Rust has gained
popularity in recent years. According to a developer survey
conducted by Stack Overflow in 2021 [2], Rust was rated
as the “most popular programming language”, with 86.98%
of developers are using, or considering using, Rust. In the
meanwhile, Rust has been successfully used to build infras-
tructure software, such as operating system kernels [3] [4] [5]
[6] [7], web browsers [8], file systems [9] [10], cloud services
[11], network protocol stacks [12], language runtimes [13],
databases [14], and blockchains [15]. Rust is also becoming
more widely used in industries, such as Microsoft [16], Google
[17], and even Linux [18].

To guarantee both security and runtime efficiency, Rust
introduced a group of novel language features, including
ownership [19], borrow [20], reference [21], and lifetime [22].
Rust also provided a set of strict security rules for these
language features, which are checked at compile time. These
security features, as well as these security rules, eliminate two
categories of vulnerabilities in Rust: 1) memory vulnerabili-
ties, including dangling pointers, double free, and use-after-

free, which are common in languages such as C/C++; and 2)
concurrency vulnerabilities, including race conditions caused
by mutable variable sharing between threads [23].

While Rust provided strong security guarantees, the overly
strict restrictions of security rules also make it difficult, if
not impossible, to develop low-level system code. To support
arbitrary low-level programming and to provide more flexibil-
ity to developers, Rust introduced the unsafe [24] feature,
which allows arbitrary unsafe operations by bypassing the
Rust compiler’s static security checking. The unsafe feature
of Rust, as a loophole, is indispensable in building low-level
software such as system libraries. For example, an empirical
study [25] demonstrated that nearly 30% of libraries use the
unsafe feature, and more than half of the library functions
are not checked by the compiler due to the chain of calls
between library functions.

Unfortunately, due to the insecure nature of unsafe Rust,
improper usage of this feature can easily lead to vulnerabilities
and form new attack surfaces. For example, all memory
vulnerabilities are related to the unsafe feature [26] [27], and
so do most concurrency vulnerabilities [27] [28]. Given the
importance of Rust in building infrastructure software, even a
single bug can defeat the security guarantee of Rust and lead
to serious consequences. To this end, the Rust security study
has become an important research topic.

In recent years, there have been a significant number of
studies on Rust security. According to the research themes,
existing studies can be classified into five categories: (1) empir-
ical studies that investigate Rust vulnerabilities [26] [27] [28]
and unsafe feature [25] [29] pragmatically. With empirical
results, one can obtain an understanding of the fundamental
security mechanisms of Rust, analyze the root causes and
potential attack surface, and provide correct assumptions for
subsequent vulnerability prevention and vulnerability detection
studies; (2) vulnerability prevention, to reduce or prevent the
occurrence of vulnerabilities, by utilizing privilege separation
[30] [31] [32] [33] [34] and program analysis [35] [36] [37]
[38]; (3) vulnerability detection, to effectively detect Rust
program vulnerabilities statically or dynamically, by using
data flow analysis [39] [40] [41] [42], fuzzing [43] [44],
abstract interpretation [45], and pattern matching [46]; (4)
vulnerability rectification, to rectify program automatically by
using program analysis and constraint solving [47]; and (5)
formal verification, to perform security verification and prove
properties of Rust programs, by using formal semantics [48]
[49] [50] [51], model checking [52] [53] [54], theorem proof
[55] [56] [57], and symbolic execution [58] [59] [60] [61].
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Despite the aforementioned research progress, however,
there are still three significant challenges to building a unified
Rust security infrastructure. First, current studies on Rust secu-
rity are not comprehensive enough. For example, vulnerability
detection studies usually only focus on a specific kind of
vulnerability, such as buffer overflow [47], deadlock [41], and
type confusion [42].

Second, current studies on Rust security cannot be fully
automated. For example, vulnerability prevention techniques
based on privilege separation usually require manually adding
RPC invocations [30], and program verification usually re-
quires user-supplied program specifications [55] or even partial
rewriting of the program [54].

Finally, current studies on Rust security only cover a
specific phase of the Rust lifecycle instead of the whole
Rust development lifecycle. For example, Sandcrust [32] can
only stop memory security vulnerabilities in the vulnerability
prevention phase, while RustHorn [62] can only act in the
formal verification phase. We argue that Rust security is
a systematic engineering process that should be explored
from a broader perspective. To summarize, to perform an
exhaustive and insightful study of Rust security, we need a
comprehensive, automated, and full lifecycle Rust security
infrastructure.

In this perspective paper, we present a new take on Rust
security infrastructure, which is founded on three principles:
Comprehensiveness, Automation, and Lifecycle (CAL). The
lifecycle that we adopt consists of four phases: vulnerability
prevention, vulnerability detection, vulnerability rectification,
and formal verification.

Vulnerability prevention. Vulnerability prevention is the
first phase of the Rust security lifecycle and is critical to
prevent security vulnerabilities and security attacks on Rust
systems. It enhances the defense of a software system by in-
troducing Rust-specific security mechanisms, such as sandbox,
lifetime visualization, and memory isolation for unsafe Rust,
during the development phase of a Rust software system to
prevent or block the occurrence of vulnerabilities.

Vulnerability detection. Even with effective vulnerability
prevention mechanisms, Rust security vulnerabilities may still
occur. Therefore, vulnerability detection, as the second phase
of the Rust security lifecycle, offers a fundamental measure
and essential method for significantly improving the security
of Rust. Since the Rust compiler already provides strict
security checks for safe Rust, vulnerability detection in Rust
should focus on unsafe Rust.

Vulnerability rectification. After a vulnerability is de-
tected, rectification is indispensable for fixing the vulnerability
timely. However, manual vulnerability rectification is not only
time-consuming but also error-prone. Therefore, the third
phase of the Rust security lifecycle is automated vulnerability
rectification, which is vital for reducing software development
costs and improving software security.

Formal verification. A program without detectable vulnera-
bilities does not mean that it implements the intended function
or meets the required security specifications. Formal verifi-

cation, based on mature mathematical techniques, rigorously
proves the security of a Rust program or guarantees a Rust
program satisfies expected design properties and security spec-
ifications. Therefore, formal verification is the last phase of the
Rust security lifecycle, providing higher security guarantees
for Rust software systems.

Contribution. This work stands for the first step towards
proposing a new perspective for Rust security to offer a com-
prehensive, automated, and lifecycle security infrastructure. To
summarize, this work makes the following contributions:

• Comprehensive survey. To properly frame and illustrate
our vision, our paper systematically and in-depth surveys
the current state of research and practice for Rust security.

• Insights and suggestions. We present insights and sug-
gestions on current key challenges that a novel Rust
security infrastructure should address.

• Vision. We offer our vision of a comprehensive, au-
tomated, and lifecycle Rust security infrastructure and
outline an actionable research agenda.

Outline. The rest of this paper is organized as follows.
Section II provides an overview of the status and progress of
Rust security research and practice. Section III presents the key
challenges of current studies. Section IV proposes our vision
of a Rust security infrastructure, and Section V concludes.

II. STATE-OF-THE-ART

To adequately describe our vision of the future Rust security
infrastructure, it is essential first to step back and survey the
existing Rust security research. Therefore, in this section, we
first conduct a systematic and in-depth survey of the Rust
security research and then give an overview of the relevant
research and tools and point out current limitations that must
be overcome to enable our proposed vision.

A. Methodology

In order to systematically analyze and summarize the
research in this area, we first collected and screened the
published papers since 2011 (Rust was officially released to
the public in 2011) according to the following steps: 1) using
the Google Scholar search engine, as well as the ACM, IEEE,
Springer, and other paper databases; 2) searching the keyword
“Rust security” ; 3) searching all the papers from 2011 to the
present; and 4) manually screening and reviewing the papers
retrieved by the above steps. In the selection process, we
focused on valuable and representative papers in the fields of
programming language, software engineering, and information
security.

As a result, we screened a total of 54 papers, mostly from
high-quality journals and conferences, such as POPL, CCS,
and ICSE. By understanding these studies in-depth, we clas-
sify existing research into five categories: empirical studies,
vulnerability prevention, vulnerability detection, vulnerability
rectification, and formal verification.

According to the above research directions, TABLE I gives
the classification statistics of the published papers. By ana-
lyzing the data in the table, we can conclude that the highest
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TABLE I
DISTRIBUTION OF RESEARCH DIRECTIONS IN RUST SECURITY

Research Direction Number Percentage

Empirical Studies 8 14.81%

Vulnerability Prevention 11 20.37%

Vulnerability Detection 10 18.52%

Vulnerability Rectification 1 1.85%

Formal Verification 24 44.45%

TABLE II
RUST SECURITY VULNERABILITIES CLASSIF ICATION AND ROOT CAUSE

Vulnerability Specific Root CauseCategory Vulnerabilities

Buffer Overflow All memory security
Read Uninitialized Memory vulnerabilities are related

Invalid Free to the use of unsafe
Memory Use after Free Rust, including unsafe
Security Double Free functions, FFIs, and

Null Pointer Dereference unsafe traits.
Type Confusion

Double Lock (•) The main cause of
Conflicting Lock (•) concurrency security

Forget Unlock (•) vulnerabilities is the
Concurrency Channel Misuse (•) misunderstanding of

Security Data Race (◦) Rust ownership and
Atomicity Violation (◦) lifetime rules.

Order Vilation (◦)

percentage of formal verification research is 44.45%, while
the percentages of empirical studies, vulnerability prevention,
and vulnerability detection are 14.81%, 20.37%, and 18.52%,
respectively. There is currently only one paper dealing with
vulnerability rectification for Rust.

B. Empirical Studies

As Rust is a relatively novel security programming lan-
guage, empirical studies lay the foundation for research in
all phases of the Rust security lifecycle by understanding
Rust’s security mechanisms and analyzing the root causes
of vulnerabilities and potential attack surfaces. Therefore,
empirical studies are an important guide for building a compre-
hensive, automated, and full-lifecycle Rust security infrastruc-
ture. Existing empirical studies mainly focus on Rust security
vulnerabilities and unsafe feature.

Existing empirical studies have revealed that security vul-
nerabilities still exist in real software systems built on Rust
[26] [27] [28]. Based on the in-depth analysis and summary
of existing studies, this paper classifies Rust security vulner-
abilities into two categories: memory security vulnerabilities
and concurrency security vulnerabilities. TABLE II presents
the vulnerability categories, specific security vulnerabilities,
and root cause analysis.

1) Memory Security Vulnerabilities. Existing empirical
studies show that Rust’s strict security mechanisms guarantee
that programs built with safe Rust will not suffer memory
security vulnerabilities [26] [27]. However, code blocks tagged

with the unsafe keyword will bypass the compiler’s security
checks, leading to security vulnerabilities. Furthermore, since
unsafe Rust code and safe Rust code are in the same
process address space, unsafe code has full access to the
entire process space, leading to a vulnerable point and attack
surface for memory security. The causes of memory security
vulnerabilities can be classified into four categories [26]: (1)
automatic memory reclamation errors ; (2) the use of unsafe
functions and FFIs; (3) the use of advanced features [63] of
Rust, such as trait [64]; and (4) other common memory errors,
such as arithmetic overflows and boundary checking issues.

2) Concurrency Security Vulnerabilities. Rust supports
both message passing and shared memory mechanisms be-
tween threads. To guarantee concurrency security, Rust uses
the same ownership model as in memory security to ensure the
safe sharing of data between threads [23]. However, existing
studies [28] [27] show that concurrency security vulnerabilities
in Rust programs still exist and can be categorized into
deadlock-related (•) and non-deadlock-related (◦) vulnerabil-
ities. The main cause of deadlock vulnerabilities is a lack
of complete understanding of Rust’s lifetime rules, while the
main causes of non-deadlock vulnerabilities are failure to
protect shared resources and message passing errors.

Considering Rust’s application scenario of system-level pro-
gramming and the design goal of runtime efficiency, introduc-
ing the unsafe feature is an inevitable choice for language
design. An empirical study of the unsafe feature shows that
although less than 30% of Rust libraries use the unsafe fea-
ture, more than half of the library functions cannot be statically
checked by the Rust compiler due to the call chain between
library functions [25]. The main reasons for using unsafe
feature include interacting with other languages, implementing
complex shared data structures, using unsafe concurrency
feature, improving performance, and reusing existing code [29]
[27].

Although existing empirical studies of Rust security have
yielded many results, they still have limitations. First, the
research datasets they use are small, which is prone to
overfitting. For example, the dataset used by Xu et al. [26]
contains only 186 Rust memory security vulnerabilities, while
more than 300 Rust memory security vulnerabilities have
been reported [65] [66]. Second, their analysis of vulnerability
generation mechanisms is not deep enough.

C. Vulnerability Prevention

According to the techniques employed, we classify existing
Rust vulnerability prevention studies into two categories: privi-
lege separation-based and program analysis-based. We analyze
and compare the existing studies, and the results are shown in
TABLE III.

1) Privilege Separation. Privilege separation typically sepa-
rates code that may contain vulnerabilities and enables security
enhancements by dividing various computing resources and
entities into different groups and assigning different permis-
sions. The technologies used in related studies can be classified
into two categories: first, memory isolation is achieved by
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TABLE III
SUMMARY AND ANALYSIS OF RUST VULNERABILITY PREVENTION STUDIES

Prevention Technology Main Technique Frameworks or Tools Vulnerability Research Progress

Privilege Separation
Memory Isolation

Fidelius Charm [30] Memory Although there have been many research
results on vulnerability prevention based

on privilege separation, these studies
only address memory vulnerabilities
and do not address protection against

concurrency vulnerabilities.

XRust [31] Memory
Galeed [34] Memory

PKRU-safe [67] Memory

Sandbox Sandcrust [32] Memory
RUSBOX [33] Memory

Program Analysis

Lifetime Analysis Dominik [35] Memory, Concurrency Related research prevents the occurrence of
memory and concurrency vulnerabilities
by analyzing the program’s call stack,

variable lifetime, and ownership.

VRLifeTime [37] Memory, Concurrency

Call Stack Analysis Lindgren [38] Memory, Concurrency

Ownership Analysis RustViz [68] Memory, Concurrency

TABLE IV
SUMMARY AND ANALYSIS OF RUST VULNERABILITY DETECTION STUDIES

Detection Technology Frameworks or Tools Main Technique Auxiliary Technique Data Structure Vulnerability FP

UnsafeFencer [46] Pattern Matching Runtime Detection AST Memory !
SafeDrop [39] Data-flow Analysis Taint Analysis MIR Memory "!

Rupair [47] Data-flow Analysis - AST, MIR Memory #
safeIPC [42] Data-flow Analysis Runtime Detection MIR Memory !

Program Analysis MirChecker [45] Abstract Interpretation Constraint Solve MIR Memory #
Rudra [40] Data-flow Analysis - MIR, HIR Memory "!
SyRust [69] Taint Analysis Program Aynthesis MIR Memory !

Njor [70] Data-flow Analysis Taint Analysis MIR Memory !
Stuck-me-not [41] Data-flow Analysis - MIR Concurrency "!

RUSTY [71] Contribution-based Testing Concolic Execution Source Code Memory !
Fuzzing Dewey [44] Constraint Logic - Source Code - !

RULF [43] Fuzzing Target Generation Program Synthesis Source Code - !

dividing the memory space into different regions and providing
access control to each region [30] [31] [34] [67]; second, the
sandbox is used to isolate code or data [32] [33].

Although existing frameworks based on privilege separation
can effectively prevent vulnerabilities, they still have two lim-
itations: (1) they cannot be automated, requiring programmers
to manually add calls to corresponding interfaces; and (2) the
vulnerabilities they prevent are not comprehensive, and they
only target memory security vulnerabilities.

2) Program Analysis. Program analysis is also an important
technique used for vulnerability prevention. It analyzes the
intermediate representations provided by the Rust compiler,
such as MIR, LLVM IR, and AST, to obtain important
information such as the lifetime and ownership of variables
[35], the call graph of the program [38], and the location of
implicit unlock, and then visualizes this information [36] [37].
Programmers can use this information to discover potential
security threats during the development phase.

Although these tools can help programmers identify po-
tential security threats, they still have three limitations: (1)
poor usability, the representation of information they extract
is complex and difficult for users to understand [35]; (2) low
accuracy, limited by the analysis algorithms they use, some
information will be lost during the analysis process [38]; and
(3) incomprehensive, tools can only extract a certain kind of
information, such as lifetime, ownership, and call graph.

D. Vulnerability Detection

Existing Rust vulnerability detection studies mainly use
two types of techniques: program analysis and fuzzing. In
this paper, we analyze, summarize and compare the existing
studies, and the results are shown in TABLE IV, where !
means that the work does not mention the specific false
positive, "! means false positive is lower, and # means the
false positive is higher.

1) Program Analysis. Program analysis is the most dom-
inant technique in Rust vulnerability detection. It is usually
performed on intermediate representations provided by the
Rust compiler, such as AST, HIR, and MIR, for data flow
analysis [39] [47] [40] [41] [42], pattern matching [46],
and abstract interpretation [45] to collect program properties
and features. Program analysis is also often combined with
auxiliary techniques, such as dynamic detection and constraint
solving, for vulnerability detection.

Although Rust vulnerability detection studies based on
program analysis have yielded significant results, they still
have two limitations. First, they usually target only one specific
security vulnerability, such as incorrect raw pointer deref-
erence [46], incorrect memory release [39], buffer overflow
[47], type confusion [42], and double lock [41]. Second,
they cannot capture all program properties associated with
vulnerabilities, which leads to high false positives. Moreover,
manually screening for real vulnerabilities is a time-consuming
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TABLE V
SUMMARY AND COMPARISON OF RUST AUTOMATION PROGRAM VERIF ICATION STUDIES

Technology Research Tool IR Data Structure Verifiable Properties unsafe? Annotation

Model Checking

CRUST [52] CBMC C AST Memory ✔ Filter
RSMC [53] Smack Boogie LLVM IR Memory, Concurrency ✔ -

Baranowski [54] Smack Boogie LLVM IR Functional Correctness ✔ Specification
Kani [72] CBMC Goto-C MIR Functional Correctness ✔ -

RustHorn [62] SeaHorn CHC MIR Functional Correctness ✘ -

Theorem Proof

Ullrich [55] Lean Lean MIR Functional Correctness ✘ Specification
CREUSOT [56] WHY3 WHY3 MIR Functional Correctness ✘ Specification

Denis [57] F* F*, low* AST Functional Correctness ✔ Specification
AENEAS [73] F* F* MIR Functional Correctness ✘ Specification

Rust-Stainless [74] Stainless Scala HIR, THIR Functional Correctness ✘ Specification

Symbolic Execution
Lindner [59] KLEE LLVM IR LLVM IR Memory, No Panic ✔ -

Rust2Viper [60] Viper Silver HIR Functional Correctness ✔ Specification
Prusti [61] Viper Viper MIR Functional Correctness ✘ Specification

and laborious task, which reduces detection efficiency.
2) Fuzzing. Fuzzing has been successfully used to detect

vulnerabilities in Rust programs [71], Rust libraries [43], and
the Rust compiler [44]. Related studies use value-based mu-
tation, program synthesis, and constraint logic programming
to generate a large number of test cases automatically and, at
the same time, monitor the abnormal behavior of the detected
program to find program vulnerabilities.

Although fuzzing is more effective than program analysis
because it relies on runtime information and the vulnerabilities
it finds must be reachable, the frameworks based on fuzzing
still have three limitations. First, they require a lot of time
and computational resources. Second, they cannot find logic
errors that do not cause program crashes. Finally, they need
to automatically generate a large number of test cases that
can trigger more execution paths and have a vulnerability
orientation. However, Rust’s complex type system poses a
great challenge to generate well-typed and valid test cases
automatically.

E. Vulnerability Rectification

The rectification of vulnerabilities is the third phase of
the Rust security lifecycle. Since the cost of vulnerability
rectification is a very large part of modern software devel-
opment, automated rectification of vulnerabilities is essential
for software quality assurance. However, there are few auto-
matic rectification theories and techniques for common Rust
vulnerabilities, only Rupair [47] has proposed an automatic
rectification technique for IO2BO vulnerabilities.

F. Formal Verification

Formal verification is the most active direction in Rust
security research. For programs that have been detected and
rectified for vulnerabilities, formal verification can further
rigorously prove their security and functional correctness.
We classify formal verification studies into two categories:
1) studies on the formal semantics of Rust; 2) studies on
automated program verification of Rust.

1) Formal Semantics. The studies of Rust’s formal seman-
tics use mathematical tools to precisely define the semantics of

Rust, providing support for the studies of Rust’s expressive-
ness, reliability, and completeness. Therefore, Rust’s formal
semantics research is an essential foundation for program
verification. Although there have been many studies on Rust’s
formal semantics [75] [49] [76] [48] [50] [77] [51] [78] [79]
[80] and they use different methods and tools, they all adopt a
similar technique, i.e., first defining the formal semantics for
a subset of Rust, then explicitly modeling the Rust program
based on that semantics, and finally completing the verification
of the Rust program using theorem provers.

Although studies on this topic have made significant
progress, there are still persistent challenges. First, the seman-
tic models proposed by existing studies only consider a subset
of Rust and cannot be extended to all features of Rust. Second,
existing studies still require a lot of manual transcription.

2) Automated Program Verification. The main goal of
automated program verification studies is to prove that the
program satisfies a specific specification at runtime based
on theories related to program verification (e.g., Hoare logic
[81]) and using automated verification tools. One of the
main differences between automated program verification and
formal semantics is that the primary goal of automated pro-
gram verification is to automate the verification process, thus
effectively reducing the cost and extending it to real large
programs.

We analyze and summarize the existing studies and classify
them into three categories: model checking, theorem proof,
and symbolic execution according to verification techniques.
As shown in TABLE V, we present a detailed comparison
of representative studies in Rust automated program verifi-
cation in terms of verification tools, intermediate languages,
data structures, verifiable properties, support for the unsafe
feature, and required user annotations.

Existing studies have adopted a similar approach, i.e., they
all translate programs into intermediate representations sup-
ported by existing verification tools based on the intermediate
representation provided by the Rust compiler and then use
the existing verification tools to complete the verification.
Although there have been a large number of Rust automated
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program verification studies, they have some limitations. First,
they can only verify a subset of Rust. Second, verification tools
are costly to maintain because they require custom compilers,
so as Rust continues to evolve, the verification tools need to
be constantly updated, and most of these tools have not been
further maintained after they were proposed.

III. CHALLENGES FOR ENABLING CAL RUST SECURITY

Despite the fact that a plethora of frameworks, techniques,
and tools are already available for constructing a Rust security
infrastructure, a comprehensive, automated, lifecycle Rust se-
curity infrastructure does not yet exist due to several factors. In
this section, we describe a diverse set of open problems that are
the most prominent obstacles to achieving a comprehensive,
automated, and lifecycle Rust security infrastructure, derived
from our extensive research, in-depth knowledge, and practical
research experience in Rust security.

A. Fragmentation

Fragmentation is mainly manifested in two aspects: (1)
not full lifecycle; (2) incomprehensive. First, existing studies
all address only one phase of the Rust security lifecycle.
For example, Fidelius Charm [30] can only work on the
vulnerability prevention phase, while Rudra [40] can only
work on the vulnerability detection phase. Second, the existing
studies are all incomprehensive, and they all target only a
specific type of vulnerability or are only valid for a subset of
Rust. For instance, the formal verification tool AENEAS [73]
can only verify a subset of Rust for functional programming
[82], while the vulnerability detection tool Stuck-me-not [41]
can only detect double lock vulnerabilities. Although there
have been many research results related to Rust security, they
are all fragmented, and there is currently no work dedicated to
organically integrating these research results, which is a major
challenge in building Rust security infrastructure.

B. Low Degree of Automation

Although automation can significantly reduce the cost of
developing and maintaining Rust software, and many Rust
security frameworks strive to achieve automation, a low degree
of automation remains a challenge for Rust security studies.
For example, XRust [31], a vulnerability prevention frame-
work, requires users to manually insert security checks for
memory access operations into the source code, while the
automated program framework Rust2Viper [60] still requires
users to add program specifications that need to be verified.
The low degree of automation of these frameworks makes
them difficult to use for large real-world Rust projects due
to the significant manual effort needed.

C. Lack of Breadth and Depth of Empirical Studies

Although the results of the empirical studies are important
guidance for the security strategies in each phase of the
Rust security lifecycle, the existing empirical studies on Rust
security generally lack breadth and depth, and have three main
limitations. First, the research datasets they use are small,

which tends to lead to overfitting problems. The mainstream
Rust vulnerability datasets CVE [65] and RustSec [66] have
reported more than 400 Rust-related vulnerabilities, while the
dataset used by Yu et al. contains only 18 vulnerabilities [28].
Second, existing studies do not provide an in-depth analysis
of the connection between the root causes of vulnerabilities
and Rust’s security mechanisms, nor has it further proposed
the best security practices for Rust’s security features. Finally,
the existing studies do not further explore the impact of
vulnerabilities on Rust programs.

D. Absence of a Unified Program Analysis Framework
Program analysis is the most common technique used in

Rust security studies [31] [39] [47] [40] [41] [42], and a
unified program analysis framework can not only provide
the foundation for Rust security studies, but also provide
the necessary prerequisites for the continuous accumulation
and evolution of research results. However, existing studies
have directly used one or two intermediate representations
provided by the Rust compiler, such as AST [83], HIR [84],
and MIR [85], and no unified Rust intermediate representation
and program analysis framework have been established. A
single intermediate representation cannot contain information
about the type, data flow, and control flow of a program at the
same time, which makes it difficult to design high-precision
program analysis algorithms and establish a unified program
analysis framework.

E. Shortage of Vulnerability Rectification Technology
Although there have been many studies on the automatic

rectification of vulnerabilities in Java [86] or C [87], the
rectification theories and techniques proposed by these studies
cannot be directly applied to Rust for two types of reasons.
First, the new features introduced by Rust, such as own-
ership and explicit lifetime, pose challenges for automatic
vulnerability rectification. Second, the automatic rectification
of Rust vulnerabilities involves the interaction of unsafe
code and safe code. Currently, only Rupair [47] has studied
the automatic rectification of IO2BO vulnerabilities in Rust. In
the future, research on automated rectification for more Rust
vulnerabilities will help improve the efficiency and reduce the
cost of vulnerability rectification.

F. Lacking a Full Language Formal Verification Model
Establishing a formal verification model for the full lan-

guage of Rust is important to fundamentally ensure Rust
security and promote the application of Rust in the security
domain. Existing research has shown that the formalization
of a full language for functional languages is feasible [88].
However, existing studies have completed formal verification
of only a subset of Rust, due to two challenges. First, Rust
introduced many new language features, including ownership
model and lifetime. Second, Rust is a multi-programming
paradigm language that integrates imperative, functional,
object-oriented, and generic programming. Building a formal
model of these new features and multiple paradigms is a
challenging and urgent direction.
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IV. VISION: CAL RUST SECURITY INFRASTRUCTURE

To instantiate a CAL Rust security infrastructure, the chal-
lenges listed in Section III must be addressed. The Rust
security infrastructure is based on three core principles: com-
prehensiveness, automation, and lifecycle. In this section, we
propose an infrastructure for Rust security following CAL
principles. To make this vision feasible, we also propose a
research agenda.

A. The CAL Principles

The Rust security infrastructure should be based on three
principles: comprehensiveness, automation, and lifecycle.

Comprehensiveness. The comprehensiveness of the Rust
security infrastructure is reflected in three aspects: vulnera-
bility types, language features, and boundary cases. First, the
Rust security infrastructure should be able to handle as many
vulnerability types as possible. Second, it should also cover the
main language features of Rust, especially ownership, lifetime,
and concurrency, which are strongly related to security. Fi-
nally, it needs to handle a variety of boundary cases, including
the interactions of unsafe code and safe code and Rust’s
interactions with other languages via FFI.

Automation. To achieve the design goal of automation, this
infrastructure should provide a range of tools and techniques
to minimize manual efforts, including but not limited to auto-
mated code staking, automated exploit generation, automated
program verification, and automated vulnerability rectification.
By maximizing the degree of automation, the difficulty of
building software systems with Rust can be reduced, further
promoting the widespread application of Rust in various fields.

Lifecycle. Although no research can solve all the problems
in the entire lifecycle of Rust security, there are many research
results in different phases of the lifecycle. Therefore, we
can integrate the current research results and address the
outstanding obstacles to building a Rust security infrastructure
that can cover the full lifecycle. The full lifecycle Rust security
infrastructure can provide all-around security protection and
strong security assurance to Rust software systems at software
development, testing and verification, thus driving the growth
and maturity of the Rust ecosystem.

B. Proposed Infrastructure

In this subsection, we propose a conceptual Rust security
infrastructure that follows the CAL principles and covers the
four phases of Rust security lifecycle.

Vulnerability Prevention. In the vulnerability prevention
phase, this infrastructure will first provide visualization tools
to explicitly mark information such as ownership, lifetime
scope, and call graphs to help developers discover potential
errors. Then, unsafe code and data are isolated by memory
isolation and sandbox techniques to prevent unsafe Rust
code from affecting safe Rust code, thus preventing memory
security vulnerabilities from occurring.

Vulnerability Detection. In the vulnerability detection
phase, this infrastructure offers two detection techniques:
program analysis and fuzzing. Program analysis will satisfy

the following three requirements: first, it can perform inter-
procedural analysis; second, it can across the boundary of
unsafe Rust and safe Rust; and finally, it can across the
boundary of FFI for cross-language analysis. In addition,
fuzzing can use program synthesis [89] to generate well-typed
Rust programs as test cases, and then generate vulnerability
exploits automatically, reducing manual efforts and following
the principle of automation.

Vulnerability Rectification. In the vulnerability rectifica-
tion phase, we should deeply analyze the generation mecha-
nism of common vulnerabilities, summarize the code patterns
that generate vulnerabilities, design effective automatic rec-
tification strategies for various types of vulnerabilities, and
then integrate the various rectification strategies into the IDE
which developers can easily use. In this way, the principles of
comprehensiveness and automation are followed.

Formal Verification. In the formal verification phase, this
infrastructure offers automated program verification tools to
verify the rectified program formally, which requires three
steps. First, it needs to build a formal model of the whole Rust
language. Second, it needs to customize a compiler to translate
the Rust program into an equivalent verified program based on
this formal model. Third, it needs to use existing verification
tools for verification, such as SMACK [90], CBMC [91], and
Viper [92]. Such an automated verification framework follows
the principles of comprehensiveness and automation.

C. Research Agenda

Based on the existing theories, frameworks, and tools that
are available to developers, as well as the limitations and
remaining open challenges in the field of Rust security, we
firmly believe that our vision for comprehensive, automated,
and lifecycle Rust security infrastructure offers an architecture
that, if realized, will dramatically improve the security of Rust
software system. However, there are still many components of
this vision that are yet to be adequately explored. Therefore, to
make our vision tractable, we offer an overview of a research
agenda broken down into seven major topics.

1) Comprehensive and In-depth Empirical Studies. The
results of the empirical studies are instructive for the security
research of the Rust security lifecycle. Therefore, before build-
ing a CAL Rust infrastructure, comprehensive and in-depth
empirical studies are needed, and the research datasets they
use need to include all reported Rust security vulnerabilities,
mainstream Rust-based software systems, and ecosystem-level
usage and evolution of Rust language features. Then, based
on the datasets, we analyze in-depth the mechanism of Rust’s
security vulnerabilities, the relationship between Rust’s secu-
rity vulnerabilities and language mechanisms, and the impact
of Rust’s security vulnerabilities on the actual software. The
conclusions are then summarized and refined to form the best
security practices for the Rust language features, which can
guide developers in their use of Rust. Finally, we provide more
valuable suggestions for Rust language design and application
development.
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2) A Unified Program Analysis Framework for Rust.
This program analysis framework consists of two main com-
ponents: a unified intermediate representation and program
analysis algorithms. Among them, the unified intermediate
representation should contain as many program properties
as possible. One possible solution is to integrate the AST,
HIR and MIR provided by the Rust compiler into a uni-
fied intermediate representation, such as the code property
graphs of C and Web Assembly that integrate abstract syntax
tree, control flow graph, and program dependency graph. In
addition, analysis algorithms designed based on the unified
intermediate representation can enable cross-language program
analysis by adding a component that translates other languages
to the unified intermediate representation. Recently, Rudra [40]
successfully detected 264 new memory security vulnerabilities
on the Rust ecosystem by performing inter-procedural analysis
based on AST and MIR, which demonstrates the feasibility of
our proposed method. An effective program analysis frame-
work will play a supportive role for vulnerability prevention
and vulnerability detection.

3) Effective Vulnerability Prevention Frameworks. Ef-
fective vulnerability prevention frameworks mainly include
two types: visualization tools and security protection based
on privilege separation. On one hand, the visualization tools
use Rust’s program analysis technology to explicitly mark
the static and dynamic characteristics of programs. The se-
curity protection frameworks based on privilege separation,
on the other hand, use techniques, such as memory allocators,
sandbox, and memory protection keys (MPK), to distinguish
unsafe Rust from safe Rust and prevent errors in unsafe
Rust from affecting safe Rust. Although the new features,
such as ownership and lifetime, provided by Rust present
new challenges for Rust vulnerability prevention studies, there
have been a significant amount of studies [67] [31] [33] [68]
demonstrating the feasibility of our proposed approach.

4) Comprehensive Vulnerability Detection Frameworks.
Vulnerability detection frameworks are mainly based on pro-
gram analysis and fuzzing, and for these two types of research,
an important future research direction is to combine them
with deep learning techniques. For the combination of pro-
gram analysis and deep learning, a unified program analysis
framework can be used to mine the explicit features of Rust
programs, while deep learning techniques can be used to
mine the implicit features of programs, and then the two
features can be combined to form a complementary, which
can more powerful support for Rust vulnerability detection.
For the combination of fuzzing and deep learning, we can
first train a deep learning model using Rust programs, and then
use the model to automatically generate test cases with high
path coverage and vulnerability orientation, thus alleviating the
common path explosion and blindness problems in fuzzing.

5) Novel Vulnerability Rectification Strategies. Rust au-
tomated vulnerability rectification studies mainly face two
challenges. First, existing rectification strategies for other
languages cannot be applied to Rust directly, due to the new
security features introduced by Rust, so we need to propose

novel rectification strategies for Rust features. Second, secu-
rity vulnerabilities in Rust can involve interactions between
unsafe code and safe code, so the rectification strategies
often need to consider the whole-program rather than the local
code where the vulnerability occurs. The only existing study
on automated vulnerability rectification for Rust is Rupair [47],
which proposes an automated rectification strategy for IO2BO
vulnerabilities and provides a valuable reference for automated
rectification of other types of vulnerabilities.

6) A Rust Full-language Formal Verification Model.
Rust’s automated program verification tools all use the same
technical path of translating Rust programs into the verification
languages required by existing verifiers, such as Lean [93], F*
[94], and Silver [92]. This translation process is essentially
a conversion from the formal model of Rust to the formal
model of the verification language, which is then implemented
by a custom compiler. Therefore, building a formal verifica-
tion model for the whole Rust language is necessary before
implementing an automated program verification tool that
can be used in the Rust ecosystem. This formal verification
model needs to include as many Rust language features and
programming paradigms supported by Rust as possible, which
is a challenging but important research direction for Rust
security.

7) Automated Program Verification Frameworks. We
believe that there are two possible future research directions
in the area of Rust automated program verification. The first
is to propose generic verification techniques and tools for
Rust to reduce the cost of updating and maintaining multiple
verification tools at the same time. The second is to propose
new Rust automated program verification frameworks based
on existing verification techniques through a deep integra-
tion of multiple techniques, such as combining interpolation
techniques with SMT and combining model checking with
abstract interpretation. We can propose a configurable verifica-
tion framework based on existing verification techniques, and
integrate multiple verification techniques and solvers in the
framework to verify Rust software systems, thus improving
the performance and scalability of the verification framework.

V. CONCLUSION

Rust is an emerging programming language for safe system
programming. To enable low-level programming and arbitrary
unsafe operations, Rust introduced the unsafe feature, which
can bypass compiler static checking, leading to security issues.
Therefore, studies on Rust security are very important to
guarantee the security of Rust-based infrastructure software.
This perspective paper first surveys the current Rust security
research in terms of empirical study, vulnerability prevention,
vulnerability detection, vulnerability rectification, and formal
verification. This paper not only studied the limitations of
current studies, but also presented current key challenges.
Finally, we offer our vision of a comprehensive, automated,
and lifecycle Rust security infrastructure, to motivate future
studies in this area.
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