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Abstract—Attackers demonstrated the use of re-
mote access to the in-vehicle network of connected
vehicles to take control of these vehicles. Machine-
learning-based Intrusion Detection Systems (IDSs)
techniques have been proposed for the detection of
such attacks. The evaluations of some of these IDSs
showed their efficacy in terms of accuracy in detecting
message injections but were performed offline, which
limits the confidence in their use for real-time protec-
tion scenarios. This paper evaluates four architecture
designs for real-time IDS for connected vehicles using
Controller Area Network (CAN) datasets collected
from a moving vehicle under malicious speed reading
message injections. The evaluation shows that a real-
time IDS for a connected vehicle designed as a sepa-
rate process for CAN Bus monitoring and another one
for anomaly detection engine is reliable (does not lose
messages) and could be used for real-time resilience
mechanisms as a response to cyber-attacks.

Keywords— In-vehicle Network Security, Intrusion
Detection, Real-time Intrusion Detection, CAN Bus

I. Introduction
Modern Automobile contains 20 to 80 Electronic Con-

trol Units (ECUs) that control the functionalities of
the vehicle, including engine, power steering, and seats.
These ECUs communicate using the Controller Area
Network (CAN) bus protocol [1]. The CAN protocol was
designed more than 40 years ago and has still widespread
use in automotive, aerospace, and many other industries
because of its low cost, error detection capability, and
reliability. The CAN protocol does not include, however,
security measures such as authentication [2].

Several recent research works demonstrate that at-
tackers can access the CAN Bus using a variety of
interfaces such as telematics and OBD-II units to inject
messages into the CAN Bus. Hoppe et al. [4] were the
first researchers to point out the security weaknesses of

Fig. 1: Growth and distribution of cyber-attacks on
connected vehicles between 2010 and 2019 [3].

the CAN Bus protocol. Their findings were later con-
firmed by Checkoway et al. [5], who performed a security
analysis of attack surfaces, including physical and long-
range wireless communication, and demonstrated the
exploitation of the flaws that they have identified to
fully take control of the vehicle’s systems. Recently, Up-
stream’s research team identified 367 publicly reported
incidents for a decade long [3]. The analysis of these
incidents shows an exponential growth of attacks, as
depicted by Figure 1.

Intrusion Detection Systems (IDSs) have been pro-
posed as an alternative to the attack prevention ap-
proach on connected vehicles [6], [7]. For instance, Kim et
al. proposed a backward-compatible CAN authentication
system for CAN Bus that use the part of the CRC field
of the CAN messages, which introduces delays in vehicle
functionalities and hinder the error detection capability
of the CAN bus [8]. Wu et al. [9] and Young et al. [10]
provide comprehensive surveys on IDS for connected and
autonomous cars. Most of the ML-based IDS for the
connected vehicle are evaluated offline using datasets of
CAN logs, including the ones that designed in [6], [7],
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TABLE I: Major requirements for IDS for vehicles.
IDS Requirements

1 The response time of IDS must be small enough to trigger
reactive safety mechanisms, such as braking.

2 The IDS must not lose CAN data.
3 The IDS must run on an ECUs that has limited capabil-

ities in terms of processing speed and memory size.

Fig. 2: Concurrency of the real-time IDS components
in handling CAN Bus messages. The figure shows that
message batches are processed in three stages. The com-
ponents that implement the stages run concurrently.

which limits the confidence in the capabilities to use
them for real-time IDS for vehicles.

As Figure 2 depicts, a simulated real-time IDS (1)
collects CAN messages as they are injected into the in-
vehicle network and (2) analyzes them using an ML-
based techniques and reports the results to the cyber-
resilience response component within specified time con-
straints, e.g., the time to perform (1) and (2) shall be less
than the time a driver takes to react to danger. Besides
the time constraints, an effective real-time IDS shall not
lose data and run on an ECU that has limited memory
and processing capabilities–see Table I. This paper an-
alyzes the performance of four architecture alternatives
for real-time IDS for connected vehicles.1 It reports the
assessment of their satisfaction of the requirements by
evaluating their (1) anomaly evaluation time and (2)
reliability in terms of losing CAN messages. The findings

1We focus on CAN message injection attacks. Other attacks on
connected vehicles, e.g., on V2V could be considered in the future.

demonstrate the possibility of deploying effective ML-
based IDSs for connected vehicles.

This paper is organized as follows. Section II describes
the related works, Section III describes the architecture
alternatives of the real-time IDS for connected vehicle,
Section IV describes the evaluation of the architecture
alternatives, and Section V concludes the paper.

II. Related work

Several preventive security countermeasures have been
developed to defend and enhance in-vehicle network
security against cyber-attacks, such as authentication
protocols [11], [12], [13]. The main issue with these mech-
anisms is that these address only a subset of the attacks
on the connected vehicles and require modification of
the CAN protocol, which cannot be used for aftermarket
vehicles. In addition, most of the remote attacks exploit
software vulnerabilities in the protection mechanisms,
such as in [14], [15], [16], [17].

IDSs have been proposed as an alternative to preven-
tion mechanisms from attacks on connected vehicles. The
concept of In-vehicle IDS was first introduced in [18], in
which the characteristics of onboard intrusion detection
are proposed for the first time. Wu et al. [9] and Young
et al. [10] provide surveys on IDS for connected and au-
tonomous cars. These mechanisms discriminate messages
associated with attacks, with acceptable accuracy and
false positive [19]. Neural Networks (NN) has been the
commonly used ML-based approach for designing IDSs
for the CAN bus, e.g., [20], [21], [22], [23].

Valasek and Miller are among the pioneer to propose
real-time IDS for connected vehicles [24]. They devel-
oped a small device that reads data from the CAN
Bus through OBD-II port, learns the traffic pattern to
detect anomalies, and shorts the circuit disabling all
CAN messages when anomalous detected. Matsumoto
et al. [25] proposed a real-time IDS that prevents au-
thorized messages from reaching the receiver ECU. The
system monitors the traffic of the CAN Bus and trans-
mits Error Frame to override the unauthorized messages
when it detects them. The technique requires, however,
modification of the CAN Bus protocol.

The design of security enhancement for vehicles needs
to meet multiple design metrics, such as reliability and
performance which conflict with the safety-critical re-
quirement for vehicle communication. Boddupalli and
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TABLE II: IDS architecture constraints.
Constraint Value
Recommended maximum rate of injection
of CAN messages

1908/sec

Rate of injection of CAN messages 1000/sec [6]
Reaction time constraint 2.5 sec
Detection speed of 1000 messages using
the similarity threshold technique

0.094 seconds

- The CAN bus is designated for a maximum signaling of 1 Mbit-
s/s [28] but 250kb/s is the recommended rate by the Society of Au-
tomotive Engineers (SAE) in J1939 standards [29], which transports
up to 1908 CAN frame per second – 1908=250000/(128+3) where
the data payload is of 8 bytes.
- The brake reaction time is less than 2.5 second for 90% of the
drivers.[30]
- We postulate that the IDS needs to process the CAN messages
batch file in less than 2.5 seconds, which is the upper bound of
braking reaction time [30].

Ray assessed the requirements for real-time attack de-
tection and mitigation in connected and autonomous ve-
hicles and emphasized the importance of the basic safety
of such a mechanism. [26], [27]. They trained a NN-based
IDS and proposed an architecture that addresses the
requirements for the case of collision avoidance using
vehicle-to-vehicle mechanisms. The main components
of the architecture are: (1) a predictor of abnormal
behavior that uses the trained IDS, (2) machine learning
models for computing the application decision trained
from driving a vehicle in different weather conditions
(windy, raining, snowing, and clear) and road types (city,
suburban, and highway) which are used to estimate the
response of the module, and (3) a plausibility check
module that checks the safety of using the output of
the response estimator. When the system detects an
anomaly, it replaces the response computed by the
collision application with the output of the response
estimator when the plausibility check is positive; that
is, the estimated response is safe. The system triggers
service degradation if it detects an anomaly and the
plausibility checks of the output of the estimated re-
sponse is negative.

III. Real-time architecture alternatives of
IDS for Connected Vehicles

A. Problem description
In a typical IDS environment, a set of ECUs inject

CAN messages into the CAN bus, a CAN Bus monitor
captures the messages exchanged in the bus, and an
anomaly detection engine analyzes these messages to

Fig. 3: High-level architecture of the IDS simulation
environment.
identify malicious message injections, as depicted in
Figure 3. The CAN bus monitor reads the messages
available in the CAN bus continuously and sends them
to the anomaly detection engine in batches of, e.g., 1000
messages.

The real-time IDS must address three main require-
ments depicted in Table I. First, the response time
of the IDS must be less than the expected braking
reaction time; satisfying this requirement makes the IDS
a good candidate for e.g., a safety resilience mechanism
that activates the brakes in case of detection of cyber-
attacks. Second, the loss of CAN messages is not allowed,
which is important for the reliability of IDS. Third,
The IDS must run on a cheap ECU that has limited
capabilities in terms of processor speed and memory size.
In addition, Table II enumerates a set of constraints that
the architecture shall satisfy.

Formally, let B be the component of injecting CAN
messages onto the CAN Bus (which represents the ECUs
of the given vehicle), C be the CAN Bus monitoring com-
ponent, P be anomalous detection engine the component
that applies machine learning on the messages it receives
from C to detect attacks, and R be the cyber-resilience
response that activates the mitigation actions, such as,
breaking.

∀B(mij) −→ C(mij) (1)

Equation 1 states that C captures all the messages
injected by B. Note that B and C communicate through
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TABLE III: Practical concurrency scenarios of the IDS
main components.

Architecture scenario Concurrency
technique
of CAN
Bus
monitor

Concurrency
technique
of the
anomaly
detection
agent

Use
of a
queue

Scenario 1 - The two com-
ponents run in a single pro-
cess

main pro-
cess

main
process

no

Scenario 2 -The two com-
ponents run in a single pro-
cess that includes one sub-
process s

main pro-
cess

child-
process

no

Scenario 3 - The two com-
ponents run in a single pro-
cess with two threads

thread thread yes

Scenario 4 - The two com-
ponents run in two pro-
cesses

main pro-
cess

main
process

yes

Fig. 4: IDS flowchart diagram.

the CAN Bus, which does not have a buffer.2 Component
C sends the messages it receives from B to P in blocks
of n messages. Let mij be a CAN message that has the
order j in messages block i, where i indicates the order
of messages blocks sent by C to P . Equation 1 states
that C must receive all the messages that B injects in
the CAN Bus; allowing losses of CAN messages implies
preventing potentially the ML-based IDS from indicators
of attacks.

Component P serves messages blocks in sequence as
stated by Equation 2. Equation 3 states that C collects a
block of n messages and then sends them to component
P , which applies the ML-based IDS and outputs whether
it detects an attack or not. Equation 4 states that
Component R uses the output of P to trigger a cyber-
resilience response action if needed. The behavior of
component R is outside the scope of this paper.

P (Bi) −→ P (Bi+1) (2)

C(Bi) −→ P (Bi) (3)

P (Bi) −→ R(Bi) (4)

Typically, each ECU services/reacts to each message
it reads from the CAN bus (process or ignore) at a
rate higher than the sending messages rate, to avoid loss
of messages. In contrast, the ML-based IDS techniques
process the CAN messages in batches, which takes much
longer than the time to send a CAN message. Thus,
the IDS would lose data if the CAN bus monitor and
anomaly detection engine operate sequentially, which
violates the third requirements that we set for our real-
time IDS: loss of CAN messages is not allowed. This
problem could potentially be addressed by running the
CAN Bus monitor and anomaly detection engine con-
currently. Thus, the solution is to support the execution
of B, C P , and R in concurrent processes as stated by
Equation 5.

B|||C|||P |||R (5)

2That is, let B injects a message m in the Bus. The message m
is lost if B starts sending the next message m + 1 before C reads
m.
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Commonly, a driver is expected to reach out to the
brakes in 0.75 to 2.5 seconds–assuming they respect the
safety distance rules. Assume that we want the system
to trigger the brakes to avoid accidents when there are
attacks. The real-time IDS can only be of use if it detects
attacks within the reaction time, otherwise the accident
is imminent. Let T (Ci) be the time to collect the block
of n messages i and T (Pi) be the time to process the
messages block i. The requirement is: T (Ci) + T (Pi)
must be less than the reaction-time threshold for the IDS
to be as good as a human driver in reacting to dangers.

The research question is: What is the best concurrency
architecture alternative of deploying CAN Bus monitor
(component C) and the anomaly detection engine (Com-
ponent P ) to provide real-time IDS for vehicles?

Note that the three concurrency techniques that
could be used are: using separate processes, using sub-
processes, and using threads.

We describe in the following the experiment that we
setup to answer the question empirically.

B. Empirical Setup

The anomaly detection engine applies the adopted
ML-based anomaly detection technique and outputs the
results of the evaluation. Jedh et al. developed an offline
Machine Learning (ML)-based IDSs and evaluated them
using CAN data extracted from a moving vehicle under
malicious RPM and speed readings messages injections
into the in-vehicle network of the vehicles [6], [7]. The
technique constructs a Messages-Sequence Graph (MSG)
from the CAN messages it receives from the CAN Bus
monitor, computes the cosine similarity of the successive
graphs, and reports message injection when one is de-
tected. The technique has a detection accuracy of 97.32%
and a detection speed of 2.5 milliseconds. Appendix A
describes the technique in more details. Unlike most ML-
based studies in the literature, the technique proposed
in [7] does not depend on the brand or model of the car.
We adopt this IDS in our evaluation because it has good
performance and we have access to the implementation
code and datasets.

To satisfy the first requirement, we implement the
CAN Bus monitor and the anomaly detection engine
using the C language. The anomaly detection engine
uses PyObject library to call the data analysis module,

Fig. 5: Diagram of the IDS architecture of scenario 3.
passing it the CAN messages batches as a parameter,
and parsing the analysis result.

Table III shows the four potential architecture scenar-
ios for using concurrency techniques of the CAN Bus
monitor and the anomaly detection engine components
to address the second and third requirements discussed
above. The descriptions of the architecture scenarios
follows.
Scenario 1 - The two components run in a single
process. In this scenario, the CAN Bus monitor and
anomaly detection engine run sequentially as depicted
by Figure 4. The CAN Bus monitor can potentially lose
CAN messages that the ECUs send while the IDS busy
analyzing the CAN messages batch it receives to identify
potential attacks.
Scenario 2 - The two components run in a single
process that includes one sub-process. The CAN
bus monitor and the anomaly detection engine run in
a single process. The main process continuously reads
the CAN messages from the CAN bus and creates a
sub-process, that evaluates the batch for attacks, that is
executed when there are enough messages for the batch.
Note that the sub-processes become zombies at the end
of their executions, and it is complicated to shut them
down from the main processes.
Scenario 3 - The two components run in a single
process with two threads. The CAN bus monitor and
the anomaly detection agent run in a single process but
in separate threads, as depicted by Figure 5. We use
a queue to pass data between the two components to
prevent losses of CAN messages. The anomaly detection
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Fig. 6: Diagram of the IDS architecture of scenario 4.

engine uses Inter-Process Communication (IPC) tech-
nique to execute the data analysis module.

For completeness, there are two other variants of
using threads with a single process besides the one
discussed above, which are: (1) implementing the CAN
bus monitor in a thread and the anomaly detection
engine in the main process and (2) implementing the
anomaly detection engine in a thread and the CAN
bus monitor in the main process. We do not report the
evaluation of these variants because they use the same
concurrency technique and do not outperform the two
threads variant.
Scenario 4 - The two components run in two
processes. The CAN bus monitor and the anomaly
detection agent run in separate processes, as depicted
by Figure 6. We use queue to pass data between the two
components to reduce the losses of CAN messages.

IV. Evaluation of the four real-time IDS
architecture scenarios

This section describes the evaluation environment and
datasets, compares the anomaly evaluation times of the
four architecture scenarios, and analyses the impact of
CAN message injections on the message loss ratio of the
four architecture scenarios.

A. Evaluation environment and datasets
We implemented the four architecture scenarios and

deployed them to a Raspberry Pi that runs Raspbian
10, with four core processors of 1.2 MHz speed and 1GB
of memory. Figure 3 shows the evaluation environment
of the architecture scenarios. The environment uses an
ECUs emulator that emulates car ECUs, which sends
messages periodically into Linux virtual CAN bus. The
code of the evaluation is available at [31].

TABLE IV: Speed of simulating injection of CAN mes-
sages and evaluating them for attacks using architecture
scenario 1.

Normal mes-
sages

messages
with injection
of speed
readings

messages
with
injection
of RPM
readings

Time to send 1000 CAN messages in seconds
Min 0.946 0.925 1.015
Max 1.120 1.217 1.056
Average 0.992 1.008 1.023
Time to evaluate 1000 CAN messages in seconds
Min 0.115 0.116 0.131
Max 0.271 0.274 0.180
Average 0.154 0.143 0.151

In this evaluation, we use datasets [32] of CAN bus
messages for (1) normal driving behavior, (2) injection
of fabricated speed reading messages onto the CAN bus,
and (3) injection of fabricated RPM reading messages
onto the CAN bus collected from an in-motion Ford
Transit 500 2017 [6].

The ECUs emulator reads the CAN messages stored
in the dataset files and sends them through the virtual
CAN bus. The messages are processed by the CAN
bus monitor and anomaly detection engine in the four
architecture scenarios. Table IV provides the time that
the ECUs emulator3 takes to send 1000 messages into the
CAN Bus and the time that the IDS takes to evaluate
1000 CAN messages for the cases of normal messages
dataset4, messages with the injection of speed read-
ings dataset, and messages with the injection of RPM
readings dataset. We do not observe a big difference in
processing a batch of normal CAN messages, messages
with the injection of speed readings, and messages with
the injection of RPM readings. We observe that the IDS
takes an average 149 milliseconds to evaluate a batch of
1000 messages, while the time to send 1000 messages into
the CAN bus is about 1.007 seconds. The IDS would lose
about 149 CAN messages from each batch, which can
impact the attack detection rate–i.e., ignoring 14.9% of
the messages can impact the detection rate.

3The environment emulates the vehicle’s ECUs network.
4An analysis of the messages batch size threshold is at [33].
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Fig. 7: Anomaly evaluation time of the four architecture
scenarios.

TABLE V: Anomaly evaluation times and response
times for the four architecture scenarios.

Architecture Average
time of
sending
1000
CAN
messages

Average
evalu-
ation
time

Response
time

Scenario 1 - Single pro-
cess with no threads

998 ms 152 ms 1.15 sec.

Scenario 2 - Single pro-
cess with one sub-process

944 ms 865 ms 1.809 sec

Scenario 3 - Single pro-
cess with two threads

950 ms 90 ms 1.04 sec.

Scenario 4 - Two pro-
cesses

945 ms 81 ms 1.026 sec.

B. Analysis of the anomaly evaluation time of the four
architecture scenarios

We configured the ECU emulator to send the dataset
"CAN Data with injection of "FFF" as the speed read-
ing" with a rate of about 1000 messages through the
virtual CAN Bus. Table V shows the average time of
sending a batch of CAN messages, the average evaluation
time, and the average response time (time taken from
collecting the first CAN message of the batch to output
the result of the evaluation of the batch) of the four
IDS architecture scenarios. We consider the anomaly
evaluation time as the difference between the end of
evaluating the messages batch for attacks and the end of
reading 1000 CAN messages from the virtual CAN Bus.
The data shows that anomaly evaluation time is way
below the batch messages sending time. Figure 7 shows
the anomaly evaluation time of the four selected real-
time IDS architecture scenarios. The diagram shows that

Fig. 8: Ratio of messages losses vs number of messages
in second of sending 1000 CAN messages through the
CAN bus in the four architecture scenarios.

anomaly evaluation times of a real-time IDS designed as
a single process, single process with two threads, and as
two processes are below the brakes reaction time (0.75
to 2.5 seconds), In addition, the anomaly evaluation
times of the IDSs designed as a single process with two
threads and as two processes are too close. Furthermore,
scenario 2 shows the highest loss of messages compared
to other scenarios. For each batch scenario 2, creates a
sub-process that analyzes the batch using the machine
learning algorithm, which increases the overhead for
computation (switching from one process to another
is usually time-consuming). During our evaluation we
didn’t address the problem of memory.

We conclude that the IDS response time of a real-time
IDS designed as a single process with no threads, as a
single process with two threads, and as two processes
is below the brake reaction time (assuming the rate of
sending messages through the CAN Bus is about 1000
messages/second) which makes them a good candidate
for real-time IDS for connected vehicles.

C. Analysis of the reliability of the four architecture
scenarios in terms of CAN message losses

Message loss ratio is the ratio of CAN messages that
are sent through the CAN Bus by the ECUs emulator
but are not received and processed by the anomaly
detection engine. Theoretically, the CAN messages that
the ECUs emulator sends through the CAN Bus while
the single process IDS architecture is busy analyzing a
batch of previously received messages are lost. Figure 8
shows the relationship between the messages loss ratio
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and speed of sending messages into the virtual CAN bus
by the ECUs emulator. The figure shows that the ratio
of messages loss decreases as the rate of sending CAN
messages decreases and it reaches 0% for the case of
architecture scenario 1 and 2. It also shows that there are
no messages losses for the case of IDS designed as two
processes (architecture scenario 4) but using threading
(as in architecture scenario 3) does not ensure no loss of
messages, as it may be expected.

D. Generalization of the result

We reported in this paper on building a IDS for
connected vehicles using the similarity of messages prece-
dence graphs [7] and found that it complies with the
real-time IDS properties. Besides, we reported two other
results.

The first result is that the IDS response time of a real-
time IDS designed as a single process with no threads, as
a single process with two threads, and as two processes
is below the brake reaction time, which makes them a
good candidate for real-time IDS for connected vehicles
is indeed dependent on the ML-based IDS that we have
previously developed [7] and the use of a Raspberry Pi
that runs Raspbian 10, with four core processors of 1.2
MHz speed and 1GB of memory, although we did not
use parallelism. The average batch evaluation time of the
anomaly detection engine can be higher than the one we
report if an MCU with very low processing capability is
used, which could make our IDS not suitable for real-
time IDS for vehicles. In addition, other ML-based IDS
may not be suitable for real-time IDS for connected
vehicles if their average evaluation time of batches is
high, e.g., higher than 1.5 seconds/1000 messages.

The second result is that there are no message losses
for the case of IDS designed as two processes, but
message losses are possible when threads are used to run
the anomaly detection engine component when the rate
of CAN messages is very high. This is a consequence of
the overhead of starting a process versus the overhead of
starting a thread. A two-process model of concurrency
for the CAN Bus data collection and ML-Based Anomaly
Detection engine should ensure no loss of messages as
long as the rate of CAN messages that the Anomaly
Detection Engine processes is higher than the rate of
messages that the CAN Bus data collection component

TABLE VI: A comparison of IDS performance in offline,
online, and simulated

Criteria Offline Online Simulated
Dataset Simulated Real-time Simulated

real-time
Network No network Real Simulated
Detection rate 0.97% 0.97% 0.97%
Detection latency 2.5ms 152 ms 152 ms
Response time Indefinite Unknown 1026 ms
ML testing envi-
ronment

Typically, a
laptop

Raspberry
Pi

Raspberry
Pi

collects. Increasing the number of threads increases the
required memory and processing needs.

Table VI shows a cross-comparison between offline,
online, and simulated scenarios. In an offline scenario,
typically, a laptop with high computing power but
doesn’t learn the traffic behavior and new attacks style.

The research is performed with one IDS and one
dataset. A thorough evaluation using a set of other IDS,
datasets, and hardware types could be performed to gain
more confidence in the results.

V. Conclusion

ML-based IDSs techniques have been proposed for the
detection of malicious injection of messages into the in-
vehicle network of connected vehicles. The evaluations
of such IDS have been performed offline, which limits
the confidence in their use for real-time scenarios. We
evaluated in this paper four concurrency architecture
designs for real-time IDS for connected vehicles using
CAN datasets collected from a moving vehicle under
malicious message injections. The evaluation shows that
a real-time IDS for a connected vehicle designed as two
processes are reliable (no loss of messages) and have a
low anomaly evaluation time that makes them a good
candidate for real-time resilience mechanisms.
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Fig. 9: Similarity of two messages-sequence graphs at successive time-window t (left) and t + 1 (right). The labels
of the nodes are the CAN ID and the labels of the edges are number of times a message with the CAN ID source
of the edge is followed by a message with the CAN ID destination of the same edge during the time-window. For
example, 33 messages and 56 messages with ID 344 followed messages with ID 342 at resp. time-windows t and
t + 1, which indicate a possible change of the behavior of the vehicle [7].

Appendix

ECUs collaborate to perform tasks such as increasing
speed, braking, etc., by sending messages through the
CAN bus [6]. Attackers take control of a connected vehi-
cle by injecting messages into its CAN bus. To mitigate
such attacks, Jedh et al. developed an ML-based IDS
that captures the pattern of the sequences of the CAN
messages and represent them with a directed graph,
which they call Messages-Sequence Graph (MSG), where
the nodes represent the CAN IDs of the messages and
the edges represent the sequences order of the messages,
as depicted by Figure 9 [7].

To construct the MSG, the technique first creates a
dictionary of the CAN IDs exchanged in the CAN bus.
Then, it labels the nodes of the MSG with the CAN
IDs and the edges with value "0". Next, it loops over
the batch of the CAN messages of size w (e.g., 1000
successive messages) that were exchanged from time t.
For each of the messages, it increases the label of the
edge linking the node representing the CAN ID of the
message to the node repressing the CAN ID of the
previously processed message. Equation 6 represents the
distribution of the messages-sequences at time t.

D(t) = {E(Ni, Nj)(t)} (6)

where Nk is for node k and E(a, b) is for the edge
from node a to node b.

The authors consider that a MSG representing the w
messages exchanged in a CAN bus at time t is similar to
the MSG representing the w CAN messages exchanged
during the following time slot t+1 in the case of normal
driving behavior and that injection of messages into
the CAN bus disrupts this pattern [7]–see Figure 9 [7].
Equation 7 formulates the Similarity concept for the
IDS. That is, the similarity Sim at time t+1 is the
similarity of the distributions of the messages-sequences
D at time t and at time t+1.

Sim(t + 1) = Similarity(D(t), D(t + 1)) (7)

The technique uses the cosine similarity to measure
the similarity between two MSGs of two successive time
steps t and t+1. The metric measures the angle between
two vectors, where the closer the value is to 1, the
more similar the two vectors are. Then, it uses similarity
threshold technique to identify CAN message injections.
The technique provides an accuracy of 97.32%.
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