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Abstract—Software developers need to take advantage of a
variety of APIs (application programming interface) in their
programs to implement specific functions. The problem of API
misuses often arises when developers have incorrect under-
standings about the new APIs without carefully reading API
documents. In order to avoid software defects caused by API
misuse, researchers have explored multiple methods, including
using AI(artificial intelligence) technology.

As a kind of neural network in AI, Transformer has a good
sequence processing ability, and the self attention mechanism
used by Transformer can better catch the relation in a sequence
or between different sequences. Besides it has a good model
interpretability. From the perspective of combining API misuse
detection with AI , this paper implements a standard Transformer
model and a target-combination Transformer model to the
learning of API usage information in a named API call sequence
extracted from API usage program code. Then we present in the
paper the way that our models use API usage information to
detect if an API is misused in code. We use F1, precision and
recall to evaluate the detection ability and show the advantages
of our models in these three indexes. Besides, our models based
on Transformer both have a better convergence. Finally, this
paper explains why the models based on Transformer has a
better performance by showing attention weight among different
elements in code.
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I. INTRODUCTION

When developers adopt application programming interface
(API), they can reuse or expand the existing software frame-
works and class library functions, so as to effectively improve
the efficiency of software development. For example, a Java
project relies on an average of 14 different libraries[1], and the
Maven library has indexed 8.77 million third-party libraries
[2]. Due to the complexity of the API itself [3][4][5][6] and
potential inconsistency between implementations of APIs and
their documents [7][8][9], developers may have misunder-
standings about these APIs and mistakenly use the API func-
tions in their code. There are various situations of API misuses
[10], such as mismatched API call parameters, absence of
exception handling and lack of condition check. These API
misuses can introduce defects such as potential functional and
safety hazards as well as performance problems in implemen-
tation of software systems[11][12][13][14][15][16][17]. For
example, in the code of Android, if an API call makes
reference to the null object without checking the validity of
the object, the program often causes the problem of a null
pointer exception. Therefore, detecting API misuse plays an
increasingly important role in ensuring the quality of software,

and a variety of static analysis tools have been proposed to
address the problem [18][19][20][21][22][23].

To avoid API misuse, the existing methods can be grouped
into two kinds: The first kind method is designed to extract
API documentation information, which mainly uses Natural
Language Processing(NLP) to extract specifications from an
API documentation and detect API misuses in code. The
second kind of methods is designed to mine API usage
information from code and extract latent information to detect
API misuses. Such possible information can be represented by
machine learning(ML) models [24].

By focusing on the second kind method, in this paper,
we implement two models based on a famous AI model-
Transformer[25][26] to detect API misuse, one is a standard
Transformer model and the other is a target-combination
Transformer model. We utilize the method proposed by[24]
to generate API usage data and train our Transformer models
to represent the latent dependencies among different code
elements. The models can run as a sequence predictor to find
API misuses. The experimental results confirm that the models
developed in this paper outperform other baseline models.

The rest of this paper is organized as follows: Section 2
describes the state-of-the-art API misuse detection algorithms
and elaborates the research motivation of the paper. Section 3
introduces the API misuse detection method based on Trans-
former and explains the design details. Section 4 describes
experiment designs for comparing API misuse detection mod-
els and presents experimental results. Section 5 summarizes
this paper and gives the conclusion.

II. RELATED WORK

A. API misuse detection method

a) Extract API documentation information: The doc2seq
method proposed by Zhong[27] utilizes NLP technology to
analyze the natural language in API documents, and deduces
the specification about API usage from their documents. The
authors extracted API usage specification from five library
documents and evaluated the performance of doc2seq. The
experimental results show that this method can infer different
specification with high accuracy, and find the defects that have
not been discovered in open source projects. It is obvious that
the accuracy of such methods solely depends upon the quality
of the extracted specification. Without correct descriptions of
the major relations among logic entities of APIs, such methods
can not deliver high quality detection results.
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The study [28] developed open information extraction meth-
ods to construct API-constraint knowledge graph from API
reference documentation. The knowledge graph empowers the
detection of three types of frequent API misuses-missing calls,
missing condition checking and missing exception handling,
while existing detectors mostly focus on only missing calls.
The evaluation confirms their method has a better detection
result.

Unfortunately, many of such constraints are insufficiently
specified by APIs’ documentations. As a result, developers
also refer to informal references, such as Stack Overflow, to
understand the usages of an API[29] .

b) Mine API usage information from code: The other
way of API misuse detection commonly attempts to capture
frequent API usage patterns and formalize the problem as an
anomaly detection. Many methods have been proposed from
different data mining and machine learning frameworks, where
they choose different ways to represent API usages and their
frequency.

Li et al. studied the API usage specification mining technol-
ogy based on frequent itemsets[30], and developed a mining
and detection tool PR miner. The main functions of PR miner
include automatically extracting implicit API usage constraints
and detecting violations of these constraints. Its high-level idea
is to find some frequently used elements from the source code,
including functions, variables and data types, and to identify
the correlation among these elements. From the source code
repository of Linux and PostgreSQL, PR miner can extract
32000 programming rules in 1-42 seconds and confirm 23
reported defects. However, such specification of an API may
not contain all the necessary usage constraints.

Wen[31] believes that the usage of API mutation is correct
based on the usage analysis of API mutation ; Secondly, the
usage of these changes can verify whether it is API misuse
by executing test cases and analyzing execution information.
From the verification results, learn how the API is misused,
and use the misuse mode to detect API misuse defects. The
author conducted experiments on 73 popular Java APIs in 16
projects. This method found that the accuracy rate of API
misuse was as high as 0.78, and the recall rate was 0.49 on
mubench data set. However, if we use an mutation API which
may pass through the tests but not recommended by the API
provider, that may cause a hidden danger.

By leveraging a N-gram language model, Wang et al. intro-
duced a defect detection tool bugram[32]. The authors assume
that a program element is only relevant with its previous n-1
elements in a API call sequence. Therefore, bugram calculates
the probability of all the sequences in a dataset and classifies
the sequence with the lowest probability as a suspected defect.
The authors detected 59 bugs in 16 new versions of Java
projects. The main limitation of bugram is rooted in the N-
gram language model, which can only capture the relevance
between the current token and its n-1 predecessors. The actual
API usage often involves more complex dependence patterns
than this simple one.

Ouyang et al. [24] proposed a Stacked LSTM method to

detect API misuse in code. The authors utilize JavaParser to
convert code into a graph structure, then generate API call
sequences from the graph as training data samples. Although
The LSTM models employed in their research can represent
the adjacent dependence among consequent API tokens, they
are not sufficient for capturing long-stride associations of the
tokens, which reflect both structural and semantic information
in Java code.

We can see from these studies above that it is very useful
to apply AI technologies, like Natural Language Processing
models to API misuse detection. On the other hand, the
“localness” in source code, which refers to the complexity
of code structures, still is the chronic and main challenge for
API misuse detection when applying language models.

B. Research motivation

When using one API, there may be different reasons for
misuse. Any different element in code may cause API misuse
differently. That is, when we use an API, we should pay
attention to different weights of element to avoid misuse. Here
we show two examples for this explanation.

Figure 1. Example of try-catch code block.

In Figure 1, we can see that there are two different ex-
ceptions in the code. When array nums1 is executed, an out
of bounds exception occurs while array nums2 is executed,
an arithmetic calculation exception occurs. We can conclude
that when the code executes printResult(), different params
nums1 and nums2 have different weight contribution to API
misuse and may cause different type of API misuse.

In Figure 2, there are multiple APIs in this line of
code, including getWidgetByName(), substring() and
setText(). Resulting in the misuse of setText() should be
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getWidgetByName() instead of substring(). If The API
getWidgetByName() can not get the object by its param
or the object doesn’t exist, the setText() API happens error.
Thus the element getWidgetByName() has more contribu-
tion to lead setText() misuse than substring(). That is to say
different element at different position in the code may have
different contributions to API misuse.

Figure 2. Example of Widget code.

Based on above analysis, we can see that any different
element in code may cause API misuse and may cause
different type of API misuse, so we should take care of
different weight to different element in detecting API misuse,
but as far as we learn, no researchers analysis and do this
before from this point of view. Besides, as program code can
be converted into execution sequences[32], and neural network
can extract sequence characteristics and mine the relationships
among sequences. We decide to use neural network to learn the
relationship among different elements in code. Transformer, as
a famous kind of neural network, can do well in mining the
relationship among different elements in sequence. So in this
paper, we propose two AI models based on Transformer to
better learn API usage by catching the relation among different
elements in using API code. Then we use the models to detect
API misuse in test dataset to better find API misuse bugs.

III. RESEARCH METHOD

Our Transformer-based method is mainly divided into the
following steps:

• Data generation. In this paper, we use API Call Syntax
Graph (ACSG) to represent the code structure, then we
use the exhaustion-based mining algorithm to generate
API call sequences of ACSG[24]. According to the
algorithm, the origin code data is transformed into API
call sequence, and then generated to our dataset.

• Model training and prediction. This paper designs a
standard Transformer model and a target-combination
Transformer model to predict the API call sequence and
detect whether the API is misused.

The flow chart of this method is shown in Figure 3.

A. Data generation
To better understand, the process of generating ACSG and

API call sequence involves the following definitions:
a) Node: There are two kinds of nodes including action

node and data node. An action node includes API calls, method
calls, control statements and method in class. A data node
includes object, values such as parameters including API call
parameter appearing in the code. In Figure 4, the upper right
rectangle including Action and Data are node examples for
the upper left code.

Figure 3. the workflow of based on Transformer method.

b) Edge: Nodes are connected by directed edges, point-
ing from one node to another, which represents the execution
order in a program. The black arrow lines in Figure 4 are
examples of edge.

c) API call syntax graph (ACSG): An ACSG is com-
posed of nodes and edges. ACSG starts with the root node and
ends with the leaf node. There can be other nodes and edges
between the root node and the leaf nodes. Multiple ACSGs can
be combined into a single ACSG by adding the edge from one
ACSG’s leave node to another ACSG’s root node. In Figure
4, all the black arrow lines and all nodes construct an ACSG
example for the upper left code.

d) API call sequence: We have a special explanation, a
node in an API call sequence can be any type of node defined
before, such as a concrete API or a method or a parameter
and so on. We use APIn to represent a node uniformly. For
example, a sequence like [getInstance(), param,While] can
be represented as [API1, API2, API3]. The order from left
to right in an API call sequence represents an execution flow
of code. The red arrow lines and all nodes in Figure 4 show
an ACSG converts to an API call sequence.

Figure 4 shows an example of ACSG and one API call
sequence representing an execution branch of source code.
ACSG can well represent the code structure. In this way, we
construct an ACSG dataset from all the usage code in a method
for further training.

In the process of constructing ACSG, we run JavaParser to
effectively parse the source code[33] and obtain the abstract
syntax tree (AST) representing the source code structure. From
the AST representation, we can further construct an ACSG
from any java code segment.

With the ACSG of a program segment, we need to convert
the ACSG into an API call sequence and then use the sequence
to generate training data for our Transformer models. We
use the API sequence mining algorithm proposed by [24] to
get API call sequences. An API call sequence consists of
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Figure 4. An example of ACSG and API call sequence. The upper left
rectangle shows code example while upper right rectangle shows element
representation of ACSG, containing Data Node, Action Node and Edge. All
kinds of nodes and all the black edges construct the ACSG while all kinds
of nodes and all the red edges can represent one API call sequence. One
ACSG may be extracted more than one API call sequences as control node
can yield different execution branches. ACSG can well stand for the code
structure while API call sequences can well represent the execution flow of
source code

multiple nodes in the form of [API1, API2, API3, ...APIn].
The position of the n-th API node can be considered to be
predicted by the previous (n-1) API calls. So, the training
data can be divided into 2 parts from an API call sequence.
The first part is[API1, API2, ..., APIn−1], while the sec-
ond part is [APIn]. We put the two parts in the form of
([API1, API2, ..., APIn−1], APIn). For example, if an API
call sequence is [API1, API2, API3], the final training data
can be generated as ([API1],API2),([API1, API2], API3).

B. Model Design and Implementation

Based on the pytorch framework, we implement two Trans-
former models, a standard Transformer model and a target-
combination Transformer model to learn the sequential pat-
terns of API usages from the training dataset and run the
models to detect whether an API is misused in test code. The
details of implementation are described as follows:

a) Standard Transformer model: The architecture of the
standard Transformer model is shown as Figure 5.

The model structure is mainly composed of encoder and
decoder. The Encoder is composed of one or multiple layers
with the same structure, which is illustrated on the left panel in
Figure 5. Each layer consists of two sub layers with a Multi-
Head-Attention mechanism and fully connected feed forward
network. Moreover, each sub layer also contains a residual
connection and normalization. The output of each sub layer
can be expressed as:

sub layer output = LayerNorm(x+Network(x)) (1)

Figure 5. Our Standard Transformer model for Representing sequential
patterns of API usages.

So the first sub layer output is:

LayerNorm(Z +MultiHeadAttention(Z))

and the second sub layer output is:

LayerNorm(Z + FeedForward(Z))

Where Z represents the input of the MultiHeadAttention or
FeedForward, and Add refers to the residual connection.

The FeedForward layer is a two-level fully connected MLP.
The first layer uses Relu function while the second layer
does not use activation function. In this model design, it is
assumed that the input of Multi-Head-Attention layer is Q ∈
RN×Tq×dmodel ,K ∈ RN×Tk×dmodel , V ∈ RN×Tk×dmodel .
Where N is batch size, Tq , Tk are the max length of Q and
K respectively. dmodel a is the vector length of the original
API embedding.

Assuming that h is the number of heads of Multi-Head-
Attention, then h times linear Transformation is carried out,
and the i-th linear transformation is:

Mi =

 Qi = Q×WQ
i , WQ

i ∈ R(dmodel,dk)

Ki = K ×WK
i , WK

i ∈ R(dmodel,dk)

Vi = V ×WV
i , WV

i ∈ R(dmodel,dv)

(2)

Next, we do as follows:

temp =
Qi(Ki)

T

√
dk

(3)

headi = attention(Qi,Ki, Vi) = softmax(temp)V (4)
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MultiHead(Q,K, V ) = Concat(head1, head2..., headh)W
o

(5)
Among them W o ∈ R(N,hdv,dmodel), through the Multi-

Head-Attention operation, the final matrix has the same di-
mension as the matrix Q of inputs.

In the model, the structure of decoder and encoder is similar,
but there is a sub layer of attention. Besides the API sequence
also adopts positional embedding (PE):

The dimension of PE is the same as that of API embedding.
The coding equation of PE is as follows:

M1 =

{
PE(pos,2i) = sin(pos/100002i/d)
PE(pos,2i+1) = cos(pos/100002i/d)

(6)

Where, pos represents the position of the word in the sentence,
d represents the dimension of PE, 2i represents the dimension
of even number, (2i + 1) represents the dimension of odd
number, and the addition of API embedding and position
embedding represents the representation vector of an API.

We choose positional embedding to encode the sequences
of API call tokens in order to pass the semantic information
of the API calls into the Transformer model. Since this model
is defined based on encoder-decoder architecture, we take the
preceding tokens in an API call sequence as the input of the
encoder component and the left token as the input of the
decoder component.

The encoded input sequence ([API1, API2, ..., APIn−1])
is passed through the Multi-Head-Attention layer where it
calculates Multi-Head-Attention as described in Eq(2), in order
to represent the dependent weight relationship between API
calls in the sequence. Then, the AddNorm layer adds Multi-
Head-Attn ([API1, API2, ..., APIn−1) and the input embed-
ding ([API1, API2, ..., APIn−1) together, and performs a
Normalization operation on the adding result to accelerate the
convergence speed during the train phase. The normalization
result is passed through the feed-forward neural network
and Add-Norm layer to deliver the encoder output, which is
denoted as encoder-output ([API1, API2, ..., APIn−1]).

At the side of the decoder, the last token of the API call se-
quence is the embedded and used as the input for the decoder’s
first stage, which is similar to the encoder. we denote the result
of this stage as output[APIn]. The next step is to associate the
preceding tokens with the last token of the API call sequence.
The encoder-output ([API1, API2, ..., APIn−1]) is used as
the K and V of the decoder, and the output[APIn] as Q. The
Multi-Head-Attention operation is performed to represent the
weight relationship between the encoder output corresponding
to the Q . At the last step, the softmax layer defined in
Figure 5 is responsible for calculating the probability of the
occurrence of the last token given the preceding sequence.
This output probability can determine whether the API node
is a potential misuse or not. This is the first stage of AI model
and can better find API call order or redundant call misuse
in sequence. By leveraging the relation weight of different
element learnt by the AI model, we can build a dictionary to

include each concrete API’s high relation weight condition.
For example, (APIx : [CATCH,CONDITION ]), where
APIx is a concrete API, CATCH appears means that APIx
needs to handle exception, CONDITION appears means
that APIx needs to do some condition checking, like value
state checking or parameter checking. If a dictionary is like
(APIq : NULL) , this means that the concrete APIq does not
need any condition checking or value checking or exception
handling.

Then for the second step, our AI model uses dictionary
above and travels from beginning node to end node in API
call sequence to find each concrete API node’s, such as API ′xs
high relation weight control or data node APIy whether exists
after APIx in the sequence. If node APIy does not appear
which means that node APIx mismatches in the sequence, the
AI model determines the node APIx is misused, otherwise
APIx is right. This step can deal misuse about API, such as
exception.

Similarly to step 2, next for the third step, our AI model
travels from end node to begining node in API call sequence
to find a concrete API node is condition or value state misuse.

By combing the result of above 3 steps, our AI model
outputs the final misuse result.

b) Target-Combination Transformer Model: In this sec-
tion, we implement a Target-Combination Transformer Model
to detect API misuse. The model is shown as Figure 6.

Figure 6. Target-Combination Transformer Model.

Target-Combination Transformer Model is mainly based
on three components: (1) a preceeding-sequence-combining
target encoder to extract relation between target API node and
preceeding APIs as shown in the right of Figure 6 , (2) a
preceeding-sequence self encoder to extract self relation as
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shown in the left of Figure 6, (3) a target-combination linear
layer as shown in the top of Figure 6. A target API is the
(n-th)API node as shown in the right encoder.

In Figure 6, the attention among different APIs is calculated
as Eq(4) and Eq(5) and then fed into the feed-forward and
layer normalization layers in the same way as the stan-
dard Transformer model. Then the two Encoder output are
combined into linear layer. From the output of the linear
layer, we get preceeding-sequence-combining target encoder
Ht ∈ R(N,dmodel). Ht learns the target information under the
context of the preceeding (n-1)API calls.

Calculated as above, the sequential representations of the
preceeding (n-1) API call sequences is obtained by setting
Q,K, V . The output from linear layer is calculated as Hp1 ∈
R(N,dmodel).

Next, in order to extract the weight attention from the
above two representations, we use a feed-forward network
layer, namely, Hencoder = [Htw;Hp1w]W , where W ∈
R(2dmodel,dmodel), Hencoder ∈ R(N,dmodel). After getting
Hencoder, we feed it into several linear layers and Transformer
encoder layers to further extract the target API representation.

When coming to the final linear layer, the preceeding (n-1)
API calls and target API are combined at the early stage and
composed by Transformer encoder layers. To distinguish these
two information flows and encourage the final linear layer to
obtain the target API message, the L-Layers Encoder in Figure
6 encoder layers are only applied to the (n-1)API calls to
obtain a deeper representation Hp2. During decoding, Hp2 and
Ht are combined to generate key and value matrics, namely
Hdecoder = [Ht, Hp2]W , where Hdecoder ∈ R(N,dmodel).

In the end of Linear layer, we obtain the output. As the
standard Transformer model’s second and third step, the target-
combination Transformer model also follows the steps to
output final misuse result.

IV. EXPERIMENT

In this section, we present the experimental plan including
the dataset, the evaluation criteria and the final results.

A. Dataset

In our training experiment for our AI models, we use dataset
from[24]. The dataset concludes 14422 java files all about
JCE(Java cryptography extension) . All the java files are in
stable software releases, thus the files provide high quality
code and can be generated API call sequence training dataset
with high quality for different AI models. The total size of
the files is about 50MB. JCE is a package provided by JDK,
which can provide the implementation of cryptographic prim-
itive, including block ciphers and MACs(message authenticate
codes). Java cryptography APIs provided by JCE are under the
package named javax.crypto. By separating the implementa-
tion details for the users, developer can use it conveniently
to achieve the encryption and decryption functions. Also,
these APIs provide multiple modes and configuration setting
options.

In our practical API misuse detection experiment, we
use real API misuse dataset from the state-of-the-art
MuBench[10]. MuBench is still actively maintained. It is
widely accepted by API misuse detection studies[24][36][37]
and contains instances of cryptographic API misuses collected
from 62 Java programs. These programs include 6 Android
apps and 56 non-Android applications. We managed to use
the method from [37] to compile the Java applications into
JAR files, which correspond to 149 labeled instances of JCE
API misuses. Therefore, we use these 149 instances as ground
truth in our evaluation.

As MuBench is public and has great industrial impacts,
which enables our AI model to compare different API misuse
detection tools, we choose MuBench as our test dataset.

B. Experimental design

a) Comparative experiment: In order to verify the effec-
tiveness of this AI method, this paper compares our models
with other state-of-the-art methods which can be used in
Java, including using AI method and non AI method, like
MuDetect[33], n-gram[32], and 2 other using LSTM meth-
ods containing S-LSTM (stacked long short term memory
network)[24] and D-LSTM (deep long short term memory
network)[36]. MuDetect is not an AI method but a famous
method and the detector has a good performance in MuBench.
N-gram provided by the author proposes that introducing
control condition node from code can catch high level semantic
to improve detection ability and n-gram is a famous language
tool in bug detection concluding API misuse. Choosing S-
LSTM and D-LSTM models is because that the based LSTM
models are all about using AI neural network models to
detect API misuse and LSTM is a famous model in handling
sequence.

We use Precision, Recall and F1 to evaluate the methods.
TP is the number of defect reports with the correct location
of misuse defects in the source code file under test. FP is the
number of defect reports with the wrong locations in the source
code file under test. FN is the number of defect reports that
the model fails to identify. With the above three summation
values, the Precision metric is defined as:

Precision =
TP

TP + FP
(7)

Similarly, the Recall metric is defined as:

Recall =
TP

TP + FN
(8)

The harmonic mean (F1) of precision rate and recall rate is
defined as:

F1 =
2TP

2TP + FP + FN
(9)

b) Experiment parameter design: Assuming that the
acceptable level of defect detection model in the experi-
ment is set to k. When a node in an API call sequence
is in the output node probability list and the probability
is between top 1 and top k, it is considered that the pre-
dicted node is at the acceptable level, otherwise, it is a
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potential API misuse. Then our models follow their second
and third step to finally determine whether it is a misuse.
In the API misuse detection models based on Transformer,
the hyper parameter design is as follows: HIDDEN SIZE=
250, NUM LAYER=4, NUM EPOCH=20, BATCH SIZE =
64, DROP OUT= 0.1, LEARNING RATE = 0.005,EMBED-
DING SIZE = 512, Multi-Head-Attention NUM HEADS= 4.
When training our models, we divide the total dataset from[24]
mentioned in section Dataset into 2 parts, the training set is
80%, and the verification set is 20%.

C. Model training

The training results are shown in Figure 7 and Figure 8.

Figure 7. Comparison diagram of model loss value.

Figure 8. Comparison diagram of model accuracy.

Figure 7 shows the comparison of the loss values of 4
models. The abscissa represents the number of iterations and
the ordinate represents the loss value; Figure 8 shows the
accuracy change trend during model training. The abscissa
represents the number of iterations and the ordinate represents
the accuracy.

It can be seen from Figure 7 and Figure 8 that our
Transformer models designed in this paper are both better than
D-LSTM and S-LSTM methods in terms of loss value and
accuracy. At 20 iterations, the loss of standard Transformer
model is 0.019, and the loss of target-combination Transformer

model is 0.017, which are both lower than the loss of 0.567
of S-LSTM and 0.772 of D-LSTM. At the same time, the
accuracy of standard Transformer model reaches 0.908 and
target-combination Transformer reaches 0.925, which both are
higher than that of S-LSTM and D-LSTM. This is because
the attention mechanism in Transformer processes the whole
sentence sequence, which is not disturbed by the long-term
dependence problem, and there is no risk of losing past
information. At the same time, different elements in code
establish different weight relationships according to the degree
of interdependence. Figure 7 and Figure 8 also show that with
the increase of the number of iterations, the values of the loss
function and accuracy tend to converge. At the same time,
the convergence speed of the models in this paper are faster
than that of the comparative AI models. This is because the
Transformer models in this paper avoid the disadvantage of
processing sequences in the LSTM model, and the processing
of sequences can be calculated in parallel.

D. Model interpretability based on Transformer

In order to understand how our models can make good
prediction about API misuses, we develop a visualization to
demonstrate the inner mechanism of the self-attention in our
models. Here we select standard-Transformer. We choose the
API call sequence mined from the Java code snippet in Figure
4 as the example. Its encoding string is listed as follows:

IF-CONDITION-TRY-TRYBLOCK-
java.io.FileInputStream.new(java.io.File)-
java.io.FileInputStream.read()-CATCH-
java.io.IOException.printStackTrace()-CATCH-
java.io.FileNotFoundException.printStackTrace()-Finally

From the API call sequence, our algorithm can establish
the dictionary table with API strings and their positions as
illustrated in Table I

TABLE I
API SEQUENCE DICTIONARY

Position API
0 IF
1 CONDITION
2 TRY
3 TRYBLOCK
4 jave.io.FileInputStream.new(java.io.File)
5 java.io.FileInputStream.read()
6 CATCH
7 java.io.IOException.printStackTrace()
8 CATCH
9 java.io.FileNotFoundException.printStackTrace()
10 FINALLY

The misuse inference of the code sequence is executed
in the four layers of our Transformer model. The top layer
represents the outermost layer of the encoder, and the bottom
layer represents the input layer close to the encoder. There
are four heads in each layer, and the weight relationship is
shown in Figure 9. The heads of different layers represent the
weights of the keys and queries in the process of sequence
prediction. The vertical axis of each head represents the word
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Figure 9. Visualization of the attention mechanism in our Transform model
when it infers API misuses from a Java code snippet

at the query position of the sequence, and the horizontal axis
represents the sequence key. After passing through the four
layers of encoder, it is in the outermost layer of the encoder.

1) From head 1, one can see the catch word
corresponding to the key positions 6 and 8
is associated and the query positions 5, 7
and 9 , namely java.io.FileInputStream.read(),
java.io.IOException.printStackTrace(), java.io.FileNot-
FoundException.printStackTrace(). The key and query
pairs clearly exhibit a high weight value, which
indicates that the catch statements are closely related to
specific exceptions.

2) From head 2, one can see that the weight value is
high between the try statement with the key position
2 and the tryblock statement with the key position 3.
This observation indicates that the occurrence of the
try statement is closely associated with the tryblock
structure with a high possibility.

3) From head 3, one can also see that the key position 4
namely, java.io.FileInputStream.new(java.io.File) has a
high weight with the query positions 6 and 8, which
indicates that the model pays more attention to the
exceptions caused by creation of Java.io.File.

4) From head 4, one can see that there is almost a high-
lighted column of the try statement corresponding to
the key position 2, indicating that almost all the API
elements behind the try statement in the sequence have
a high weight with it.

Based the above observations, we can conclude that the self-
attention mechanism of the Transformer model is very good
at capturing the structural and semantic associations among

different API call elements in the code. Such an advantage
enables the Transformer based models to make more accurate
predictions about the violations of API usage in the code
snippets in our test dataset.

E. Model effect in API misuse detection

This section describes an API misuse detection experiment
using test dataset mentioned above.

Figure 10, Figure 11 and Figure 12 displays the F1 value,
the precision and recall values of the methods respectively.
The abscissa represents the acceptable threshold (Top-k) for
predicting API probability.

Figure 10. the F1 Performance Comparison of the API misuse detection
models

Figure 11. the Precision Performance Comparison of the API misuse detection
models

It can be seen from Figure 10, Figure 11 and Figure 12
that among the three metrics defined above, the Transformer
models in this paper show a better result. Since the recall value
of our models in this paper exceed the famous MuDetect, it
has a better detection performance; When the value of Top-k
is top-10, the effect of our models are the best.
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Figure 12. the Recall Performance Comparison of the API misuse detection
models

Figure 10, Figure 11 and Figure 12 also show that under dif-
ferent Top-k values, the performance of API misuse detection
method based on Transformer is relatively stable, and other
methods like n-gram may have certain mutations in varying
degrees. Though all methods use the same MuBench dataset,
our proposed models show a better performance. Based on
Transformers models can well catch the attention weight in
API call sequence, thus leads to our models’ better ability to
detect API misuse.

F. Case study

In this section, we use two typical examples to explain how
our AI models work in detecting real API misuse. We still
select standard Transformer model.

a) Exception misuse detection: Figure 13 and Figure 14
from our training dataset are right cases to use Cipher.init()
, while Figure 15 is a real misuse in test dataset. When
using Cipher.init() to implement different functions, one
should notice that this may happen exception. We convert
the right usage of API code into ACSG and then extract
the API call sequence which represents the execution of
code. Next we generate dataset from API call sequence
as described in section III to train our AI models. After
that, the models has learnt the usage of API. For exam-
ple, in Figure 13, when a method is used to encrypt data,
TRY as control node, Cipher.ENCRY PT MODE as
param node often appear in the front of code snippet, after
the mode param appears, the Cipher.init() and doF inal()
method are called. Then Catch different exception state-
ment appears to catch the possible exception. Sometimes
Cypher.init() and doF inal() do not always appear in the
same time and Catch statement sometimes follows nearest
Cypher.init() as shown in Figure 14. Besides, other complete
cases may happen, for example, using class KeyFactory
to get privateKey before Cipher.init() as shown in Fig-
ure 15. Our AI model can well learn the relation weight
among different nodes as explained in subsection model inter-
pretablity and can predict each position in API call sequence

with accepted possibility. For example, when an API call
sequence begins with TRY and TRY BLOCK, the model
predicts the next node should be Cipher.getInstance(null)
with possibility 50% or other nodes like Cipher.init() or
SecretKeyFactory.getInstance() with different accepted
possibilities. As different nodes may appear, we select Top-
k to represent the possible node count. If the predicted node
possibility is very low or out of Top-k, that means AI model
thinks the node can hardly appear, once such node appears, it
may be a potential misuse node. We also build a dictionary
to store each concrete API node’s condition limit or value
limit or exception limit by finding each API’s high relation
weight control or data node as described in Section III. This
is the first step and can well find API call order misuse.
But as complete cases may appear as we analysis, our AI
model executes second and third step to deeply determine the
detection result.

The second step is that, our AI model uses the dictionary
above and travels from beginning node to end node in API call
sequence to find each concrete API node’s, such as A′s high
relation weight control or data node, such as B whether exists
after A in the sequence. The high relation weight threshold
can be set 0.3 or other accepted values. If node B does not
appear which means that node A mismatches in the sequence,
the AI model determines the node A is misused, otherwise
AI model determines A is right. This step can find exception
misuse.

Just like step 2, our AI model proceeds step 3 from
end node to beginning node to find whether an API node
mismatches. This step can find condition or value state misuse.
By combing the result of above 3 steps, our AI models
output the final misuse result. For example, Cipher.init()
is a Node in Figure 13, and AI model has learnt that it is
with high relation value with Catch and builds a dictionary
(Cipher.init() : [CATCH]). When the AI model travels the
API call sequence from the API node’s current position to
end to find whether an over threshold relation weight control
node Catch exists. If the satisfied relation weight node exists,
then the API node Cipher.init()is not misuse, otherwise, the
Cipher.init() is misuse. In Figure 15, by using our above
steps, our model thinks Catch statement as a high relation
weight control node to Cipher.init() should appear in code.
However, the Catch statement does not appear, then our
models think the Cipher.init() is a misuse. By counting all
the misuses nodes in code for a file, we then use the Eq(7),
Eq(8), Eq(9) to calculate Precision, Recall and F1.

b) Parameter misuse detection: Figure 16 is a pa-
rameter type misuse about Cipher.doF inal() in real
test dataset. In right usage about the API, the pa-
rameter type should be encoding byte[]. The example
shows that the string is not converted into specify-
ing encoding and then passed to Cypher.doF inal(), this
causes a parameter type misuse. As shown in Figure 15,
cipher.doF inal(plainText.getBytes(”UTF−8”)) is a right
usage about Cipher.doF inal(). Like the exception misuse
type detecting, our AI model first predicts each position API
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Figure 13. A good example for using Cipher.init(). The left part shows code, while the right part shows the API call sequence from up down which
represents the execution of the code. API call sequence contains API Node and Param Node and Control Node. One API node can be as another’s Param
Node, such as node key.getPublicKey() .

Figure 14. A good example with execution branch for using Cipher.init(). The left part shows code, while the right part shows two API call sequences
from up down which represents the execution flow of the code. Since if is in the code, the execution flow may yield different branch. API call sequences
contains API Node and Control Node.
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Figure 15. A real misuse case about Cipher.init() in dataset. When using Cipher.init(), one should notice that this may happen exception. The left part
shows code, while the right part shows the API call sequence from up down which represents the execution flow of the code. API call sequences contains
API Node and Param Node.

Figure 16. A real misuse case about Cipher.doF inal() in dataset. When using Cypher.doF inal(), the parameter type should be encodingbyte[]. The
example shows that the string is not converted into specifying encoding and then passed to Cypher.doF inal().The left part shows code, while the right part
shows the API call sequence from up down which represents the execution flow of the code. API call sequences contains API Node and Param Node.

node possibility in API call sequence. If the possibility is very
low or the node is out of Top-k, then the Node may cause
API misuse. Then, our model travels the API call sequence
from end to beginning node to find whether doF inal()′s high
relation weight value node getBytes(java.lang.String), not
getBytes() exists. If getBytes(java.lang.String) exists,
then the AI model thinks the doF inal() is used right, oth-
erwise, doF inal() is a misuse. In the final result, our model
determines Figure 16 is a misuse.

From the above examples, we can see that, our AI models
executes 3 steps to find API misuse. As our models do well in

catching different element’s relation, the detecting API misuse
ability can be good at catching different kinds of API misuse,
like exception misuse, condition misuse, value misuse and so
on.

V. CONCLUSION

In this paper, we propose the Transformer based models to
learn the representations of API usages and perform API mis-
use detection. Experimental results confirm that both the stan-
dard Transformer model and target-combination Transformer
model developed in our work achieve a higher predicative
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performance than the other methods in terms of precision,
recall and F1. Besides, we visualize the attention weights of
our models when making API misuse detection with Java code
examples. The visualization explains how the Transformer
models represent the implicit API usages in the Java code,
which provide a good way for software developers to under-
stand the model’s predictive behaviors. In the end, we use 2
typical examlpes to show how our models work in detecting
real API misuse cases. In future work, we still need other
experiments to assess the efficiency of the proposed method,
For example, we can use different dataset.
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