
CRUST: Towards a Unified Cross-Language
Program Analysis Framework for Rust

Shuang Hu, Baojian Hua*, Lei Xia, and Yang Wang*
School of Software Engineering, University of Science and Technology of China, China

guangan@mail.ustc.edu.cn, bjhua@ustc.edu.cn, xialeics@mail.ustc.edu.cn, angyan@ustc.edu.cn
*corresponding authors

Abstract—Rust is a new safe system programming language
enforcing safety guarantees by novel language features, a rich
type system, and strict compile-time checking rules, and thus has
been used extensively to build system software. For multilingual
Rust applications containing external C code, memory security
vulnerabilities can occur due to the intrinsically unsafe nature
of C and the improper interactions between Rust and C.
Unfortunately, existing security studies on Rust only focus on
pure Rust code but cannot analyze either the native C code or
the Rust/C interactions in multilingual Rust applications. As a
result, the lack of such studies may defeat the guarantee that
Rust is a safe language.

This paper presents CRUST, a unified program analysis
framework across Rust and C, which enables program analyses
to understand the semantics of C code by translating Rust and
C into a unified specification language. The CRUST framework
consists of three key components: (1) a unified specification lan-
guage CRUSTIR, which is a strong-typed low-level intermediate
language suitable for program analysis; (2) a transformation to
build models of C code by converting C code into CRUSTIR; and
(3) program analysis algorithms on CRUSTIR to detect security
vulnerabilities. We have implemented a software prototype for
CRUST, and have conducted extensive experiments to evaluate
its effectiveness and performance. Experimental results demon-
strated that CRUST can effectively detect common memory
security vulnerabilities caused by the interaction of Rust and
C that are missed by state-of-the-art tools. In addition, CRUST
is efficient in bringing negligible overhead (0.23 seconds on
average).

Keywords—Rust, Security, Multilingual Program Analysis

I. INTRODUCTION

Software failures or vulnerabilities may lead to devastating
consequences or losses, especially in security-critical scenarios
[1]. Historically, C/C++ has been the dominant language for
building software infrastructures such as operating kernels
and network protocol stacks. Although C/C++ is both flexible
and efficient, it also offers “flexibility” in introducing subtle
vulnerabilities, due to the lack of necessary security checks. As
a result, despite decades of research efforts, memory security
vulnerabilities are still prevalent in real-world system software
developed with C/C++ [2]. For example, according to a report
by Microsoft Security Response Center (MSRC), 70% of
security patches from 2006 to 2018 addressed memory security
vulnerabilities [3]. As another example, approximately 70%
of the high severity security vulnerabilities in the Chromium
project are memory security vulnerabilities [4].

Rust [5] is a new generation of safe system programming
language, designed to address the security issues of traditional
languages such as C/C++. Rust drew on practical experience
and research findings in the field of programming languages

over the past several decades and thus introduced a set of
novel security-related language features, such as the ownership
model [6], borrow [7], reference [8], and automatic lifetime-
based memory management [9]. Rust also provided strict
security checking rules, which are enforced either statically
or dynamically. These language features, as well as checking
rules, guarantee that Rust programs are free of memory
security vulnerabilities, such as use-after-free and double-free
[10], without sacrificing runtime efficiency.

While Rust provided strong security guarantees, the overly
strict restrictions also make it difficult or even impossible
to develop low-level code. To support arbitrary low-level
programming and to provide more flexibility to developers,
Rust introduced the unsafe sub-language [11] , which is
essentially a security loophole by allowing unsafe operations
in code blocks marked with the unsafe keyword. Existing
studies, unfortunately, have demonstrated that improper use of
the unsafe sub-language can lead to security vulnerabilities
[10] [12] [13]. As a result, although Rust represents a signif-
icant step forward in the field of safe system programming,
security vulnerabilities in Rust pose a grand challenge to Rust
security, and thus may defeat Rust as a safe language. To
address the Rust security challenge, many research efforts
have been conducted (e.g., security empirical study [10] [12]
[13], vulnerability prevention [14] [15] [16] [17], vulnerability
detection [18] [19] [20] [21], and formal verification [22] [23]
[24] [25]), in which program analysis is extensively used [15]
[18] [19] [20] [21] [26] [27]. As a result, the effectiveness of
prior Rust security studies largely depends on the precision of
program analysis. High-precision program analysis not only
reduces the false positives and false negatives of vulnerability
detection, but also improves the effectiveness of vulnerabil-
ity prevention. For example, Rudra [20], one state-of-the-art
vulnerability detection framework detecting 264 previously
unknown memory security vulnerabilities, employed an inter-
procedural program analysis algorithm.

Unfortunately, the horizon of existing Rust program analysis
frameworks is limited to code written in Rust only, and yet
many real-world Rust applications are multilingual, containing
a mixture of Rust and C code. For example, in the source
code of Firefox, a flagship application of Rust from Mozilla,
the percentage of Rust code is 9.6%, while the percentage
of C code is 13.9% [28]. Typically, existing Rust program
analyses treat C code in Rust applications as black boxes, and
make either optimistic or pessimistic assumptions about the C
code. On one hand, the optimistic assumption treats the C code
as a nop, and thus ignores potential vulnerabilities in the C

970

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS57517.2022.00101

code. On the other hand, the pessimistic assumption assumes
anything can happen in the C code, and thus always issues
errors which may lead to high false positives. For example,
MirChecker [27], an abstract interpretation framework on
Rust, will always issue errors when encountering C code. As
a result, existing Rust program analysis cannot detect errors
caused by the C code or interactions of Rust and C, which
hinders the broad applications of such analysis.

In this paper, we propose CRUST, a unified program analy-
sis framework for Rust across the boundary of Rust and C.
This framework enables existing Rust program analyses to
model and understand the semantics of both Rust and C code
in multilingual Rust applications, by simultaneously translat-
ing both Rust and C into a unified specification language. The
CRUST framework consists of three main components: (1) a
unified and formal specification language CRUSTIR, which is
a strongly typed low-level intermediate representation (IR); (2)
a transformation from C to CRUSTIR, which builds models
of C code concisely and precisely; and (3) program analysis
algorithms on CRUSTIR to detect security vulnerabilities. In
order to define CRUST rigorously, we also formally define the
syntax and operational semantics of CRUSTIR, as well as the
conversion rules for translating C code into CRUSTIR.

Such a design brings three significant advantages to our
unified program analysis framework: (1) expressiveness; (2)
simplicity; and (3) usefulness. First, CRUST is expressive
because CRUSTIR is a strongly typed low-level intermedi-
ate representation that accurately models the semantics of
Rust and C code, which may improve the precision of the
analysis greatly. Second, the design of CRUST simplifies the
implementation of CRUST, as both Rust and C code can be
translated to CRUSTIR more straightforwardly. Finally, the
utility of CRUST is good because not only new program
analysis algorithms can be developed, but also most existing
Rust program analysis algorithms can be ported to CRUST
with minimal or even no modifications.

We have conducted experiments to evaluate the effectiveness
and performance of CRUST. First, to evaluate the effectiveness
of CRUST, we testify CRUST on two datasets: 1) a micro-
benchmark containing common memory security vulnerabili-
ties caused by the interactions of Rust and C; and 2) real-world
vulnerability sets. Experimental results demonstrated that
CRUST can effectively detect these vulnerabilities, whereas
existing analysis tools detected none of them. Furthermore,
CRUST is efficient by incurring a runtime overhead of 0.23
seconds on average.

Contribution. To summarize, this work represents a first
step towards defining a unified program analysis framework
for multilingual Rust applications across C, and thus makes
the following contributions:
• A unified program analysis framework that works

across Rust and C. We present CRUST, the first program
analysis framework working across the boundary between
Rust and C, by formal definitions of the two components
of CRUST: a unified specification language CRUSTIR,
and conversion rules from C to CRUSTIR.

• Prototype implementation of CRUST. We implemented
a prototype of CRUST, by translating Rust and C code
into CRUSTIR, and by porting existing Rust analysis to
CRUSTIR for multilingual program analysis.

• Evaluation of CRUST. We conducted extensive exper-
iments to evaluate the effectiveness and performance of
CRUST. Experimental results demonstrated that CRUST
can effectively detect vulnerabilities across Rust and C
with negligible additional overhead.

Outline. The rest of this paper is organized as follows. Sec-
tion II introduces the background knowledge and motivations
for this work. Section III presents a formal definition of the
syntax and operational semantics of CRUSTIR. Section IV
formally describes the translation rules from C to CRUSTIR.
Section V presents a prototype implementation. Section VI
presents the evaluations we conducted. Section VII discusses
limitations and future work. Section VIII describes related
work, and Section IX concludes.

II. BACKGROUND AND CHALLENGES

In this section, we first present the necessary background
knowledge (Section II-A) and challenges (Section II-B) for
this work, then give a threat model (Section II-C).

A. The Rust Programming Language

To achieve the design goals of security and efficiency, Rust
introduced a number of security-oriented language features,
a strong type system, and an ownership model. First, Rust
is a multi-paradigm programming language providing a rich
set of safe functional programming mechanisms [29], such
as pattern matching and variable immutability, which prevent
memory security vulnerabilities. Second, Rust incorporates
a strong type system [30] and strict type checking [31] to
ensure type safety. In addition, Rust also supports polymorphic
types and local type derivation, to alleviate type constraints
and improve code reusability. Finally, Rust introduces an
ownership model [6]. On one hand, by statically enforcing
ownership rules at compile time, Rust not only eliminates
memory security vulnerabilities commonly found in C/C++,
but also avoids the problem of race conditions in concurrency.
On the other hand, Rust adopts an ownership-based automatic
memory management mechanism, which avoids the overhead
of garbage collection and ensures high runtime efficiency.

Due to its successful combination of security and efficiency,
Rust has gained more popularity in recent years. According to
a developer survey conducted by Stack Overflow [32], Rust
has been rated as the “most popular programming language”
for five consecutive years, with 86.98% of developers are
using, or considering using, Rust. In the meanwhile, Rust
has been used successfully to build software infrastructures,
such as operating system kernels [33] [34] [35] [36] [37],
Web browsers [38], file systems [39] [40], cloud services
[41], network protocol stacks [42], language runtime [43],
databases [44], and blockchains [45]. Rust is also gaining
more adoptions by the industry. Among others, Microsoft [46],

971

Google [47], and even Linux [48] are beginning to use Rust
for the development of system software.

To offer more programming flexibility, Rust provided an
unsafe sub-language allowing unsafe operations, which
is essentially a security loophole by bypassing the compiler’s
security checks. Hence, improper uses of unsafe may lead to
security vulnerabilities, forming new attack surfaces [49]. For
example, unsafe Rust allows arbitrary pointer arithmetics,
which may result in arbitrary memory address reading/writing,
further leading to vulnerabilities such as segmentation faults or
buffer overflows [50]. In fact, according to prior studies [10],
all memory security vulnerabilities are related to unsafe
Rust .

B. Challenges for Security Study of Multilingual Rust

The foreign function interface (FFI) [51] is an important
component of Rust, which enables Rust to interact with
external languages. Figure 1 shows a simple yet illustrative
FFI sample usage in Rust. First, FFI function declarations are
marked with the extern keyword (line 1 of Figure 1(a)), thus
the Rust compiler can compile the Rust code based solely on
such external declarations (line 8 of Figure 1(a)). To make
the interaction with C code easy, the Rust compiler follows
the C-ABI, thus external C functions (e.g., line 2 of Figure
1(b)) can be compiled separately then linked (either statically
or dynamically) together with the Rust code. Hence, Rust FFI
fully leveraged the benefit of the separation compilation model
of C, simplifying legacy code reuse considerably.

Although FFI brings great programming capabilities and
huge development potential to Rust, FFI is inherently unsafe
in Rust (note the unsafe keyword at line 8 of Figure 1(a)),
as the Rust compiler does not perform any security checking
on the external C functions being called. Such a lack of
security checking, unfortunately, can easily lead to security
vulnerabilities. Figure 1 demonstrates a Use-after-Free (UaF)
vulnerability due to such interactions. First, Rust allocates a
heap object (line 6 of Figure 1(a)), then passes this pointer
to the external C function (line 8). Then, the external C
function frees the object (line 5 of Figure 1(b)). Returning
from the C function, the Rust code (line 10 of Figure 1(a)),
when accessing the pointer, triggers a Use-after-Free (UaF)
vulnerability, which is difficult to diagnose as the root cause is
located in the C code instead of Rust. Although we have made
use of UaF for illustration, it is not a unique vulnerability.
Indeed, as Rust and C code share the same process address
space without any isolation, any memory vulnerabilities, such
as UaF, double frees, and nullable dereferencing, can occur in
such multilingual applications.

It’s challenging to detect security vulnerabilities across Rust
and C in multilingual applications, for two key reasons. First,
the Rust compiler does not perform any checking on external
C functions, due to the dramatic discrepancies between Rust
and C. Instead, the Rust compiler always make pessimistic
decisions by marking external functions unsafe. Second, ex-
isting Rust analysis studies and tools can only handle pure
Rust code and treat external C functions as black boxes [18]

1 extern "C" {
2 fn C_fn(obj_ptr: i64);
3 }
4 fn Rust_fn(){
5 // "heap_obj" points to a cell allocated by Rust
6 let mut heap_obj = vec![1,2,3];
7 // Pass "heap_obj" to a C function
8 unsafe{C_fn(heap_obj);}
9 // Use-after-free vulnerability is triggered

10 heap_obj[0] += 5;
11 }

(a) Rust function that invokes an external C function, passing a Rust pointer
wrongfully freed by C.

1 // Frees object it dose not own
2 void C_fn(int64_t obj_ptr){
3 int64_t *addr = (int64_t *)obj_ptr;
4 //C frees Rust allocated object!
5 free(addr);
6 }

(b) C function that accepts and free a Rust pointer, leading to a Use-after-
Free (UaF) vulnerability in Rust.

Figure 1. Sample code illustrating a Use-after-Free vulnerability across Rust
and C.

[19] [20]. At the same time, external function calls are one of
the most common unsafe operations in Rust, accounting for
22.5% of all unsafe function calls [13]. As a result, a large
number of external function calls to C in Rust programs cannot
be statically analyzed by either the Rust compiler or Rust
analyses, which poses a threat to the security and reliability of
the software infrastructures in Rust. To this end, it is a grand
challenge to address the security issues in multilingual Rust
applications.

C. Threat Model

This work focuses on the study of a unified program analysis
for multilingual applications across Rust and C. Therefore, we
make the following assumptions in the threat model.

We assume that the host environment for Rust applica-
tion executions is safe, including the underlying hardware,
operating system, compiler, and linker. A large number of
protection mechanisms have been proposed and standardized,
including Software Guard eXtensions (SGX) [52], Address
Space Layout Randomization (ASLR) [53], among others.
In addition, many security studies have been conducted in
this direction [54]. It should be noted that operating systems
and compilers security studies are independent of and thus
orthogonal to the study in this work, and these research fields
can also benefit from the research progress in this work.

We assume that pure Rust code, including all unsafe
operations except for external C function calls, is safe and
will not pose a security threat to the application. As there
are already a significant amount of studies [27] [19] [20] [55]
[56] [57] on either pure Rust or unsafe Rust without external
function calls, such an assumption is reasonable in reality.

We assume that the external C functions Rust interacts with
are unreliable and thus vulnerable. For example, if the external
C functions being called, through Rust FFI, are vulnerable,

972

attackers can control the C code so as to perform further
arbitrary attacks, eventually corrupting the whole application.

III. A UNIFIED SPECIFICATION LANGUAGE

The key insight of our proposed framework is to first
construct a specification for C code in multilingual Rust
applications, then make this specification comprehensible to
existing Rust program analyses. Given this insight, two main
questions remain: (1) “What specification language would be
the best choice for leveraging existing Rust analyses?” and (2)
“How to generate such specifications for C code?”

This section will answer the first question, by presenting
the specification language design rationale (Section III-A), the
syntax (Section III-B), as well as the operational semantics
(Section III-D) for this specification language. Then, in Section
(Section IV), we will answer the second question by presenting
the conversion rules from C to CRUSTIR.

A. Specification Language Design Rationale

To design the specification language, three design options
are feasible: (1) C-oriented; (2) Rust-oriented; or (3) com-
pletely neutral.

First, the original C code, in some sense, is the most
precise specification as it does not lose any source information.
However, the original C code is not an ideal specification
for two reasons: first, if the original C code is used as the
specification, it requires significant effort to modify all existing
Rust analyses so that they can understand the semantics of C
code, which is not portable and requires a complete rewrite
of the existing analysis. Second, C code does not have the
security features of Rust, such as ownership and lifetime.
Therefore, Rust analyses cannot perform the important security
checks, such as borrow checking [58], on C. Hence, Rust
analyses cannot provide the security guarantees to C code as
they provide for Rust code.

The second option is to use a Rust-oriented specification
language. To be specific, Rust has two key intermediate
representations in its compiler: 1) abstract syntax trees (AST);
and 2) middle intermediate representations (MIR) [59]. AST
is a tree-structured representation of the source program.
While AST keeps the source program information precisely,
it lacks data flow information, control flow information, and
type information after elaboration, which are indispensable
for precise program analyses, such as flow-sensitive analysis
or inter-procedural analysis. Hence, AST is not suitable as a
specification language.

The third option is to use a source-neutral low-level lan-
guage as the specification language. For example, we can make
use of x86, ARM, or WebAssembly [60], the newest general-
purpose binary format initially designed for Web, to serve
as the general specification language. To this end, we should
translate both Rust and C in the multilingual application to this
neutral language, then conduct program analysis or verification
on it. Although this approach is general to support any source
language, it has two key limitations. First, the translation

incurs considerable efforts, as we have to convert two lan-
guages, i.e. C and Rust, instead of one, to the neutral low-level
language. Second, translation from Rust or C to the neutral
low-level language may lose important information, which
may further make the detection of vulnerabilities difficult.
For example, x86 or ARM is untyped whereas WebAssembly
only contains simple scalar types. Hence, it is challenging to
recover meaningful type errors to end-users, from these low-
level languages.

To this end, the approach that we propose is to define the
specification language, dubbed as CRUSTIR, based on MIR.
MIR is a control-flow graph-based intermediate representation,
and thus has three distinct properties which make it suitable
for program analysis. First, MIR offers a simplified core
representation of Rust by removing Rust’s superficial syntactic
forms. For example, all control constructs in Rust such as if
or for are removed by lowering them down to explicit control
transfers. Such removals not only simplifiy program analysis
on MIR, but also makes MIR an ideal compilation target for
other languages like C. Second, MIR is strongly typed in that
all variables in MIR are explicitly type-tagged. Strong typed
intermediate representations make many static program analy-
ses, such as pointer analysis, much more precise [61]. Finally,
MIR explicitly marks variable lifetimes with storageLive
and storageDead statements. This property makes borrow
checking, one of Rust’s most important static checks, feasible
on MIR.

To summarize, our design rationale of the CRUSTIR spec-
ification language based on MIR has three key advantages:
1) expressiveness; 2) generality; and 3) flexibility. First, this
specification language is expressive. The primitives in CRU-
STIR are similar to those contained in both intermediate
representations of C and Rust, so that we can faithfully
compile C code to this specification language, thus precisely
model the behavior of C code.

Second, existing Rust program analysis on the MIR can be
easily carried over to our specification language CRUSTIR,
as these analyses can distill all the needed information from
this specification language. Furthermore, more precise and
comprehensive Rust program analysis algorithms can also be
constructed for this specification language.

Finally, CRUSTIR is flexible to support manual construction
of models for C code. Programmers can easily specify a model
of C code by writing a piece of Rust code which is then
compiled into CRUSTIR.

B. Syntax

In this section, we present the syntax for the CRUSTIR
specification language, as summarized in Figure 2. Each
program P consists of a list of functions F , where the notation
→
F stands for zero or more of function F , we sometimes also
write F1, . . . , Fn, for n ≥ 0.

Each function F consists of a list of arguments
→
o : τ , a re-

turn type τ , a list of local variable declarations
→
D, followed by

a list of basic blocks
→
b : B. These syntactic entities have some

973

Constant c
Bid b ∈ N
Variable x ∈ {x0, x1, x2, . . .}
Fn f ∈ {f0, f1, f2, . . .}
Type τ ::= bool | int | unit

| Vec〈τ〉 | Tuple(
→
τ) | Array[τ, n]

Value v ::= true | false | n | ()
| (

→
v) | [→v] | vec[

→
v] | l

BinOp ⊕ ::= + | − | × | / | < | == | . . .
UniOp 	 ::= ! | −
Operand o ::= const c | move p | copy p
Place p ::= x | ∗ x | p.n | p[x]
Rvalue r ::= o | &[mut]p | 	 o

| x1 ⊕ x2 | o as τ
Statement s ::= x = r | storageLive(x)

| storageDead(x)
Terminator t ::= goto→ b

| switch(x)→ (
→
n : b) default→ b

| assert(o)→ b | drop(x)→ b

| p = f(
→
o)→ b | f(

→
o) | return x

Block B ::=
→
s t

Declaration D ::= let [mut] x : τ = r

Function F ::= fn f(
→
o : τ)→ τ {

→
D;

→
b : B}

Program P ::=
→
F

Figure 2. Syntax of CRUSTIR

characteristics specific to Rust. For example, each variable
declaration D can be marked with an optional [mut] keyword,
indicating the variable x is mutable, as all variables in Rust
are immutable by default.

A basic block b : B has a unique identifier b, followed by
a body B, which contains a list of statements s and a single
terminator t. A statement s may be an assignment x = r,
or Rust-specific storageLive and storageDead marking
the start and end of a variable’s lifetime, respectively. Like the
control-flow graph in compilers, controls in block body B can
only exit from the last entity, a terminator t, which has several
distinct syntactic forms: 1) an unconditional jump goto, here
the notation → b stands for the target for this jump is another
basic block b; 2) a switch jump switch (with a default);
3) an assertion assert; 4) a deletion drop; and 5) function
invocations and returns.

A place p can appear at the left side of an assignment,
whereas a right value r can only appear at the right side. A
place p stands for a location which can be assigned to, which
includes a variable x, pointer references, tuple field selection,
or array elements. A right value r consists of operands o,
reference &, binary or unary operations, and type castings.
Both right values r and operands o have Rust-specific syntactic
features. For example, a place p in an operand o can be marked
by either move or copy, which represents the move or copy
semantics in Rust [62] [63], respectively. In the meanwhile, the

TABLE I
NOTATIONS FOR OPERATIONAL SEMANTICS OF CRUSTIR

Notations Descriptions

Γ A global environment, representing a program.

Θ A function call stack.

C = B,Θ,Ψ A CRUST machine configuration:
B: the statements or terminator to be executed within
the current basic block.
Θ: the function calls stack of the current program.
Ψ: the global heap mapping addresses to values.

〈br, xr,Σ, F 〉 The stack frame in the function call stack:
br : the id of basic block to be executed after the
current function returns.
xr : the place where the returned value of the current
function must be written.
Σ: the variable store of the current function.
F : the body of current function.

mutable reference of a place p can be obtained by a place-of
& operation.

A type τ consists of representative Rust types, including
atomic types such as bool, and aggregate types such as
vectors, tuples, and arrays.

Finally, a value v is a syntactic entity that a right value
r may evaluate to, which consists of not only atomic values
such as boolean, integer, or unit constants, but also aggregate
values for vectors, tuples, or arrays. Furthermore, l is a special
value indicating the memory address of a heap value, which
will be discussed further in the following.

C. Memory Model

Before defining the operational semantics, we first define a
memory model for CRUSTIR to describe the state of program.
To be specific, the memory model M = (Σ,Ψ) we will be
using consists of two components: the first component Σ :
x 7→ l is a store, mapping a program variable x to its heap
address l.

The second component Ψ : l 7→ v is a heap, mapping
a memory address l to its containing value v. To this end,
we have stored all values v in heap Ψ, and thus a variable
x always contain the heap address l of its corresponding
value v. Such a memory model design not only models the
semantics of address-of operator & faithfully, but also makes
the formalization of move/copy semantics easier.

It should be noted that the store Σ is local, with one for
each function, whereas Ψ is global for the entire program.
This design decision has two advantages: 1) operations such as
reference and dereferencing can be described intuitively, and
2) local variables in different functions may have the same
name.

D. Operational Semantics

This section presents the operational semantics of CRU-
STIR. To describe control transfer and function call/returns,
we will use the auxiliary notations in TABLE I.

The operational semantics is defined in a big-step style and
is given by four judgments:

974

Place: Σ,Ψ ` p ⇓ v

[Var]
Σ(x) = l Ψ(l) = v

Σ,Ψ ` x ⇓ v
[Array]

Σ,Ψ ` x ⇓ n Σ,Ψ ` p ⇓ Array[v0, . . . , vk] 0 ≤ n ≤ k
Σ,Ψ ` p[x] ⇓ vn

[Ptr]
Σ(x) = l

Σ,Ψ ` ∗x ⇓ l
[Tuple]

Σ,Ψ ` p ⇓ Tuple(v0, . . . , vk) 0 ≤ n ≤ k
Σ,Ψ ` p.n ⇓ vn

Operand: Σ,Ψ ` o ⇓ v

[Const]
Σ,Ψ ` const c ⇓ c

[Move]
Σ,Ψ ` p ⇓ v

Σ,Ψ ` move p ⇓ v
[Copy]

Σ,Ψ ` p ⇓ v
Σ,Ψ ` copy p ⇓ v

Rvalue: Σ,Ψ ` r ⇓ v

[O]
Σ,Ψ ` o ⇓ v

[Ref]
Σ,Ψ ` p ⇓ v

Σ,Ψ ` &[mut]p ⇓ v
[Uop]

Σ,Ψ ` o ⇓ v
Σ,Ψ ` 	o ⇓ 	v

[Bop]
Σ,Ψ ` x1 ⇓ v1 Σ,Ψ ` x2 ⇓ v2

Σ,Ψ ` x1 ⊕ x2 ⇓ v1 ⊕ v2
[Cast]

Σ,Ψ ` o ⇓ v
Σ,Ψ ` o as τ ⇓ v

Statement and terminator: Γ ` C0 ⇓ C1

[Declare]
Σ,Ψ ` r ⇓ v l is fresh Σ′ = Σ[x 7→ l] Ψ′ = Ψ[l 7→ v]

Γ ` {let [mut] x : τ = r;
→
D}, 〈br, xr,Σ, F 〉 ·Θ,Ψ ⇓ {

→
D}, 〈br, xr,Σ′, F 〉 ·Θ,Ψ′

[Assignmove]
r = move p Σ,Ψ ` r ⇓ v Ψ′ = Ψ[Σ(x) 7→ v]

Γ ` {x = r;
→
s ; t}, 〈br, xr,Σ, F 〉 ·Θ,Ψ⇒ {

→
s ; t}, 〈br, xr,Σ, F 〉 ·Θ,Ψ′

[Assignref]
r = &[mut]p Σ,Ψ ` r ⇓ v Ψ′ = Ψ[Σ(x) 7→ v]

Γ ` {x = r;
→
s ; t}, 〈br, xr,Σ, F 〉 ·Θ,Ψ ⇓ {

→
s ; t}, 〈br, xr,Σ, F 〉 ·Θ,Ψ′

[Assign]
Σ,Ψ ` r ⇓ v Ψ′ = Ψ[Σ(x) 7→ v]

Γ ` {x = r;
→
s ; t}, 〈br, xr,Σ, F 〉 ·Θ,Ψ ⇓ {s ∗ t}, 〈br, xr,Σ, F 〉 ·Θ,Ψ′

[Assert]
Σ,Ψ ` o ⇓ z

Γ ` {assert(o)→ b; }, 〈br, xr,Σ, F 〉 ·Θ,Ψ ⇓ F (b), 〈br, xr,Σ, F 〉 ·Θ,Ψ

[Goto]
Γ ` {goto→ b; }, 〈br, xr,Σ, F 〉 ·Θ,Ψ ⇓ F (b), 〈br, xr,Σ, F 〉 ·Θ,Ψ

[Drop]
Σ(x) = l Ψ(l) = v Σ′ = Σ− [x 7→ l] Ψ′ = Ψ− [l 7→ v]

Γ ` {drop(x)→ b; }, 〈br, xr,Σ, F 〉 ·Θ,Ψ ⇓ F (b), 〈br, xr,Σ′, F 〉 ·Θ,Ψ′

[Switch1]
Σ,Ψ ` o ⇓ zi i ∈ {0, . . . , n}

Γ ` {switch(o)→ [
→
z : b default→ bn+1]; }, 〈br, xr,Σ, F 〉 ·Θ,Ψ ⇓ F (bi), 〈br, xr,Σ, F 〉 ·Θ,Ψ

[Switch2]
Σ,Ψ ` o ⇓ v v 6∈ {z0, . . . , zn}

Γ ` {switch(o)→ [
→
z : b default→ bn+1]; }, 〈br, xr,Σ, F 〉 ·Θ,Ψ ⇓ F (bn+1), 〈br, xr,Σ, F 〉 ·Θ,Ψ

[CallNormal]
lj is fresh Σ,Ψ ` oj ⇓ vj Σ′ = Σ[xj 7→ lj , . . .] Ψ′ = Ψ[lj 7→ vj , . . .] j ∈ {1, . . . , n} Γ(f) = F ′

Γ ` {x = f(o1, . . . , on)→ b; }, 〈br, xr,Σ, F 〉 ·Θ,Ψ ⇓ F ′(b0), 〈b′r, x′r,Σ′, F ′〉 · 〈br, xr,Σ, F 〉 ·Θ,Ψ′

[CallPanic]
lj is fresh Σ,Ψ ` oj ⇓ vj Σ′ = Σ[xj 7→ lj , . . .] Ψ′ = Ψ[lj 7→ vj , . . .] j ∈ {1, . . . , n} Γ(f) = F ′

Γ ` {f(o1, . . . , on); }, 〈br, xr,Σ, F 〉 ·Θ,Ψ ⇓ F ′(b0), 〈 , ,Σ′, F ′〉 · 〈br, xr,Σ, F 〉 ·Θ,Ψ′

[Return]
Σ,Ψ ` x ⇓ v Ψ′ = Ψ[Σ′(xr) 7→ v]

Γ ` {return x; }, 〈br, xr,Σ, F 〉 · 〈b′r, x′r,Σ′, F ′〉 ·Θ,Ψ ⇓ F ′(br), 〈b′r, x′r,Σ′, F ′〉 ·Θ,Ψ′

Figure 3. Operational Semantics of CRUSTIR

975

• Σ,Ψ ` p ⇓ v: a place p evaluates to a value v;
• Σ,Ψ ` o ⇓ v: an operand o evaluates to a value v;
• Σ,Ψ ` r ⇓ v: a right value r evaluates to a value v; and
• Γ ` C0 ⇓ C1: a program state C0 evaluates to a new

state C1, under the global environment Γ.
The first three judgments are pure and thus have no side

effects, whereas the last judgment Γ ` C0 ⇓ C1 may change
the state of the program, by converting the state C0 to C1.

Figure 3 summarizes the representative operational seman-
tics rules, which are explained in detail next.

Place evaluation. For variable x, the rule (Var) first fetches
the memory address l from the store Σ (Σ(x) = l), then fetches
the value v from the heap Ψ (Ψ(l) = v) according to the
memory address l. For array element access p[x], the rule
(Array) first evaluates the array index x to a value n, then
evaluates the place p to an array value Array[. . .], thus the
whole place p[x] evaluates to the corresponding vn. It should
be noted that, to rule out buffer overflows, the array index n
is checked against the array length k (0 ≤ n ≤ k). Other rules
for evaluating places are similar.

Operand evaluation. Constant operands evaluate to them-
selves, as specified by the (Const) rule. The difference between
move p and copy p is that the former will transfer ownership
whereas the latter will not. However, from the operational
semantics point of view, they both evaluate the value of the
place p.

Right value evaluation. The notation &p creates an im-
mutable reference to the place p without transferring owner-
ship, and multiple immutable references to the place p can
be created simultaneously. Furthermore, the notation &mut p
creates a mutable reference to the place p, where aliasing is
not allowed, as this reference may mutate the value of p. As a
result, there can be at most one mutable reference to the place
p.

Statement evaluation. The operational semantics for state-
ments and terminators may change program states, by writing
memories or invoking functions. Most rules are straightfor-
ward thus deserve no further explanations. In the panic call
rule, since there is no place to store the returned value and
the id of the basic block to transfer control to after executing
the panic function, thus there are no relevant parameters in the
call stack information, and we use the notation to represent
a missing value.

IV. C TO CRUST TRANSLATION

This section presents the translation from C to CRUST, by
formally defining compilation rules.

A. Formalizing C
Figure 4 presents the syntax for a subset of C, which is used

to specify the rules for translation to CRUST. As our goal is to
present the translation rules rigorously, we have included, in
this syntax, key features of C, such as expressions, statements,
and functions. To simplify the presentation, we have omitted
some other features such as aggregate types, unions, and so on.
However, these features can be added without any technical
difficulty.

Type τ ::= bool | int | void
Value v ::= true | false | n
Expression e ::= n | x | e+ e
Statement s ::= x = e | s1; s2 | if(e) s1 s2

| while(e) s | return(e)
| return

Function f ::= t x(t1 x1, . . . , tn xn)
{t′1 y1; . . . ; t′m ym; s; }

Figure 4. A Representative Syntax for C

Φ = mapVar([t1 x1; . . . ; tn xn; t′1 y1; . . . ; t′m ym])

τret = mapTy(t) Φ ` s (
→
s′,
→
d)

`
(

t x(t1 x1, . . . , tn xn)
{t′1 y1; . . . ; t′m ym; s; }

)

(
fn x(x1 : τ1, . . . , xn : τn)→ τret

{let mut y1 : τ ′1; . . . ; let mut ym : τ ′m; @
→
d ;
→
s′; }

)

Figure 5. Rule for Compiling Functions

B. Compiling C to CRUST

The rules for compiling C to CRUST are specified by a set
of judgments. We use the notation

→
s for a list of CRUSTIR

statements, and
→
e for a list of expressions. We use the notation

[] for an empty list, and @ for list concatenation.
Compiling C functions. Figure 5 presents the rules for

compiling a C function into a CRUSTIR function. The com-
piler first constructs a compilation environment Φ. This con-
struction is formalized using two auxiliary functions mapTy(-)
and mapVar([-]). The function mapTy(t) maps a C type t to a
CRUSTIR type τ :

mapTy(bool) = bool

mapTy(int) = int

mapTy(void) = unit

The function mapVar([t1 x1; . . . ; tn xn;]) maps C variable
declarations to CRUSTIR declarations:

mapVar([t1 x1; . . .]) = [x1 : mapTy(t1), . . .]

The C function body s is then compiled under the environ-
ment Φ, and a return type τret, which is mapped from type t,
the return type of the C function.

Compiling statements. Figure 6 presents rules for compil-
ing C statements, using the judgment

Φ ` s (
→
s′,
→
d).

A C statement s is compiled to a tuple with two lists:
→
s′

is a list of CRUSTIR statements, and
→
d is a list of variable

declarations.

976

Φ ` s (
→
s′,
→
d)

Φ ` e (
→
s ,
→
d , y)

Φ ` x = e (
→
s@[x = y],

→
d)

Φ ` s1 (
→
s′1,
→
d1) Φ ` s2 (

→
s′2,
→
d2)

Φ ` s1; s2 (
→
s′1@

→
s′2,
→
d1@

→
d2)

Φ ` e (
→
se,
→
de, x)

Φ ` s1 (
→
s′1,
→
d1) Φ ` s2 (

→
s′2,
→
d2)

Φ ` if(e)s1s2

(bb0 :
→
se;

switch(move x)→
[1 :→ bb1, default→ bb2];

bb1 :
→
s′1@[goto→ bb3;]

bb2 :
→
s′2@[goto→ bb3;]

bb3 : ()

,
→
de@

→
d1@

→
d2)

Φ ` e (
→
se,
→
de, x) Φ ` s (

→
s′,
→
d)

Φ ` while(e)s

(bb0 :
→
se;

switch(move x)→
[1 :→ bb1, default→ bb2];

bb1 :
→
s′@[goto→ bb0;]

bb2 : ()

,
→
de@

→
d)

Φ ` e (
→
s ,
→
d , x)

Φ ` return(e) ([return x]@
→
s ,
→
d)

Φ ` return ([return()], [])

Figure 6. Rules for Compiling Statements

Most rules are straightforward. As an example, to compile
“if(e) s1s2”, we first compile the conditional expression e,
then the statement s1 followed by the statement s2; then
we generate four basic blocks bb0 to bb3, by inserting
appropriate comparisons, labels, and jumps. The generated

code
→
s′1 and

→
s′2 from statements s1 and s2 are placed at the start

of the blocks bb1 and bb2, respectively. Similarly, to compile
“while(e) s”, after the statement s has been compiled, the
control will jump back to block BB0.

Compiling expressions. Figure 7 presents rules for com-
piling expressions, which are formalized by the following
judgment:

Φ ` e (
→
s ,
→
d , x)

An expression e is compiled into a three-element tuple: a
list of CRUSTIR statements

→
s , a list variable declarations

→
d , and a variable x (representing the value of the expression
e). Compilation rules are straightforward. As an example, to
compile the addition e1 + e2, we first compile the two sub-
expressions e1 and e2, to obtain (

→
s1,
→
d1, x1) and (

→
s2,
→
d2, x2),

respectively. Then, we generate a new variable x as well as a
new declaration x : int to hold the addition of x1 and x2.

Φ ` e (
→
s ,
→
d , x)

Φ ` n ([x = const n], [x : int], x)

Φ ` e1 (
→
s1,
→
d1, x1) Φ ` e2 (

→
s2,
→
d2, x2)

Φ ` e1 + e2 ([x = x1 + x2]@
→
s1@

→
s2, [x : int]@

→
d1@

→
d2, x)

Φ(x) = τ

Φ ` x ([], [], x)

Figure 7. Rules for Compiling Expressions

V. PROTOTYPE IMPLEMENTATION

To conduct the evaluation, we have implemented a prototype
for CRUST, which consists of two main components: (1) a
converter for translating both Rust and C code to CRUSTIR;
and (2) a portion of prior program analysis algorithms and
tools to CRUSTIR. To implement the converter, we leveraged
the frontend of the Rust compiler rustc (latest version
1.63.0). Moreover, we have leveraged C2Rust [64], an off-
the-shelf tool for legacy C code conversion, to translate the
C code to Rust code then to CRUSTIR with the help of the
Rust compiler front-end. For program analysis comparison, we
ported existing algorithms and tools so that they can process
CRUSTIR for cross-language program analysis. To be specific,
we ported four state-of-the-art analysis tools: 1) rustc [72],
the official static checker of Rust compiler; 2) Miri [73],
an interpreter for MIR; 3) MirChecker [27], a vulnerability
detection framework for Rust programs; and 4) Rudra [20], a
vulnerability detection tool for unsafe code.

VI. EVALUATION

In this section, we conduct experiments to evaluate CRUST.
We first introduce the datasets used for the evaluation (Section
VI-B). Next, we evaluate the effectiveness (Section VI-C) and
performance of CRUST (Section VI-D).

A. Experimental Setup

All experiments and measurements are performed on a
server with one 4 physical Intel i5 core CPU and 4 GB of
RAM running Ubuntu 20.04.

B. Datasets

We used two datasets to conduct the evaluation: 1) micro-
benchmarks; and 2) real-world CWE, containing a total of 131
(14+117) test cases.

977

TABLE II
EXPERIMENTAL RESULTS ON MICRO-BENCHMARKS

Test Vulnerability Source CRUSTIR Conversion Time Analysis Time
rustc Miri MirChecker Rudra CRUST

Case Type LOC (s) / per line(ms) (s) / per line(ms) (This work)

1 OOB [49] 87 0.23 / 2.60 0.46 / 5.33 8 8 8 8 4

2 stack overflow [49] 559 0.22 / 0.40 0.56 / 1.00 8 8 8 8 4

3 CFI violation [49] 750 0.22 / 0.29 0.50 / 0.67 8 8 8 8 4

4 meta data leaking [49] 199 0.23 / 1.17 0.48 / 2.42 8 8 8 8 4

5 UaF/DF [49] 138 0.24 / 1.71 0.46 / 3.35 8 8 8 8 4

6 Division by Zero [27] 134 0.21 / 1.56 0.52 / 3.84 8 8 8 8 4

7 OOB [27] 162 0.23 / 1.39 0.43 / 2.68 8 8 8 8 4

8 OOB [27] 223 0.21 / 0.94 0.42 / 1.90 8 8 8 8 4

9 UaF/DF [65] 309 0.24 / 0.76 0.48 / 1.56 8 8 8 8 4

10 integer overflow [66] 215 0.21 / 0.99 0.54 / 2.52 8 8 8 8 4

11 UaF/DF [67] 356 0.24 / 0.68 0.49 / 1.37 8 8 8 8 4

12 UaF/DF [68] 351 0.23 / 0.64 0.49 / 1.41 8 8 8 8 4

13 format string attack [69] 92 0.23 / 2.47 0.47 / 5.06 8 8 8 8 4

14 buffer overflow [70] 287 0.23 / 0.82 0.54 / 1.88 8 8 8 8 4

Micro-benchmark. We manually constructed a micro-
benchmark consisting of 14 test cases with diverse types of
vulnerabilities (as presented by the second column of TABLE
II), including Out-Of-Bounds (OOB), Use-after-Free (UaF),
Double Free (DF), divide-by-zero, integer overflow, and so on.
These test cases are collected from two sources (third column
of TABLE II): 1) public CVEs; and 2) existing literature on
Rust security studies. To better reflect the essence of these
vulnerabilities and to simplify the validation, we have rewritten
some of the original buggy code by removing irrelevant code.

Real-world CWE. CWE [71] is a set of widely used
“Weaknesses in Software Written in C”, with a total of 117
vulnerable programs. Evaluating CRUST on well-established
vulnerability sets like CWE demonstrates the effectiveness of
CRUST on real-world multilingual applications. To use CWE
for the evaluation of CRUST, we added a Rust wrapper to
each code example in CWE, turning them into multilingual
Rust applications with C.

C. Effectiveness

To evaluate the effectiveness of CRUST, we first apply
CRUST to micro-benchmarks. The last five columns in TABLE
II present experimental results, which demonstrate that CRUST
is superior to the other four state-of-the-art studies (tools)
in that CRUST successfully detected all vulnerabilities in
these benchmarks whereas the other four tools detected none.
This experiment shows that CRUST is effective in detecting
vulnerabilities in multilingual Rust applications.

To investigate the effectiveness of CRUST on real-world
programs, we applied CRUST to the CWE, our second bench-
mark. As TABLE III shows, the CWE dataset contains a total
of 117 test cases, among which 48 were filtered out because
their compilations failed for two reasons: 1) they contain

TABLE III
EXPERIMENTAL RESULTS ON REAL-WORLD CWE

Dataset Total Filtered Valid Success Miss TP

CWE 117 48 69 58 11 84.1%

functions, such as gets, that have been removed since the
C14 standard (3 cases); or 2) they lack necessary information
such as incomplete data structures and undefined functions
(45 cases). Among the remaining 69 valid test cases, 58 were
successfully detected by CRUST whereas 11 were not. Hence,
the true positive (TP) is 84.1% (Success

V alid).
To further investigate the root causes for the 11 failed

cases, we performed a manual analysis for them. This analysis
revealed two important reasons: 1) C features unsupported by
Rust; or 2) limitations of static program analysis. Among all 11
failed cases, 1 contains a feature unsupported by Rust, namely
returning the stack address of a variable of unknown size,
whereas the other 10 were just missed by the analysis itself.
For example, CRUST does not analyze C library functions such
as strcpy (2 cases), as it does not establish the semantic
models for C libraries. Although establishing precise models
for C libraries will lead to more accurate analysis, this task is
tedious and laborious. Other missed cases include concurrency
errors such as race conditions (3 cases), logical errors (4
cases), and numerical errors (1 case). Given our threat model,
these failed cases should not be deemed as a limitation of
CRUST.

D. Performance

TABLE II (the 5th and 6th columns) presents the perfor-
mance of CRUST, including: 1) time for converting the source

978

code to CRUSTIR (Conversion Time); and 2) time for program
analysis on CRUSTIR (Analysis Time). We ran each test
case 100 rounds, then calculated the average. Experimental
results demonstrated that CRUST is efficient in detecting
vulnerabilities in multilingual Rust applications: the time spent
on code conversion into CRUST is around 0.2 seconds for
each case, with 1.2 milliseconds per line of code; whereas
the analysis time is about 0.5 seconds for each case, with 2.5
milliseconds per line of code. Moreover, the conversion time is
less than the analysis time, thus the overhead of the conversion
is negligible.

VII. DISCUSSION

In this section, we discuss some possible enhancements to
this work, along with directions for future work. It should be
noted that this work represents the first step towards defining a
unified and effective static analysis framework for multilingual
Rust applications.

More complete CRUSTIR model. While our formal defini-
tions of the syntax and semantics of the specification language
CRUSTIR model the semantics of Rust honestly, we rely on
the off-the-shelf Rust type checker to check the type-related
properties. By formally defining and incorporating a rigorous
type system into CRUSTIR, we can make some program
analysis algorithms, such as pointer analysis, more precise.
Based on the latest research progress in this direction (e.g.,
RustBelt [83] and Patina [80]), we are attempting to formally
define Rust’s type system. Specifically, we are drawing on
RustBelt’s insight of logical relations to formally define a type
system for CRUSTIR.

More expressive memory model. CRUST’s memory model
makes use of a unified heap to store all variables. While
this design models the Rust semantics honestly, it diverges
from C’s memory model, in which some variables are stack-
allocated. Thus, by using a more expressive memory model
to describe the memory layout of C, we may detect more
subtle vulnerabilities. In this direction, we are planning to
study a more elaborative C memory model, by introducing
new CRUSTIR instructions to model the impact of C code on
the Rust heap [92].

More comprehensive types of vulnerabilities. Although
CRUST can effectively detect memory-related vulnerabilities
in multilingual Rust applications, CRUST can also be extended
to process more types of vulnerabilities. Especially, extending
CRUST with concurrency vulnerability checking capabilities
will make it more comprehensive. In this direction, we can
leverage the latest research progress (e.g., deadlock detection
[74], data race detection [56], type confusion detection [26])
for concurrency security. We leave it an important future work.

VIII. RELATED WORK

In recent years, there has been a significant amount of
research on both Rust security and multilingual program
security. However, this work stands for a novel contribution
to these fields.

A. Rust Security

In the past few years, there have been a lot of studies on Rust
security which can be classified into four categories: empirical
study, vulnerability detection, vulnerability prevention, and
formal verification.

Empirical studies. Current empirical studies on Rust se-
curity focus on security vulnerabilities, unsafe Rust, and
the automatic C-to-Rust conversion tool C2Rust. Qin et al.
[12] conducted an empirical study of memory and concurrency
security vulnerabilities in Rust applications. Xu et al. [10]
conducted an in-depth study of 186 memory security-related
CVEs and proposed a taxonomy. Astrauskas et al. [75] studied
the use of unsafe in 31867 Rust crates and summarized
the usage scenarios of unsafe. Emre et al. [76] empirically
investigated the limitations of C2Rust, and proposed some
improvements.

Vulnerability detection. Vulnerability detection research
mainly uses two techniques: 1) program analysis; and 2)
fuzzing, in which program analysis is the most commonly
used technique. SafeDrop [18], Mirchecker [27], Rupair [19],
Stuck-me-not [74] and Rudra [20] all perform vulnerability
detection based on program analysis. Another common tech-
nique is fuzzing. RUSTY [77] and RULF [78] are fuzzing
tools for Rust programs and Rust libraries, respectively. In
addition, Dewey et al. [54] proposed a fuzzing method for the
Rust compiler.

Vulnerability prevention. Research related to Rust vul-
nerability prevention can be classified into two categories:
1) privilege separation-based; and 2) program analysis-based.
The first strategy focuses on isolating unsafe code or data
through memory access control and sandbox. FC [14] and
XRust [15] prevent vulnerabilities by dividing memory into
different regions with separate access control. Sandcrust [16]
uses the sandbox to encapsulate the FFI. In addition, RUS-
BOX [17] uses a combination of static program analysis and
sandbox to prevent buffer overflow vulnerabilities in Rust. The
second strategy makes use of program analysis to visualize
important information, such as lifetime and ownership, to help
developers eliminate potential errors [79].

Formal verification. Research related to formal verifica-
tion can be divided into two main categories: 1) formal
semantics; and 2) automated program verification. For the
formal semantics of Rust, Patina [80] is the first Rust formal
semantics, which was subsequently extended by Lamqadem
et al. [81]. RustBelt [83] is the first to include unsafe,
which was subsequently extended by Dang et al. [84]. Rust
automated program verification studies have all adopted a
similar approach: first, translate the Rust program into an
intermediate representation of an existing verification tool, and
then use the existing tool to verify the Rust program. RSMC
[56] utilizes Smack [86] to verify memory and concurrency
security in Rust. Both Rust2Viper [57] and Prusti [75] use
Viper [87] to verify the functional correctness of Rust.

However, the above work is limited to pure Rust code,
which cannot analyze other languages in multilingual appli-

979

cations, and therefore cannot detect vulnerabilities caused by
the interactions of Rust with other languages.

B. Multilingual Applications Security.

There have been many studies on the security of multilin-
gual applications. PolyCruise [88] is a technique that generates
a dynamic information flow analysis (DIFA) for multilingual
software. Mergendahl et al. [49] systematically analyzed the
security of multilingual applications and constructed threat
models across Rust and C. BridgeTaint [89] is a two-way
dynamic taint tracking method that detects security issues
in communication between native code and Web code. Li et
al. [90] reviewed the research results of cross-language static
analysis in the field of Android application security. Costanzo
et al. [91] proposed a formal verification method that verifies
the data flow security of software systems consisting of C and
assembly end-to-end.

Our work differs from the above efforts in that our research
addresses the security of multilingual applications across Rust
and C. We also propose an effective unified program analysis
framework across Rust and C.

IX. CONCLUSION

This paper presents CRUST, the first unified program analy-
sis framework for analyzing multilingual Rust applications. At
the core of CRUST are a formal definition of a specification
language CRUSTIR, as well as rigorous translation rules from
C to CRUSTIR on which program analyses can be performed.
We have implemented a prototype system for CRUST and
conducted extensive experiments. Experimental results show
that CRUST can effectively detect common memory security
vulnerabilities across Rust and C that are not detected by other
state-of-the-art Rust analyses, with negligible overhead. This
work represents a new step towards securing Rust, making the
promise of a safe system language a reality.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work is partially supported by the National Natural
Science Foundation of China (No.62072427, No.12227901),
the Project of Stable Support for Youth Team in Basic Re-
search Field, CAS (No.YSBR-005), Academic Leaders Culti-
vation Program, USTC.

REFERENCES

[1] Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., ...
& Halderman, J. A. “The matter of heartbleed.” Proceedings of the 2014
conference on internet measurement conference. 2014, pp. 475-488.

[2] Saito, T., Watanabe, R., Kondo, S., Sugawara, S., & Yokoyama, M. “A
survey of prevention/mitigation against memory corruption attacks.” 2016
19th International Conference on Network-Based Information Systems
(NBiS). IEEE, 2016, pp. 500-505.

[3] Matt Miller. 2019. Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape. https://github.com/microsoft/MSRC-
Security-Research/blob/master/presentations/2019 02 BlueHatIL.

[4] Chromium. 2022. Chromium Security. https://www.chromium.org/Home/
chromium-security/memory-safety.

[5] Steve Klabnik and Carol Nichols. 2018. The Rust Programming Lan-
guage. https://doc.rust-lang.org/stable/book/.

[6] Ownership. https://kaisery.github.io/trpl-zh-cn/ch04-00-understanding-
ownership.html.

[7] Borrow. https://doc.rust-lang.org/rust-by-example/scope/borrow.html.
[8] References. https://doc.rust-lang.org/book/ch04-02-references-and-

borrowing.html.
[9] lifetime. https://doc.rust-lang.org/rust-by-example/scope/lifetime.html.
[10] Xu, H., Chen, Z., Sun, M., Zhou, Y., & Lyu, M. R. “Memory-Safety

Challenge Considered Solved? An In- Depth Study with All Rust CVEs.”
ACM Transactions on Software Engineering and Methodology. 2021, pp.
1-25.

[11] Unsafe. https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html.
[12] Qin, B., Chen, Y., Yu, Z., Song, L., & Zhang, Y. “Understanding memory

and thread safety practices and issues in real-world Rust programs.”
Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2020, pp. 763-779.

[13] Evans, A. N., Campbell, B., & Soffa, M. L. “Is rust used safely by
software developers?” Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (ICSE), 2020, pp. 246-257.

[14] Almohri, H. M., & Evans, D. “Fidelius charm: Isolating unsafe rust
code.” Proceedings of the Eighth ACM Conference on Data and Appli-
cation Security and Privacy. 2018, pp. 248-255.

[15] Liu, P., Zhao, G., & Huang, J.“Securing unsafe rust programs with
XRust.” Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. 2020, pp. 234-245.

[16] Lamowski, B., Weinhold, C., Lackorzynski, A., & Härtig, H. “Sandcrust:
Automatic sandboxing of unsafe components in rust.” Proceedings of the
9th Workshop on Programming Languages and Operating Systems. 2017,
pp. 51-57.

[17] Ouyang, W., & Hua, B. “RusBox: Towards Efficient and Adaptive
Sandboxing for Rust.” 2021 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). IEEE, 2021, pp. 1-2.

[18] Cui, M., Chen, C., Xu, H., & Zhou, Y. “SafeDrop: Detecting memory
deallocation bugs of rust programs via static data-flow analysis.” arXiv
preprint arXiv:2103.15420. 2021.

[19] Hua, B., Ouyang, W., Jiang, C., Fan, Q. “Rupair: Towards Automatic
Buffer Overflow Detection and Rectification for Rust.” Annual Computer
Security Applications Conference. 2021, pp. 812-823.

[20] Bae, Y., Kim, Y., Askar, A., Lim, J., & Kim, T. “Rudra: Finding Memory
Safety Bugs in Rust at the Ecosystem Scale.” Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 2021, pp.
84-99.

[21] Ning, P., & Qin, B. “Stuck-me-not: A deadlock detector on blockchain
software in Rust.” Procedia Computer Science, 177, 2020, pp. 599-604.

[22] Erdin, M., Astrauskas, V., & Poli, F. “Verification of Rust Gener-
ics, Typestates, and Traits.” Doctoral dissertation, Master’s thesis, ETH
Zürich, 2019.

[23] Merigoux, D., Kiefer, F., & Bhargavan, K. “Hacspec: succinct, exe-
cutable, verifiable specifications for high-assurance cryptography embed-
ded in Rust.” Doctoral dissertation, Inria, 2021.

[24] Denis, X., Jourdan, J. H., & Marché, C. “The Creusot Environment for
the Deductive Verification of Rust Programs.” Doctoral dissertation, Inria
Saclay-Île de France, 2021.

[25] Matsushita, Y., Tsukada, T., & Kobayashi, N. “RustHorn: CHC-Based
Verification for Rust Programs.” ACM Transactions on Programming
Languages and Systems (TOPLAS), 43(4), 2021, pp. 1-54.

[26] Switzer, J. F. “Preventing IPC-facilitated type confusion in Rust.”
Doctoral dissertation, Massachusetts Institute of Technology, 2020.

[27] Li, Z., Wang, J., Sun, M., & Lui, J. C. “MirChecker: Detecting Bugs
in Rust Programs via Static Analysis.” Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 2021,
pp. 2183-2196.

[28] How much Rust in Firefox? https://4e6.github.io/firefox-lang-stats/.
[29] Function features. https://doc.rust-lang.org/book/ch13-00-functional-

features.html.
[30] Enums and Pattern Matching. https://doc.rust-lang.org/stable/book/ch06-

00-enums.html.
[31] Type checking. https://rustc-dev-guide.rust-lang.org/type-

checking.html.
[32] Technology-most-loved-and-wanted-languages. https://insights.

stackoverflow.com/survey/2021#most-loved-dreaded-and-wanted-
language-love-dread.

[33] Tock. 2019. Tock Embedded Operating System. https://www.tockos. org/

980

[34] Lankes, S., Breitbart, J., & Pickartz, S. “Exploring rust for unikernel
development.” Proceedings of the 10th Workshop on Programming Lan-
guages and Operating Systems. 2019, pp. 8-15.

[35] Levy, A., Campbell, B., Ghena, B., Pannuto, P., Dutta, P., & Levis, P.
“The case for writing a kernel in rust.” Proceedings of the 8th Asia-Pacific
Workshop on Systems. 2017, pp. 1-7.

[36] Light A. “Reenix:Implementing a unix-like operating system in rust.”
Undergraduate Honors Theses, Brown University, 2015.

[37] Sung, M., Olivier, P., Lankes, S., & Ravindran, B. “Binoy
Ravindran:Intra-unikernel isolation with Intel memory protection keys.”
Proceedings of the 16th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments. 2020, pp. 143-156.

[38] Servo. The Servo Browser Engine. https://servo.org/.
[39] TFS. https://github.com/redox-os/tfs.
[40] Miller, S., Zhang, K., Chen, M., Jennings, R., Chen, A., Zhuo, D.,

& Anderson, T. “High Velocity Kernel File Systems with Bento.” 19th
USENIX Conference on File and Storage Technologies. 2021, pp. 65-79.

[41] TTstack. https://github.com/rustcc/TTstack.
[42] A standalone, event-driven TCP/IP stack:smoltcp. https://github.com/

smoltcp-rs/smoltcp.2022.
[43] Tokio is an asynchronous runtime for the Rust programming language.

https://tokio-cn.github.io/.2022.
[44] TiKV. https://github.com/tikv/tikv.
[45] Parity. https://github.com/paritytech/parity-ethereum.
[46] Catalin Cimpanu. 2019. Microsoft to explore using Rust. https://www.

zdnet.com/article/microsoft-to-explore-using-rust.
[47] Rust in android platform. https://security.googleblog.com/2021/04/rust-

in-android-platform.html.
[48] Rust in linux kernel. https://security.googleblog.com/2021/04/rust-in-

linux-kernel.html.
[49] Mergendahl, S., Burow, N., & Okhravi, H. “Cross-Language Attacks.”

Proceedings 2022 Network and Distributed System Security Symposium.
NDSS. 2022, pp. 1-17.

[50] CVE-2021-25904: A raw pointer is dereferenced, leading to a read of
an arbitrary memory address. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-25904.

[51] Foreign Function Interface. https://doc.rust-lang.org/nomicon/ffi.html.
[52] McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C. V., Shafi, H.,

Shanbhogue, V., & Savagaonkar, U. R. “Innovative Instructions and
Software Model for Isolated Execution.” Hasp@ isca, 10(1). 2013.

[53] Kil, C., Jun, J., Bookholt, C., Xu, J., & Ning, P. “Address Space
Layout Permutation (ASLP): Towards Fine-Grained Randomization of
Commodity Software.” 2006 22nd Annual Computer Security Applica-
tions Conference. 2006, pp. 339-348.

[54] Dewey, K., Roesch, J., & Hardekopf, B. “Fuzzing the Rust typechecker
using CLP (T).” 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ACM). IEEE, 2015, pp. 482-493.

[55] Lindner, M., Fitinghoff, N., Eriksson, J., & Lindgren, P. “Verification
of Safety Functions Implemented in Rust-a Symbolic Execution based
approach.” 2019 IEEE 17th International Conference on Industrial Infor-
matics (INDIN). Vol. 1. IEEE, 2019, pp. 432-439.

[56] YAN, F., WANG, Q., ZHANG, L., & CHEN, Y. “RSMC: A Safety
Model Checker for Concurrency and Memory Safety of Rust.” Wuhan
University Journal of Natural Sciences, 2. 2020.

[57] Hahn, F. “Rust2Viper: Building a static verifier for Rust.” Master’s
thesis, ETH Zürich, 2016.

[58] Payet, É., Pearce, D. J., & Spoto, F. “On the Termination of Borrow
Checking in Featherweight Rust.” NASA Formal Methods Symposium.
2022. pp. 411-430.

[59] The MIR(Mid-level IR). https://rustc-dev-guide.rust-lang.org/mir/index.
html.

[60] Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M.,
Gohman, D., ... & Bastien, J. F. “Bringing the web up to speed with
webassembly.” Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 2017, pp. 185-200.

[61] The MIR type-check. https://rustc-dev-guide.rust-lang.org/borrow
check/type check.html.

[62] The move semantics in Rust. https://doc.rust-lang.org/std/keyword.
move.html.

[63] The copy semantics in Rust. https://doc.rust-lang.org/std/marker/trait.
Copy.html.

[64] C2Rust. https://c2rust.com/.
[65] CVE-2019-16144: Uninitialized memory is used. https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2019-16144.

[66] CVE-2017-1000430: Buffer overflow. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-1000430.

[67] CVE-2019-15551: Double freehttps. //cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-15551.

[68] CVE-2019-16140: Use-after-free. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-16140.

[69] CVE-2019-15547: Format string issues. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-15547.

[70] CVE-2019-15548: Buffer overflow. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2019-15548.

[71] CWE VIEW: Weaknesses in Software Written in C. https://cwe.mitre.
org/data/definitions/658.html.Accessed:2021-02-04.

[72] What is rustc? https://doc.rust-lang.org/rustc/what-is-rustc.html.
[73] Miri. https://github.com/rust-lang/miri.
[74] Ning, P., & Qin, B. “Stuck-me-not: A deadlock detector on blockchain

software in Rust.” Procedia Computer Science, 177, 2020, pp. 599-604.
[75] Astrauskas, V., Müller, P., Poli, F., & Summers, A. J. “Leveraging Rust

types for modular specification and verification.” Proceedings of the ACM
on Programming Languages 3.OOPSLA, 2019, pp. 1-30.

[76] Emre, M., Schroeder, R., Dewey, K., & Hardekopf, B. “Translating C to
Safer Rust–Extended Version.” Object-Oriented Programming, Sys-tems,
Languages, and Applications, 2021, pp. 1-29.

[77] Ashouri, M. “RUSTY: A Fuzzing Tool for Rust.” Annual Computer
Security Applications Conference, 2020.

[78] Jiang, J., Xu, H., & Zhou, Y. “RULF: Rust library fuzzing via API depen-
dency graph traversal.” 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2021, pp. 581-592.

[79] Zhang, Z., Qin, B., Chen, Y., Song, L., & Zhang, Y. “VRLifeTime–An
IDE Tool to Avoid Concurrency and Memory Bugs in Rust.” Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 2020, pp. 2085-2087.

[80] Reed, E.“Patina: A formalization of the Rust programming language.”
University of Washington, Department of Computer Science and Engi-
neering, Tech. Rep. UW-CSE-15-03-02,264. 2015.

[81] LAMQADEM, A. A. “A Formalization of the Static Semantics of Rust.”
Corso di Laurea Magistrale in Informatica. 2019.

[82] Wang, F., Song, F., Zhang, M., Zhu, X., & Zhang, J. “Krust: A
formal executable semantics of rust.” 2018 International Symposium on
Theoretical Aspects of Software Engineering (TASE). IEEE, 2018, pp.
44-51.

[83] Jung, R., Jourdan, J. H., Krebbers, R., & Dreyer, D. “RustBelt: Securing
the foundations of the Rust programming language.” Proceedings of the
ACM on Programming Languages 2. POPL. 2017, pp. 1-34.

[84] Dang, H. H., Jourdan, J. H., Kaiser, J. O., & Dreyer, D. “RustBelt meets
relaxed memory.” Proceedings of the ACM on Programming Languages
4. POPL. 2019, pp. 1-29.

[85] Jung, R., Dang, H. H., Kang, J., & Dreyer, D. “Stacked borrows: an
aliasing model for Rust.” Proceedings of the ACM on Programming
Languages 4. POPL. 2019, pp. 1-32.

[86] SMACK is both a modular software verification toolchain and a self-
contained software verifier. https://smackers.github.io/.

[87] Viper is a language and suite of tools developed at ETH Zurich. https:
//www.pm.inf.ethz.ch/research/viper.html.

[88] Li, W., Ming, J., Luo, X., & Cai, H. “PolyCruise: A Cross-Language
Dynamic Information Flow Analysis.” 31st USENIX Security Symposium
(USENIX Security 22). 2022, pp. 2513-2530.

[89] Bai, J., Wang, W., Qin, Y., Zhang, S., Wang, J., & Pan, Y. “BridgeTaint:
a bi-directional dynamic taint tracking method for JavaScript bridges in
android hybrid applications.” IEEE Transactions on Information Forensics
and Security 14.3, 2018, pp. 677-692.

[90] Li, Z., & Feng, G. “Inter-Language Static Analysis for Android Appli-
cation Security.” 2020 IEEE 3rd International Conference on Information
Systems and Computer Aided Education (ICISCAE), 2020, pp. 647-650.

[91] Costanzo, D., Shao, Z., & Gu, R. “End-to-end verification of
information-flow security for C and assembly programs.” ACM SIGPLAN
Notices 51.6, 2016, pp. 648-664.

[92] Tan, G., & Morrisett, G. “ILEA: Inter-language analysis across Java
and C.” Proceedings of the 22nd annual ACM SIGPLAN conference on
Object-oriented programming systems, languages and applications. 2007,
pp. 39-56.

981

