
Strategies for Improving the Error Robustness of Convolutional Neural Networks

António Morais1, Raul Barbosa1, Nuno Lourenço1, Frederico Cerveira1,
Michele Lombardi2, and Henrique Madeira1

1University of Coimbra, CISUC, DEI, Coimbra, Portugal
2University of Bologna, DISI, Bologna, Italy

Abstract—The error robustness of Convolutional Neural Net-
works (CNNs) is an important attribute requiring attention
due to their growing application in safety-critical domains such
as autonomous driving and medical devices. Hardware errors
affecting the execution of such models may lead to system
failures and, therefore, fault tolerance techniques are necessary
to improve dependability. This paper proposes an approach to
improve the robustness of CNNs and experimentally compares
it with three other existing techniques. Fault injection is used to
emulate hardware faults affecting CNNs targeting four distinct
datasets. Results indicate that the ranger technique globally
provides the best robustness closely followed by the stimulated
training technique, although the former provides much lower
temporal overhead than the latter. Architectural redundancy and
dropout provide varying results. In all cases, caution through
final evaluation of any CNN is required, because there are corner
cases in which the robustness decreases, contrary to the intended
outcome.

keywords—Dependability, neural networks, hardware
faults, safety.

I. INTRODUCTION

The increasing usage of Machine Learning (ML) tech-
niques in safety-critical applications raises concerns about
the dependability of models and algorithms due to their
non-deterministic and probabilistic outputs, limitations of the
training data, and non-determinism in testing that makes it
virtually impossible to cover all corner cases. Therefore, to
harness the benefits of using such techniques in scenarios
like autonomous driving and medical devices, one must devise
adequate mechanisms to ensure that they are dependable.

When using CNNs, failures are often caused by inadequate
network architectures, insufficient training data or overfitting.
Moreover, hardware faults also represent an important threat
because CNNs usually require massive hardware accelerators
that are susceptible to soft errors [1], [2]. Radiation can
upset internal states of circuits and cause data errors while
the hardware itself remains undamaged [3] and therefore
such events are called “soft” errors. Previous studies [4], [5]
have observed significant corruptions in the outputs of neural
networks, caused by soft errors. Such errors may affect the
execution and lead to classification failures, and therefore the
error robustness of CNNs must be assessed and improved to
allow for their use in safety-critical scenarios.

This paper proposes a novel fault tolerance technique named
Stimulated Training, evaluates the effectiveness of the existing
Dropout technique with regards to error robustness, and com-
pares the effectiveness of two other existing fault tolerance

methods to improve CNNs robustness. Specifically, we con-
sider four distinct techniques: Redundancy, Ranger, Dropout
and Stimulated Training. We measure the error robustness of
neural networks through fault injection at the ISA (Instruction
Set Architecture) level, using the ucXception framework [6],
[7]. Fault injection is performed during the testing phase of
neural network models and metrics like Silent Data Corrup-
tions (SDCs) and accuracy are collected to characterize the
results of each technique.

Generally speaking, neural networks are regarded as having
intrinsic robustness against errors. However, such intrinsic
redundancy is likely insufficient for safety-critical applications
and requires adequate validation. To this end, the paper makes
the following contributions:

• Dropout, which is a well known regularization technique
used to avoid overfitting [8], is examined for the hypoth-
esis of also improving error robustness. To the best of
our knowledge, this is the first study of this nature. The
technique works by randomly cutting off neurons and,
intuitively, force the network to learn to adapt. This, in
principle, could have an effect on soft error sensitivity.
However, in practice, we observe a limited effect.

• Based upon the results of the dropout strategy, we devise
a new technique named Stimulated Training. The new
method consists of emulating single bit flip errors during
training (instead of simply cutting neurons off). If neurons
were fail-silent, then the original dropout technique could
potentially work well. However, as neurons are non-fail-
silent, the Stimulated Training technique is proposed and
experimentally observed to provide better results than
dropout.

• The paper presents the results of an experimental eval-
uation including two other existing techniques for im-
proving the robustness of CNNs, totalling 43 campaigns
and 371 520 faults injected. Therefore, four techniques
are globally compared: redundancy [9], ranger [10],
dropout [8] and the novel stimulated training.

The remainder of the paper is organized as follows. Sec-
tion II describes related work and background related to
three of the error robustness techniques applied in this paper.
Section III describes the design of the practical experience
and the fourth, novel error robustness technique. Sections IV
and V present the results and discuss the main observations.
Section VI presents the conclusions.

874

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS57517.2022.00092

II. BACKGROUND AND RELATED WORK

In this paper we consider techniques for improving the
intrinsic error robustness of neural networks (without consid-
ering traditional fault tolerance techniques such as modular
redundancy). It is commonly held that CNNs have intrinsic
error-masking ability [4], [9]. This is attributed to CNNs
distributed structure and over-provisioning [11]. In critical oc-
casions, however, errors can surpass a network’s error-masking
ability and lead to failure resulting in misclassification [12].

Research has been conducted on the fault tolerance char-
acteristics of CNNs [13], [14]. One of the most relevant
characteristics is the topology of the network. Emphasis is
given to the type of layer that is used. Normalisation layers
[15], for instance, are a type of layer that is used to increase the
generalization accuracy of the network by bounding the output
of specific layers to a predetermined range, preventing large
changes. Due to this, Local Response Normalisation (LRN)
layers also increase the error robustness of a network.

There are two generally accepted types of fault tolerance
[9]. The first is active fault tolerance. Systems that employ
this type have two components, one for detecting faults and
another for controlling them. The main idea is that these
systems detect faults as they appear and handle the effects
using mechanisms that compensate for those effects. This
compensation is achieved by taking the tasks that were being
carried out by the faulty components of the neural network
and assigning them to non-defective ones. The second type
is passive fault tolerance. In contrast to the previous type,
systems that use passive fault tolerance do not directly detect
and manage faults. Instead, these systems make architectural
changes to the neural network that increase its redundancy,
thus indirectly compensating for the effects of faults.

Constraining the weights of CNNs improves their error
robustness. This can be achieved through binding the magni-
tude of the weights in a layer to a predetermined range [16].
One technique using this idea is Ranger [10]. One possible
consequence of soft errors (due to HW transient faults) is a
large deviation in a neuron’s output value. These errors may
propagate through the network and affect the output. Ranger
restricts the output values of neurons at certain layers in the
network, thus clipping errors that occur before those layers.

A technique that draws some similarity to Ranger was
named clipped activation [17]. Based upon empirical obser-
vations of the effects of hardware faults affecting intermediate
layers of neural networks, the authors propose to clip the acti-
vation function by bounding the output values of intermediate
nodes, within cut-off ranges. Their contribution, similarly to
Ranger, is to specify how to define the output range for each
layer of the neural network, while precluding the need for the
training dataset nor modifying the parameters of any given
network, that is, purely by bounding the activation function.

Due to the relevance of the soft error issue in criti-
cal systems, some techniques have been recently proposed.
Algorithm-based error detection [18] explores the usage of
three different strategies based upon checksums to verify the

reduced output of convolutions. Moreover, algorithm-based
fault tolerance [19], [20] has been applied to neural networks
and shown to improve error robustness.

Full hardware redundancy is a very effective technique for
protecting safety-critical systems [21]. However, the cost is
too high for many applications and imposes additional weight
and energy consumption. Hence, in this paper we compare
network-level redundancy attained by increasing the number
of neurons at each layer and allow the network to make free
use of that available redundancy.

Authors have investigated the possibility of reducing mem-
ory voltage as a means to save energy while preserving accu-
racy [22] by injecting bit errors during training. It is known
that reducing hardware voltage leads to effects similar to those
of soft errors. Hence, authors aiming for voltage reduction
could also benefit from error-resilient neural networks.

Dropout [8] is a regularization method that provides a
simple and computationally efficient way of preventing over-
fitting. During each training iteration, each neuron has a
predetermined probability p of being omitted. In the original
version of dropout, both input and hidden layer neurons can be
omitted and the probability p can be different between layers.
Knowing that Dropout can prevent overfitting, in this paper
we examine its ability to improve error robustness and, as the
results show, that ability is at best very limited.

III. METHODOLOGY AND APPROACH

The overall goal of the paper is to evaluate four techniques
regarding their ability to improve the robustness of CNNs,
namely redundancy [9], ranger [10], dropout [8] and a novel
improved version of dropout called stimulated training. The
first three techniques are described in the preceding section,
as they belong to the state of the art, whereas the stimulated
training technique is new and it is presented in this section.

Soft errors are a dependability threat originated by hardware
faults [3], which represents a major concern for safety-critical
systems that run CNNs over hardware accelerators. Such soft
errors may cause SDCs that potentially lead to severe failures.

Fault injection campaigns were carried out, in which soft
errors were inserted during the execution of CNNs, to empiri-
cally evaluate the accuracy of the different CNN models in the
presence of soft errors. Such an experiment is representative
of a scenario in which a CNNs executes directly on unreliable
hardware, subject to soft errors.

A. Stimulated training

Stimulated Training is a novel adaptation of the Dropout
technique developed in the scope of the present paper as a
means to improve upon it. This technique is similar to dropout
with one important distinction: instead of being omitted,
neurons have their output values modified through random bit-
flips on the output value. This is a crucial distinction, because
the idea is for the neural network to automatically learn how
to handle hardware faults during training.

The internal values of CNNs can have one of several data
formats. The most common is the single-precision floating

2875

point format with 32 bits from the IEEE 754-2019 standard
[23]. This format can be divided into three parts: the sign bit,
the exponent which has eight bits and the significand which
has 23 stored bits.

The bit-flip operation, during training, chooses a random
bit to be flipped. This manipulation mirrors the random bit-
flip fault model mentioned above. The impact of each bit-
flip depends on the original number and on the bit that is
flipped. Resulting values can be vastly larger or smaller than
the original ones, due to the floating point format.

In our experiments, the sign bit is not flipped during
stimulated training (although it might during testing). Initial
calibration experiments showed that the accuracy of a network
is negatively affected by targeting that bit. Hence, without
loss of generality and because one of the main goals is
to maximize accuracy under the effects of hardware faults,
the sign bit is excluded from stimulated training. This is a
simple configuration based upon initial experimental results
and including the sign bit once again would be perfectly
feasible if it shows promising results.

The goal of this technique is to emulate soft errors during
the training phase. By repeating this procedure, with a given
probability across the targeted neurons, the neural network is
trained to work in the presence of errors, thereby improving
its robustness, so this is a modified learning technique.

The rationale behind the stimulated training technique is to
let the neural network learn how to tolerate the hardware faults
to which it is exposed during training. Much like the training
dataset includes examples of images or entities to be classified
by a neural network, the stimulated training technique provides
examples of hardware faults and allows the network to develop
internal fault tolerance. This is a fundamental distinction
when comparing to the dropout technique, which discards
random neurons to reduce overfitting. We observe that training
the network under the presence of emulated hardware faults
actually improves accuracy when compared to the original
dropout technique.

B. Fault injection
Faults in CNNs can occur randomly [24]. To study their

effect, one can inject faults in the neural network models
in a variety of manners. In this work, fault injection was
used to emulate transient hardware faults in the CPU through
single bit-flips in CPU registers following an uniform random
distribution. Random bit-flips in CPU registers is an ISA-level
fault model that is widely used in other similar studies and
has been shown to accurately emulate soft errors [25]–[27].
Thus, the usage of this fault model is expected to provide more
representative results than if high-level error injection had been
used. However, because we use a fault model for CPU faults,
the neural network has to be executed on the CPU and not
in HW accelerators. This point is considered and discussed in
the analysis of the results.

For the experiments, we use a software-implemented fault
injection framework called ucXception [6]1. This framework

1The fault injector is available at https://github.com/ucx-code/ucXception

injects faults by altering the value of the CPU registers
of a userspace process during its execution. If this process
(in our context, the model) uses these modified registers,
then its internal state will be modified, possibly leading to
misclassifications.

Faults were injected randomly in every bit of the general
purpose registers (e.g., RIP, RAX), and in the x87 FPU
registers. Additionally, faults were exclusively injected during
the testing (i.e., actual use) of the model. The model classifies
every image in the test dataset and at the end of each iteration
the outcome can be one out of three possibilities: No Effect,
Hang/Crash or SDC. This last failure mode (SDC) means that
the injected fault caused a misclassification.

We evaluate the robustness of the models to hardware
faults by measuring the relative frequency of misclassifications
(SDCs) during the testing stage with every dataset. To do so,
every model is executed in a golden run – without any faults
injected – to establish the expected behaviour. Subsequently,
all fault injection experiments are compared to the outcome
of the golden run for the purpose of measuring classification
accuracy under hardware faults.

It is worth to highlight that the preference for software-
implemented fault injection comes with the need to perform
fault injection is a standard Linux machine supporting the
complete training-testing pipelines. Nevertheless, an alterna-
tive possibility would be to use hardware-emulated errors,
potentially reducing the temporal and spatial intrusiveness of
the fault injector and possibly improving the reachability of
the technique to target more registers (which are not accessible
at the ISA level).

C. Datasets

The evaluation was performed on four datasets, which are
described next. MNIST [28] is a collection of handwritten
digits, divided into 60000 training and 10000 testing samples.
The images are grayscale, sized 28x28 pixels, and there are
10 classes which correspond to a digit from 0 to 9. The
images have an IDX file format which was read using existing
functions from the PyTorch framework.

Fashion-MNIST [29] is a dataset that consists of Zalando
article images of clothing and shoes. It is more demanding to
reach good accuracy compared to MNIST. It keeps the same
image dimensions, classes, structure and file format as MNIST.

The German Traffic Sign Recognition Benchmark (GTSRB)
[30] dataset contains photographs of traffic signals. It has
51839 images divided into 43 classes, with each image having
3 channels (red, green and blue). The dimensions of the images
range from 15x15 to 250x250. Within each class, the images
differ in the angle, brightness and other characteristics, in order
to provide some variation and encompass plenty of possible
real-life circumstances. We resized them using the OpenCV
library to a standard 28x28 size.

The CIFAR-10 [31] dataset is composed of a subset of
the 80 million tiny images dataset. There are 50000 training
images and 10000 testing images, which are labelled as one
of 10 classes. The classes range from animals (e.g., bird, cat)

3876

to means of transport (e.g., airplane, truck). The images are
32x32 pixels with 3 channels (RGB).

D. Neural network architectures

LeNet or LeNet-5 [32] is a widely used CNN architecture.
It is composed of convolutional, pooling and fully-connected
layers. We implemented the original LeNet architecture for
all datasets. It has a few differences depending on the dataset,
namely: the input size; the number of input neurons of the
first fully-connected layer (400 for CIFAR10 and 256 for
other datasets); the number of channels (one for MNIST and
Fashion-MNIST, 3 for GTSRB and CIFAR10). For short, we
identify LeNet as architecture (1) in all subsequent figures.

In order to evaluate the impact of redundancy on LeNet
when combined with the other techniques, we added one
convolutional layer (conv3) and increased the input and output
dimensions of the convolutional layers, as well as the number
of neurons in the fully-connected layers. We called the result-
ing network architecture (2), and used it in every dataset as a
baseline in a similar way to architecture (1).

IV. RESULTS

Neural network architectures (1) and (2) were trained and
tested with the four previously mentioned datasets. To evaluate
the performance of the models and the techniques, the follow-
ing metrics were computed: classification accuracy; training
time in seconds for each model; and the distribution of failure
modes mainly focusing on the proportion of SDCs. Other
failure modes do exist, such as crashes and hangs, and there is
also a possibility for errors to be masked and have no effect.
We focus on SDCs because that is the failure mode which
affects accuracy and gauges the robustness of models in the
presence of soft errors.

Results of 43 fault injection campaigns, totalling more than
600 hours, were collected. The number of campaigns corre-
sponds to the combinations of models with datasets examined.
Five injections per bit, at 64 bits per register, considering
27 registers, lead to 8 640 experiments per campaign. This
resulted in a total of 371 520 faults injected.

A. Training and testing accuracy

The accuracy results for the different models, datasets
and training/testing are presented in Figure 1. Accuracy is
fundamental because one aims to improve error robustness
while maintaining or improving correct classifications.

The first observation is that architecture (2) has better
accuracy than architecture (1), which is to be expected because
the latter is a relatively simple architecture while the former
has more layers, as described earlier.

Applying the Ranger technique improves the accuracy in
both architectures, including in cases where it is combined
with Dropout. This contrasts with the findings in the origi-
nal paper [10], which state that Ranger does not affect the
accuracy in LeNet. The differing findings can be attributed
to many experimental differences between the papers, such
as using a distinct fault injection technique or programming

language, which has previously been shown to have an effect
on the results [33].

Another remark is that Dropout has an inconsistent impact
on training and testing accuracy. In architecture (1), it de-
creases accuracy in all datasets, whereas in architecture (2)
it has a varying influence, reducing in MNIST and Fashion-
MNIST while increasing in GTSRB and CIFAR10.

Different Dropout probabilities impact architecture (2) in
varying ways, such as decreasing the testing accuracy in the
MNIST and Fashion-MNIST datasets, while increasing it in
GTSRB and CIFAR10. An exception occurs in Dropout with
probability of 0.8, which consistently provides the lowest
training and testing accuracy. This could be expected, due to
the high number of connections that are dropped out.

Stimulated Training either maintains the baseline accuracy
or has a small negative effect, depending on the dataset. It
does show an improvement in accuracy when compared to
the Dropout technique, in every dataset with the exception
of Fashion-MNIST. This is noteworthy given that Stimulated
Training consists of a modification of the Dropout technique.

B. Training time
The training time for each model is presented in Figure 2.

In these models the training used GPU acceleration. All results
exclude the loading time. The Stimulated Training models
were trained using the CPU, rather than GPU, because the
used version of PyTorch was incompatible with the CUDA
version of the graphics card.

Ranger results are not presented in these figures, because
the technique is applied to a model after training – it consists
of a one-time overhead to perform instrumentation [10].

Generally we can conclude that architecture (2) has in-
creased training time compared to (1) throughout every
dataset. The training times for Stimulated Training were
evaluated separately because the training was done using the
CPU. We also trained baseline models for architectures (1)
and (2) for the MNIST dataset for comparison purposes.

Training a Stimulated Training model of architecture (1)
on the MNIST dataset results in a substantial increase of
31x in training time when compared to the baseline training.
Training architecture (2) resulted in an increase of 52x in
training time, which made it unfeasible to train models with
that architecture for every dataset. This considerable increase
is largely attributed to the usage of CPU for training, instead
of the usual GPU training. Hence, we conjecture that a GPU
implementation or some other optimization technique may
lead to substantial improvements.

Stimulated training works by modifying the output values of
neurons through random bit-flips. In principle, it is possible
to emulate, or at least approximate, the effects of such bit-
flips in a GPU. Hence, although our implementation is CPU-
based, future work could optimize stimulated training to take
advantage of GPU acceleration.

C. Failure mode distribution
The most concerning failure mode arising after a bit-flip

error is an SDC. Other less critical failures may occur and

4877

(a) Training and testing accuracy for the MNIST dataset (b) Training and testing accuracy for the GTSRB dataset

(c) Accuracy for the Fashion-MNIST dataset (d) Training and testing accuracy for the CIFAR10 dataset

Figure 1: Training and testing accuracy for each dataset

often faults injected are masked have no effect. This section
presents the probability of an injected fault resulting in a silent
misclassification, collected during the execution of the testing
stage of every dataset. The results of the experiments for the
MNIST, GTSRB, Fashion-MNIST and CIFAR10 datasets are
shown in Figures 3 through 6.

Figure 3 shows the results for models with Dropout for
every dataset. Figure 4 presents the distribution of failure
modes for models that utilise redundancy techniques for the
MNIST dataset. Figure 5 presents the distribution of failure
modes for models with Ranger for every dataset. The models
were obtained by applying Ranger to baseline models of
architectures (1) and (2) for every dataset. In the MNIST
dataset, additional tests were made to evaluate the impact of
Ranger on models with Dropout.

Figure 6 shows the distribution of failure modes for models
with Stimulated training for every dataset. A Stimulated Train-
ing probability of 0.2 was used in every dataset, since this is

the probability that provided the best results. Additionally, a
probability of 0.5 was tested in the MNIST dataset in order to
evaluate the difference in SDC rate. A detailed discussion of
the main observations is presented in the section that follows.

Figure 7 provides a synthesis of the results by comparing the
SDC probabilities across all techniques. For each technique,
only the best instance is shown in the figure. For completeness,
the figure contains also the probability of Crash/Hang failures
and No Effect. The results in Figure 7 and some relevant
observations are discussed in the section that follows.

V. DISCUSSION: ROBUSTNESS UNDER HARDWARE FAULTS

Given that the SDC failure mode is the one that leads to
misclassifications and reduces accuracy, the discussion of the
robustness of the different techniques under hardware faults is
focused on the probability of SDCs occurring.

When comparing the original LeNet architecture (1) with
the modified architecture (2), one may observe a reduction

5878

(a) Training time (seconds) for the MNIST dataset (b) Training time (seconds) for the GTSRB dataset

(c) Training time (seconds) for Fashion-MNIST (d) Training time (seconds) for the CIFAR10 dataset

Figure 2: Training time per dataset in seconds, using GPU acceleration (CUDA)

in SDCs in favour of architecture (2). Architecture (2) adds
one convolutional layer and increases the input and output
dimensions of the convolutional layers, as well as the number
of neurons in the fully-connected layers. However, increasing
the number of neurons per se does not improve the results –
doubling or halving that number results in an increased SDC
rate, with factors unchanged. The results in Figure 4 show
little promise of benefiting from redundant neurons. Therefore,
redundancy tends to reduce SDCs (and increase robustness)
but that observation does not hold for redundant neurons.

Regarding the Dropout technique, it is observed to increase
the SDC ratio in some cases and to have a mixed impact in
some other cases. Specifically, Dropout is observed to increase
SDC rates for both architectures, as shown in Figure 3a, it has
varying results for example in Figure 3c, and it consistently
decreases the SDC rate for example in Figure 3b. This leads
to the observation that the Dropout technique, originally
developed to reduce overfitting, does not improve hardware

fault tolerance as one could speculate.
The Ranger technique [10] displays positive results, with

some exceptions. The LeNet architecture does not benefit, in
terms of SDC rate, from using the Ranger technique, or has
varying impact. Architecture (2), which has redundancy, does
in general benefit from the Ranger technique. For the MNIST
dataset, Ranger significantly decreases the SDC rate of every
tested model. In fact, applying Ranger to architecture (2) in
the MNIST dataset resulted in the lowest SDC rate across
all experiments. However, specifically in CIFAR10, applying
Ranger increases the SDC rate between 3% and 22%. Hence,
the Ranger technique is observed to provide good results, with
some noteworthy exceptions, and also low training times.

We highlight that our observations are not directly com-
parable to the Ranger publication [10], because a different
programming language, machine learning framework and fault
injection tool are used [34]. These factors have been shown
to influence the results of fault injection. Therefore, one

6879

Figure 3: Distribution of failure modes for models using the
Dropout technique

limitation of the results presented in this paper is that they
only provide the means for internal comparison, but one may
not extrapolate and compare with the original TensorFlow
implementation and evaluation of the Ranger technique.

Regarding the stimulated training technique, we observe
that applying it with a probability of 0.2 to architecture
(1) decreases the SDC rate in every dataset. The reduction
ranges from 39% in MNIST to 68% in Fashion-MNIST. In
comparison, we observe that applying stimulated training to

Figure 4: Distribution of failure modes for architectures (1)
and (2) with redundant neurons for the MNIST dataset

GTSRB, Fashion-MNIST and CIFAR10 results in the lowest
SDC rates for these datasets. Using a probability of 0.5
actually increases the SDC rate. Hence, fine tuning this
probability is an important step. Furthermore, training times
for the stimulated training technique, using the CPU, are very
high and therefore require future work to optimize it and take
advantage of hardware acceleration.

VI. CONCLUSION

This paper proposes the technique of stimulated training,
for improving the error robustness of convolutional neural
networks, and compares its effectiveness with the techniques
of dropout, ranger and redundancy. Four distinct datasets are
used to evaluate the techniques through ISA-level software-
implemented fault injection, with the results of 43 campaigns
totaling 371 520 faults injected.

Overall, the ranger technique achieves the best results,
closely followed by the stimulated training technique. Ranger
combines low silent data corruptions with low instrumentation
overhead and good accuracy. The stimulated training technique
also achieves low silent data corruptions and high accuracy but
the costly training time penalizes the technique. Nevertheless,
no effort was made to optimize the training time, such as the
commonly used GPU acceleration, and we thus conjecture that
future work may lead to relevant improvements.

Stimulated training has an additional advantage over several
other fault tolerance techniques, which is the absence of
runtime overhead and instrumentation. The neural networks
are trained to tolerate hardware errors along with the normal
training process. The final network in general provides good
accuracy and reduces the proportion of SDCs.

Redundancy also tends to reduce the proportion of SDCs,
specifically when considering the addition of new layers. How-
ever, adding redundant neurons does not show any significant
benefit and may in fact reduce error robustness, contrary to
what one could intuitively expect.

Dropout, which is a regularization technique that prevents
overfitting, is observed to have mixed impacts and in some
cases worsening the proportion of SDCs. Hence, it may not
be considered useful for improving the error robustness of
neural networks.

7880

Figure 5: Distribution of failure modes for models using the
Ranger technique

The results highlight the impact of fault injection technique
and specific implementation details. Specifically, compared to
previous experimental work, the ranger technique is found
to provide a relevant contribution to the error robustness;
however, the mean improvement is not as large as previously
shown. Careful examination attributes the difference to two
experimental details. First, we use PyTorch in C++ which
is compiled into machine code, whereas previous evaluations
of the ranger technique used Python implementations that
are interpreted. Second, we used ISA-level fault injection,
whereas previous evaluations used high-level error emulation.
Hence, these results should caution practitioners to the fact
that the results of fault injection are highly impacted by
compilation/interpretation and by the fault injection technique.

ACKNOWLEDGMENT

This work was funded by the FCT - Foundation for Science
and Technology, I.P., within the scope of project CISUC -
UID/CEC/00326/2020 and by European Social Fund, through
the Regional Operational Program Centro 2020.

Figure 6: Distribution of failure modes for models with
Stimulated Training

REFERENCES

[1] D. A. G. G. de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Evaluation
and mitigation of radiation-induced soft errors in graphics processing
units,” IEEE Transactions on Computers, vol. 65, no. 3, pp. 791–804,
2015.

[2] N. Mahatme, S. Jagannathan, T. Loveless, L. Massengill, B. Bhuva, S.-J.
Wen, and R. Wong, “Comparison of combinational and sequential error
rates for a deep submicron process,” IEEE Transactions on Nuclear
Science, vol. 58, no. 6, pp. 2719–2725, 2011.

[3] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
& Test of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[4] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mul-
holland, D. Brooks, and G.-Y. Wei, “Ares: A framework for quantifying
the resilience of deep neural networks,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[5] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

[6] P. D. Almeida, F. Cerveira, R. Barbosa, and H. Madeira, “ucXception:
A framework for evaluating dependability of software systems,” in 2022
IEEE 22th International Conference on Software Quality, Reliability and
Security (QRS), 2022.

[7] F. Cerveira, R. Barbosa, H. Madeira, and F. Araújo, “The effects of
soft errors and mitigation strategies for virtualization servers,” IEEE
Transactions on Cloud Computing, 2020.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[9] C. Torres-Huitzil and B. Girau, “Fault and Error Tolerance in Neural
Networks: A Review,” IEEE Access, vol. 5, pp. 17 322–17 341, 2017.

8881

Figure 7: Comparison of failure mode probabilities for the best
instance of each technique

[10] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for
deep neural networks through range restriction,” in 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 2021, pp. 1–13.

[11] E. M. E. Mhamdi and R. Guerraoui, “When Neurons Fail,” 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pp. 1028–1037, May 2017, arXiv: 1706.08884. [Online]. Available:

http://arxiv.org/abs/1706.08884
[12] E. Ozen and A. Orailoglu, “Sanity-check: Boosting the reliability of

safety-critical deep neural network applications,” in 2019 IEEE 28th
Asian Test Symposium (ATS). IEEE, 2019, pp. 7–75.

[13] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (DNN) accelerators and applications,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’17. New York, NY, USA:
Association for Computing Machinery, Nov. 2017, pp. 1–12. [Online].
Available: https://doi.org/10.1145/3126908.3126964

[14] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “On the robustness of
a neural network,” arXiv preprint arXiv:1707.08167, 2017.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” Commun.
ACM, vol. 60, no. 6, pp. 84–90, May 2017. [Online]. Available:
https://dl.acm.org/doi/10.1145/3065386

[16] N. Wei, S. Yang, and S. Tong, “A modified learning algorithm for
improving the fault tolerance of BP networks,” in Proceedings of
International Conference on Neural Networks (ICNN’96), vol. 1, Jun.
1996, pp. 247–252 vol.1.

[17] L.-H. Hoang, M. A. Hanif, and M. Shafique, “Ft-clipact: Resilience
analysis of deep neural networks and improving their fault tolerance
using clipped activation,” in 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2020, pp. 1241–1246.

[18] S. K. S. Hari, M. Sullivan, T. Tsai, and S. W. Keckler, “Making
convolutions resilient via algorithm-based error detection techniques,”
IEEE Transactions on Dependable and Secure Computing, 2021.

[19] F. F. dos Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2018.

[20] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE transactions on computers, vol. 100, no. 6, pp.
518–528, 1984.

[21] X. Iturbe, B. Venu, E. Ozer, and S. Das, “A triple core lock-step
(tcls) arm® cortex®-r5 processor for safety-critical and ultra-reliable
applications,” in 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshop (DSN-W). IEEE, 2016,
pp. 246–249.

[22] L. Yang and B. Murmann, “Sram voltage scaling for energy-efficient
convolutional neural networks,” in 2017 18th International Symposium
on Quality Electronic Design (ISQED). IEEE, 2017, pp. 7–12.

[23] IEEE, “754-2019 - ieee standard for floating-point arithmetic,”
https://ieeexplore.ieee.org/document/8766229.

[24] K. Pattabiraman, G. Li, and Z. Chen, “Error resilient machine learning
for safety-critical systems: Position paper,” in 2020 IEEE 26th Inter-
national Symposium on On-Line Testing and Robust System Design
(IOLTS), 2020, pp. 1–4.

[25] H. Schirmeier and M. Breddemann, “Quantitative cross-layer evaluation
of transient-fault injection techniques for algorithm comparison,” in 2019
15th European Dependable Computing Conference (EDCC), 2019, pp.
15–22.

[26] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit is (not)
enough: An empirical study of the impact of single and multiple bit-flip
errors,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2017, pp. 97–108.

[27] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. Leber,
“Comparison of physical and software-implemented fault injection tech-
niques,” IEEE Transactions on Computers, vol. 52, no. 9, pp. 1115–
1133, 2003.

[28] A. Baldominos, Y. Saez, and P. Isasi, “A survey of handwritten character
recognition with mnist and emnist,” Applied Sciences, vol. 9, no. 15, p.
3169, 2019.

[29] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[30] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german traffic
sign recognition benchmark: a multi-class classification competition,” in
The 2011 international joint conference on neural networks. IEEE,
2011, pp. 1453–1460.

[31] L. Yang, D. Bankman, B. Moons, M. Verhelst, and B. Murmann, “Bit
error tolerance of a cifar-10 binarized convolutional neural network

9882

processor,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2018, pp. 1–5.

[32] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998, conference Name: Proceedings of
the IEEE.

[33] F. Cerveira, A. Fonseca, R. Barbosa, and H. Madeira, “Evaluating the
inherent sensitivity of programming languages to soft errors,” in 2018

14th European Dependable Computing Conference (EDCC). IEEE,
2018, pp. 65–72.

[34] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. De-
Bardeleben, “Tensorfi: A flexible fault injection framework for ten-
sorflow applications,” in 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2020, pp. 426–435.

10883

