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Abstract—Deep neural networks (DNNs) have achieved 
tremendous development while they may encounter with 
incorrect behaviors and result in economic losses. Identifying 
the most represented data become critical for revealing 
incorrect behaviours and improving the quality DNN-driven 
systems. Various testing strategies for DNNs have been 
proposed. However, DNN testing is still at early stage and 
existing strategies might not sufficiently effective. Dynamic 
random testing (DRT) strategy uses the feedback mechanism to 
guide the test case selection, which has been proved to be 
effective in fault detection. However, its efficacy for Natural 
Language Processing (NLP) DNN models has not been 
thoroughly studied. In this paper, a Distance-based DRT with 
prioritization (D-DRT-P) is proposed, which combines the 
priority information and distance information into DRT to 
guide the selection of test cases and testing profile adjustment. 
Empirical studies demonstrate that D-DRT-P can improve the 
fault detecting effectiveness than other test prioritization 
strategies in most cases.

Keywords- Dynamic random testing, Test prioritization, Deep 
neural networks, Natural language processing, Software cyber-
netics.

I. INTRODUCTION

The technology of Deep Learning (DL), based on Deep 
Neural Network (DNN), has achieved great process and 
widely deployed in various domains, including medical image 
processing, speech recognition, automatic driving, natural 
language processing (NLP) etc. [1]. NLP is an essential 
branch of DL and with its rapid development, NLP has made 
breakthroughs at the application and technology level. Text 
classification is a classical problem in NLP which aims to 
assign labels or tags to textual units and includes rich and 
diverse data from different sources [2]. However, DL suffers 
from software faults that may cause dangerous accidents. 
Especially for NLP based on DL, natural language usually 
contains richer information than image data, and has the 
characteristics of subjectivity, ambiguity and irregularity, 
which prompts that extracting insights from text can be chal-
lenging and time-consuming. 

The technology of software testing is a vital means to 
ensure software quality and reliability. DNN testing strategies
aim at identifying and selecting the most representative data 
for improving the quality of DNN-driven systems. Inspired by 
code coverage in traditional software testing, researchers have 

proposed several neuron coverage criteria to measure the 
adequacy of DNN testing, such as DeepXplore [3],
DeepGauge [4] and DeepCT [5]. They utilize the distribution 
of neuron activation values and the relationship between 
adjacent neuron layers. Intuitively, a test suite with higher 
neuron coverage seems to reveal more faults in DNN-based 
systems. Thus, it is rational to select a test suite with higher 
neuron coverages. However, some researchers point out that 
the resource cost of collecting the activation state of neurons 
could be too expensive [6]. And some neurons covered criteria 
can easily achieve maximum coverage, which could limit the 
effectiveness of neurons coverage as a test case selection 
strategy [7].

On the other hand, several test case prioritization strategies 
are also proposed. This technology sorts test cases with 
specific rules. For example, DeepGini [8] is proposed by Feng 
et al., which takes the use of the Gini coefficient to measure 
the likelihood of test case being misclassified. Likelihood-
based Surprise Adequacy (LSA) is proposed by Kim et al. [9]
to measure the surprise of an input as the difference in DNN 
system’s behavior between the input and the training data. 
Generally, test case prioritization strategies rank the test cases 
according to their evaluation scores, and then select test cases 
in the order from high scores to low scores (or vice versa). 
Studies have shown that prioritization strategies are effective 
in DL-based software testing since a good prioritization 
technique can prioritize test cases that are more likely to reveal 
errors in classification.

However, one of disadvantages of test prioritization 
strategies is that the order of test case selection might be 
overconfident. Usually, test cases with higher scores are more 
likely to be misclassified by DNN and trigger the failure. 
Nevertheless, it’s a probabilistic rather than an inevitable 
event, that is, test cases with high scores may not be identified 
as faults, and vice versa for those with low scores.  Especially 
as the scores drop, the effectiveness of test prioritization guidi-
ng the selection of test cases reduces gradually. NLP testing is 
a relatively emerging field that lack of well-labeled datasets. 
The accuracy of DNN models might be undesirable in text 
classification problems, which may affect the effectiveness of 
testing strategies that merely explore prioritization. Besides,
the order of the test prioritization represented by DeepGini etc. 
is relatively fixed, so adding random factors that obey the 
probability distribution in the testing process is a necessary 
attempt to further improve the fault detection ability.  
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Dynamic random testing (DRT) strategy utilizes the 
testing results as feedback information to guide the selection 
of test cases, which has been proved to be effective in fault 
detection process [10][11]. More specifically, suppose that the 
test cases are divided into subdomains 1 2 }, and
each is allocated with selection probability . DRT selects
a subdomain according to the testing profile 1 2 ,
then selects a test case from the chosen subdomain in 
accordance with uniform probability distribution. If a failure
is triggered by a test case in the subdomain the selection
probability of will increase from to , and the
selection probabilities of other subdomains will decrease 

1 ; otherwise, the selection probability will decrease 
to , and the selection probabilities of other subdomains
will increase 1 .

DRT changes the testing profile based on whether faults 
are detected, which guarantees failure-causing inputs being 
selected faster and thus improves the fault detection
effectiveness. However, if the DRT applied in the traditional 
software is directly introduced to the DL software, the results 
from the output layer of DNN will not fully utilized. Thus, 
taking the advantages of the feedback mechanism of DRT and 
test prioritization, the effectiveness of DNN testing can be 
further improved. Therefore, we propose a DNN-DRT 
strategy, namely Distance-based DRT with test prioritization 
(D-DRT-P) strategy in this paper, which is referred to the 
principle of DRT and geared towards DL-based software.
Based on the above methods, D-DRT-P, considered as a 
theoretically feasible optimization strategy, uses the feature of 
test cases for classification and selection of test cases, and 
adjusts the testing profile based on distance information 
among subdomains, along with the results that whether text 
inputs are misclassified. To validate the fault detection 
effectiveness of DNN-DRT strategy, we conduct experiments 
for D-DRT-P and baseline methods with three well-designed 
DNN models and public datasets for text classification. The 
experimental results demonstrate that D-DRT-P strategy can 
achieve better performance in most cases.

The contribution of this paper is as follows:
1) We propose a DNN-DRT strategy, namely D-DRT-P in

this paper, which takes advantage of test prioritization method 
and feedback mechanism of DRT. This can improve the fault
detection effectiveness on DL-based NLP software.

2) We introduce a low-dimensional feature vector in re-
gard to the fault detection of NLP software, which can gather 
faults by clustering and dividing test cases to detect faults 
faster in the selected subdomain.

3) We conduct a series of experiments to investigate the
performance of DNN-DRT strategy with baseline testing 
strategies. The results show that DNN-DRT can achieve better 
fault detection performance than other test prioritization me-
thods.

The remainder of this paper is organized as follows: The 
background is introduced in section II. The DNN-DRT 
strategy is presented in section III. The experimental setup is 
described in Section IV. The experimental results are analyzed 

in Section V. Threats to validity are summarized in Section VI.
Related works on testing strategies are presented in Section 
VII. Conclusions and future works are summarized in Section
VIII.

II. BACKGROUND

A. The architecture of DNN testing
A DNN can be explained as an iterative function chain

1 2 mapping from input data vector to the output
vector . Then, is utilized to stand for the whole 
DNN in the respective of black-box model, and

1 2 1( ) ( )D DDNN F F F F( ) D DDNN F F( ) D D 11y x x2 1(F F2 12 (1)

where represents the depth of the DNN, which usually 
refers to the sum of hidden layers and output layers. The 
function 1 2 1 represents the relation of
the hidden layers in the DNN, and represents the
relationship with the output layer.

Each hidden layer maps the forward input to a vector,
and each element in the vector is an independent, parallel 
neuron. For a DNN with a fixed width , the vector 
composed with neurons in the -th hidden layer can be 
represented by ℝ 1 2 1 . If all the hidden
layers are considered, then the hidden layers form a matrix 

ℝ 1 containing the values of each neuron in the
hidden layers. Taking a test case as the input of DNN, the 
hidden layer value matrix can be represented as

( 1)
,1 ,2 ,( 1)[ , , , ] W D

t t t t D[ , ,t,1 ,2[ ,1 ,2[ , ,[ 1 22H h h h ,( ],(
W

,(,(,(,(
( 1)W (

1) ]1)

If we take the text classification problem of classes as 
an example to analyze the entire DNN processing, any test 
case will be transformed into a high-dimensional 
semantic vector as the input of DNN model , and
then output a -dimensional vector according to the
categories,

T

,1 ,2 ,, , , m
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T
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The goal of a constructed DNN is to approximate the 
output result to the theoretical classifier , that is, by
continuously adjusting the weights in the internal neurons of 
DNN, so that 1 2 .

In general, researchers expect a normalized output.  The 
function is to map each element value of the output 
vector to the range of 0 1 according to its relative 
proportion, in which the probability vector can represent
the probability of each classification,

T
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where the mathematical expression of is
,
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Since the network output elements are all finite numbers 
( ∞ ∞), and only lim

∞
0. Therefore, each
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element of the probability vector cannot reach the
boundary value in the respective of probability, that is, 
0 1 0 1 0 1 . Finally, the output of test case is the 

classification result based on , which is shown as follow,

,
{1, ,2, }

( ) argmax t i
i m

class t p
{ , ,{1,2,

argma
i {1 2

g
{1 2 }

tp
,,

(3)

Taking the simple DNN shown in Figure 1 for an example, 
it’s aimed to classify into the reasonable class of the input text 
among three candidates.  If test case , the text What a clam 
shame. is input in the DNN, it will be changed into a high-
dimensional semantic vector as input layer and a 3-
dimensional probability vector will be output at last. 
According to 0 02 0 04 0 94 T , 3 . In
another word, the text is of neither class which excludes hate 
and offensive factors.

What a clam 
shame.

Output 
layer

Input 
layer

Hidden layers
( 1)W D

Input text

1( )F ( )DF

Neurons

Hate speech (0.02)

Offensive language (0.04)

Neither (0.94)

Class

Figure 1 A sample of NLP DNN model

B. Test case prioritization

In the field of software testing, test case prioritization is a 
classic issue raised by Rothermel et al. [12] as follows. Given 
a test set 1 2 , its generating sequence is

{ {1,2, , }, , }
k kn nt k N t T{1,2, , }{ , ,{ , ,{ , ,{1,2, ,

k
,,},

When testing by prioritization, the order of test follows 
above sequence. Let :f T as the mapping function 
from the given test set to real domain and it gives a kind of 
standard to guide the formation of a suitable sequence. A 
prioritization sequence means that the top test cases are more 
important than the bottom ones in some ways, so 

1
{1,2, , 1} : ( ) ( )

i in ni N f t f t{1,2, , 1} : ( ) ( )
i ini
) (i {1,2, , 1} : ( ) (( ) () () (

1
)

1
1}, 1}

In this paper, Gini impurity and information entropy are 
introduced to measure the likelihood of test cases to be 
classified wrongly. Above two metrices can connect test 
cases and their equivalent numerical values, and then expose 
test cases that are prone to misclassification in the test set.

1) Gini impurity

Given a test case and a DNN that outputs the 
vector 1 2

T , Gini impurity is
defined to measure the likelihood of being classified
differently in two randomized trials,

2
,

1

( ) 1
m

t i
i

t p( )) 11
m

i 1

2
m

t i,p ,t i, (4)

where ranges in 0 1 .

2) Information entropy

Information entropy can be regarded as the uncertainty of 
a random variable, which is similar to Gini impurity in the 
sense of uncertainty. A random variable with higher 
information entropy means higher uncertainty. For a test case 

and corresponding probability vector , the information
entropy is calculated as follows,

, 2 ,
1

( ) log
m

t i t i
i

H t p p2 ,l
m

i2 ,p2log2
i 1

m

t,,,t, (5)

where ranges in 0 log2 . The unit of information
entropy defined is binary bit, and the formular means the 
mathematical expectation of the uncertainty defined by 
logarithm.

In order to study the effect of combining several metrics, 
weighted average method can be added and generate a 
composite metric. Let the metric as 1 2 1
composed with 2 kinds of mapping functions
1 2 , so

1 1
* *

1 2 1
1 1

( ; , , , ) ( ) 1 ( )
n n

n i i i n
i i

t w w w w f t w f t1 2( ; ,1 2; ,; ,1 2
i

n

i

11

11

11n 1 1
**

111n

)*(*(*ww*( )*
i i ((

*
i i 1 ))f (f *(ww11 iiiw ))(n (nnf (n

1i 1

ww1, )n, )1)1)1

(6)

where 1 2 0 1 are adjustable weighted values
and let 1 . And 1 2 are linear
norm-alized function of 1 2 , where

*
( ) min ( )

( ) {1,2, , }
max ( ) min ( )

i it T
i

i it T t T

f
f t t

t i
f

n
f

ft tmax ( ) min )i( )
T t T

) min) min)

(min ( )
{1,2,

)
i

max ( )

i( )f ( )i( )
t

)
Tt

min (m
t

(iT
min (min
T

min ((it T
min (mini (min (

, }

In this paper, assume that 1 , 2 and
1 2 1 . Since Gini impurity and

information entropy are proposed based on probability theory 
and information theory respectively, generating a composite
metric using an adjustable parameter has certain research 
significance for analyzing the relation between above two.
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Figure 2 The framework of D-DRT-P strategy

III. METHOD

The proposed framework of D-DRT-P is shown in Figure 
2. The testing process is as follows. First, the features of test
cases are extracted and then transferred to vectors referred to
DNN. Then they are classified to several disjoint subdomains
by using k-means clustering method. Second, the distance
matrix is calculated based on the classification results. Third,
the test case is selected according to the testing profile. Fourth,
the testing profile is adjusted based on the testing results and
distance information among subdomains and the testing
process can be considered as the mapping 0 1 ,

0,  is classified correctly by DNN
( )

1,  is misclassified by DNN

t
Test t

t

0 is c0 is c0,

1,  is m1, is mi11
(8)

The testing process stops when the terminate condition is 
satisfied.
A. Feature vectors of test cases

For the part of test case clustering, the reference of
clustering is defined as s-dimensional feature vector t,

T
1 2[ ( ), ( ), , ( )] s

t sz t z t z t[ ( ), ( )1 2[ ( ), ( ),1 2( ), ( ),( ), (1 2( ),1 2z T, ( )] s
s,, (,

where 1 2 is each feature of . Mentioned
the mapping function ℝ for test prioritization,
and have similarities in quantifying test case .

For text data, the data type input to DNN is high-
dimensional vector, but after some preliminary experiments, 
it is found that word vector is not suitable as the feature vector 
for clustering in dynamic random testing because excessive 
dimensions will dilute the role of more critical elements
theoretically. Intuitively, each element in the word vector is 
not actually related to the test case being easily misclassified. 

Therefore, to guide fault detection and expose specific test 
cases, can be composed with 1 kinds of quantified
uncertainty information and 2 kinds of data inherent
properties, where 1 2 . For the first part, Gini impurity

and information entropy are introduced in the 
paper and for the other part, of test case shows its 

property output from DNN. Therefore, can be combined
with above three features in the following experiments, where 

1 2 3
T and  1 2 3 are the

weights of each feature.
B. Test Case Classification

1) Clustering of Test Cases
K-means clustering method is efficient and scalable to

partition the test cases of large data sets. It first randomly 
selects k test cases, each of them is set to be the initial center 
of each cluster. The Euclidean distance between remaining test 
cases and the centers of clusters are calculated, and test cases 
are assigned to their closest cluster. Suppose 1 2
represent   clusters, and there are   test cases in 
1 2  . And 1 2  , where 
1 2  . Then the coordinate of each cluster

center 1 2   is updated according to the  -
dimensional feature vector  of each test case   and it
equals to the mean value, which is calculated as

,
, {1,2, , }, {1,2, , }

i

t j
i j

t C i

z
i k ja s

c
, }, {1,2, , }, },},

For the next round, the Euclidean distance between each 
test case and the updated center of each cluster is calculated, 
and the test cases are assigned to the closest clusters 
individually. This process is repeated until the test cases in 
each cluster no longer change, or the sum of the squared error 
(SSE) converges. The of k-means clustering method is 
calculated with

2

1
( , )

i

k

i Ct
iSSE d t C

where represents the distance between test case of
and the mean value of .  By above adjusting rounds, when

test cases in each cluster remain unchanged compared with the 
previous round, the current round can be considered as the 
final state. It should be noted that the clustering results might 
not be desirable since the selection of initial test cases may 
have a great effect on the clustering process. Therefore, we 

845



usually conduct k-means clustering method several times, and 
the result with the minimum is selected as the final 
classification.

2) Distance Matrix Generation
The distance matrix is introduced by Pei et al when

proposing Distance-based DRT (D-DRT) [13]. In D-DRT, the 
adjustment of the testing profile is based on both the testing 
results and the distance information among subdomains.
Assuming that there are 2 testing profiles

1 2 in the test suite and ℎ ℎ ℕ dimensions in
the feature vector of the test case, for the -th testing profile ,
the coordinates of the cluster center can be represented as 

1 2 ℎ . Then, the Euclidean distance between any
subdomains and is

2
, ,

1

( , ) ( ) , {1,2, , }
h

i j i l j l
l

d C C a a i j k i j, {1,2, j, {1,2,,
l

h

1

2( )2
h

i l j l, ,, ,( )2
i l, , } i, }

From this, the distance matrix is defined as

1 2 1

2 1 2

1 2

0 , ,

, 0 ,

, , 0

k

k

k k

d C C d C C

d C C d C C

d C C d C C

d C C d C C20 1d C C2,1 , kC,, k1 21

k01d C , 1 C,0d C C Ck, kC,11 011

d C C d C C2k k1, 1 02k , 1d C C d C C, ,k , 1 0d C C d C C

D

d C1d C11

d C2d C22d C2d C2,22d C2

00

Since , the distance matrix is a real
symmetric matrix T . During the profile adjustment 
process, the selected test case will be removed from the testing 
profile when detected. Then, all the testing profiles will 
become empty in the end.
C. Test case selection

At first 0 , adjusting parameters are set and
test set is divided into ℕ 2 clustering subdom-
ains 1 2 as testing profiles. Each subdomain has
1 0 2 0 0 test cases respectively and the initial

selection probability distribution of each clustering is
1 0 2 0 0 . Assuming that the sum of selected

features is , the -th feature value 1 2 of
can be considered as guideline of test prioritization.
During the testing process 0 , based on the 

probability distribution 1 2 at the -th
step, select a subdomain , where 1 2 . Next,
according to the probability distribution 1 2 of
test cases of , select the -th test case 
1 2 . Then,

1) for original DRT, the selection probability of test cases
is

1
, 1,2, , ( )

( )i l
l

p i c n
c n( )

, , ,
( )

1
1 2

1
, 1,2,, 1,2,

( )c (
)(l, (, ((,

where the selection mechanism of is chosen based on
uniform distribution. Above strategies for selection are 
similar to traditional DRT and D-DRT without internal 
information of software execution.

2) for D-DRT-P, the selection mechanism is related to the
feature value ,

( )
, 1,2, , ( )

( )
l

i l

t C

z t
p i c n

z t
lCl

)
1 2, ,

z (
1,2,1,2,

)z (

t

z ( )z (
lCl

, 1
)
, 1

( )

z
11

z ((

( )z (

)z (
, ( )l,, (,

To reduce the randomness in the testing process, the 
process is to directly select the test case with the largest 
probability value, where satisfies

{1,2, , ( )} {1,2, , ( )}
argmax argmax ( )

l l

i i
i c n i c n

u p z t )(((
{ , ,{1,2,

(argmax argmax (argmax
i

((((
{1 2
g

{1 2
g ( )i

, ( )} ( )}l l( )} { , , ,, ((( i {1,2, , (({1,2, ,
(

( )} {1 2 ( )}
i g

( i {1 2 (
(

D. Testing profile adjustment
When is input into DNN, and the result(pass/fail) of

classification is recorded, so as to judge whether the fault is 
detected. If is misclassified, increase the probability
of being selected and update the selection probability of the
testing profile from the -th to the ( 1)-th step,

( ) , ( ) 1
( 1)

1, ( ) 1
l l

l
l

P n P n
P n

P n

, ( ) 1l,, ((,( )P ( )
1)

P ( )l ( )P ( )l ( )l

11,1,11

( ) , ( ) 1
( 1) ,

0, ( ) 1
j j l

j
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( ) 1((( )P ( )
1)

( )P (
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, ( ) 1j l,,, ((,,
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P ( )( )jP ( )jjj

11
, jjjj

0,0,00

If is not misclassified, reduce the probability of ,
and update the selection probability as well,

( ) , ( )
( 1)

0, ( )
l l

l
l

P n P n
P n

P n

, ( )l,, ((,( )P ( )
1)
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jjjjjj ,,j

Noticed that the parameters and determine
the degree of probability change, the adjustment parameters 

of the 1 2 2 de-pend on
the following situations:

(1) for original DRT, the probability changes of the
remaining subdomains  keep consistent,

1

1

j

j

k

k

j k

j k

k 111

k 11
(2) for D-DRT-P, the probability changes of the remaining

subdomains are related to the distance between ,

{1,2, , }\{ }

{1,2, , }\{ }

( , )

,
( , )

,

j l
j

i k l i l

j l
j

i k l i l

d C C

d C C
d C C

d C C

d C C
j

j
d C C

)d( )d( ,,

d C C
)d( ,,

d C C

(
i k l d
d(

d{1,2,{1,2,

( ,j l,,( ,

d

i k l dd{1,2,{1,2,

( ,j l,,( ,

d

}\{ }}\{ }}\{,,

}\{ }}\{ }}\,,

After testing current , remove it from the selected
subdomain. If the subdomain remains no test cases, its 
probability is evenly distributed to other non-empty 
subdomains.
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E. Algorithm
The algorithm of D-DRT-P strategy is as follows.

Algorithm 1: D-DRT-P
Input: : the test set; : the number of subdomains; : the set of 
feature vectors of test cases; : characteristic of test case; : DNN 
model under test; : adjusting parameters; : the set of ground 
labels. 
Output: : the testing results. 

1 ; 
2 Classify  into subdomains 1 2 ;
3 Set initial testing profile 1 2 ;
4 ;
5  
6 while the testing stop criteria is not satisfied do
7 Select a subdomain according to  1 2 ;
8 Select a test case  with highest prioritization;
9 ;

10  
11 if  then
12 1 2 1 ;
13 1 ;
14 else
15 1 2  2 ;
16 0 ;
17 end
18   
19 end

Remarks:
The algorithm of D-DRT-P aims at detecting faults of 

input text test set , and finally judging whether the test case 
is a fault. All the test results can be recorded as the set 

. in line 1 
shows clustering process by k-means according to sum of 
clustering and the set of feature vector and
output the classes of clustering Class as well as the clustering 
centers CC. Then, line 2-5 initialize testing profile and 
distance matrix to prepare for testing processing. Noticed that 
compared to traditional D-DRT with initial probability 
following uniform distribution, DNN-DRT can more clearly 
assign weights with the feature value , such as

1

( ) /

(0)

( ) /

i

j

i
t C

i k

j
j t C

z t c

P

z t c
jt C

t iC

jj

( ) / iz t c( ) /( ) /t( ) /
t iC

j jt C1

k

j( ) / jz t c( ) /( ) /t( ) /

which means that the probability may be determined as the 
proportion of the feature value density in
each testing profile . Next, line 6-23 are the finite feedback
process of fault detection and profile adjustment in which test 
case is selected referred to prioritization of uncertainty and
the profile is changed by 1 or 

2 according to the detection result of
whether the ground value equals  the output class

. The entire loop structure ends after reaching
the stop criteria.

In a word, D-DRT-P continuously adjusts the testing 
profiles by real-time feedback to find faults earlier. However, 
the number of subdomains affects the quality of defined 
testing profiles, and impacts the sensitivity of profile 
adjustment. Therefore, adopting an appropriate group of
parameters is critical to the effectiveness of the 
algorithm.

IV. EXPERIMENTAL SETUP

Some experimental studies are conducted in this paper to 
evaluate the performance of the proposed D-DRT-P strategy.
We aim to answer the following questions.

RQ1 How do DNN-DRT strategies perform in terms of 
fault detection effectiveness compared with other test case 
prioritization strategies?

RQ2: How does the parameter tuple have effect 
on the performance of DNN-DRT?

RQ3 How do DNN-DRT strategies perform under diff-
erent datasets?
A. Subjects

The DNN-based software is constructed by DNN models
and it comes to be done after model training. The selected 
DNN models in this paper are TextCNN, TextRNN and Bert. 
There is introduction of above well-known models:

1) TextCNN: It was proposed by Yoon Kim in 2014 [14],
and utilizes Convolutional Neural Network (CNN) to extract 
key information similar to -grams in sentences. The model 
consists of the following process: input the preprocessed text 
data into the input layer, then perform text feature extraction 
in the embedding layer, and then obtain filtered multiple 
feature maps in the convolutional layer. It is further reduced 
in the transformation layer, and finally the probability 
distribution of each category in the classification task will be 
obtained in the softmax layer.

2) TextRNN: It was proposed by Liu et al. in 2016 in order
to solve the problem that long sequence information cannot be 
modeled in CNN and the hyperparameter adjustment of filter 
size is too cumbersome [15]. Compared with CNN, Recurrent 
Neural Network (RNN) sacrifices running speed to capture 
long-range dependencies in the sequence

3) Bert: It’s short for Bidirectional Encoder Represen-
tations from Transformers and was represented by Devlin et 
al. [16] in 2018 by Transformers’ bidirectional encoder. The 
obvious advantage of Bert is that the pre-trained model can be 
fine-tuned with an additional output layer to create state-of-
the-art models for various tasks without requiring extensive 
modifications to the task-specific architecture.

In our experiments, three kinds of datasets in the NLP 
domain for text classification, are used to train, verify and test 
models. Table 1 shows basic information of selected open-
source datasets and fault distribution after testing each DNN. 
As to the part of dataset, Hate speech and offensive language 
(short for Tweets) is Davidson et al.’s collection of tweets 
containing terms from the Hatebase.org dictionary, and 
samples are labeled as hate speech, offensive speech and non-
offensive speech [17]. Topic labeled news dataset (short for 
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News) is provided by NewsCatcher team and 108,774 news 
articles are labelled with 8 topics such as business, 
entertainment, health, nation, science, sports, technology and 
world [18]. IMDB movie reviews (short for Reviews) is a 
dataset for binary sentiment classification containing 
substantially more data than previous benchmark datasets and 
provides 50k movie reviews labelled with positive or negative 
ones [19]. With regard to the fault distribution, the model 
accuracy varies with datasets and DNNs, which further 
reveals the necessity of introducing and analyzing multiple 
datasets and DNNs.

Table 1   Datasets and DNN models

Dataset # of 
classes

DNN 
models

# of 
faults

# of 
training 

data
# of test 

cases

Tweets 3
TextCNN 593

24,783 12,007TextRNN 264
Bert 1,533

News 2
TextCNN 536

76,142 2,000TextRNN 487
Bert 384

Reviews 8
TextCNN 2,154

50,000 7,500TextRNN 2,093
Bert 1,735

For above datasets, different methods are used to divide 
the data. For example, the size of tweet dataset is relatively 
small, so the training set can be larger to ensure higher 
accuracy of DNN model. The news dataset and movie review 
dataset have large-scale samples, of which 70% of data are 
assigned to the training set and the 15% are divided into the 
validation set, but the former dataset only samples a small 
amount of data as test set, and the latter take the remaining 15% 
as test set. The above data segmentation method shows the 
diversity of the dataset, and then reflect the general effecti-
veness of the proposed strategy in subsequent experiments.
B. Variables and Measures

1) Independent variable
The independent variable of the experiment is the testing

strategy. To evaluate the performance of proposed strategies,
RT, three types of test prioritization strategies Gini, Entropy,
GE-0.5, and four types of DNN-DRT strategies DRT-R, DRT-
P, D-DRT-R, D-DRT-P are included in the following exper-
iments.

RT: RT selects and executes test cases from the entire test 
suite randomly. 

Gini: Gini selects and executes test cases according to the 
order of decline.

Entropy: Entropy selects and executes test cases 
according to the order of decline.

GE-0.5: Gini-Entropy with =0.5 (GE-0.5) selects and 
executes test cases according to the order of 0 5 decline
where 1 , 2 .

In addition, four types of DNN-DRT strategies are 
explored on the basis of previous research, considering 
whether to apply prioritization and distance-based information.

DRT-R: Dynamic Random Testing with Random 
selection (DRT-R) selects and executes test cases in the 
chosen testing profiles randomly.

DRT-P: Dynamic Random Testing with test 
Prioritization (DRT-P) selects and executes test cases in the 
chosen testing profiles randomly.

D-DRT-R: Distance-based Dynamic Random Testing
with Random selection (D-DRT-R) selects and executes test 
cases in the chosen testing profiles according to the 
prioritization of decline.

D-DRT-P: Distance-based Dynamic Random Testing
with test Prioritization (D-DRT-P) selects and executes test 
cases in the chosen testing profiles according to the 
prioritization of decline.

2) Dependent variables
The dependent variable for RQ1 to RQ3 is the metric for

characterizing the fault detection effectiveness of the cand-
idate strategies. Since there are faults misclassified by DNN 
in each version of software program and the following exper-
iments intend to detect all seeded faults in a round of testing 
faster. APFD (Average Percentage of Faults Detection) is 
used in this study to evaluate the performance and measures 
the prioritization effectiveness in terms of the rate of faults 
detection of a test set [20]. Let the test set as with test 
cases and 1 2 faults, and
1 2 as the order of the -th fault to be detected in the

testing processing. Then APFD can be defined as

1 1
1

2

FN

i
i

F

o
APFD

N N N
1 i

N N NN N2N N2

1

FNF

io 1i
i 1

i

where the larger the value of APFD, the faster the fault 
detection of the selected order. It is easy to prove that the range 
of is 

2
1

2
, that is, its value relates to 

the defect proportion . Therefore, the evaluation of the
performance for testing strategies also needs to consider the 
characteristics of the test set and the original dataset itself. In 
the follow-up experiments, in order to eliminate the intuitive
influence of fault distribution, it is advisable to linearly
normalize as so that 0 1 .
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Table 2 Average fault detection effectiveness for strategies

Fault Detect ( )
RT

Test Prioritization DNN-DRT
Dataset Model Gini Entropy GE-0.5 DRT-R DRT-P D-DRT-R D-DRT-P

Tweets
TextCNN 0.4989 0.8978 0.8942 0.8962 0.8708 0.9099 0.8705 0.9080
TextRNN 0.5019 0.9220 0.9214 0.9219 0.8316 0.9252 0.8307 0.9231

Bert 0.5001 0.8792 0.8759 0.8777 0.8436 0.8796 0.8438 0.8800

Reviews
TextCNN 0.4988 0.8109 0.8109 0.8109 0.5426 0.8121 0.5428 0.8122
TextRNN 0.5000 0.8448 0.8448 0.8448 0.5298 0.8448 0.5299 0.8447

Bert 0.4999 0.8697 0.8697 0.8697 0.5318 0.8806 0.5318 0.8805

News
TextCNN 0.4976 0.8219 0.8153 0.8191 0.7621 0.8225 0.7621 0.8225
TextRNN 0.5005 0.8124 0.8120 0.8128 0.7546 0.8129 0.7546 0.8129

Bert 0.4998 0.8334 0.8308 0.8324 0.7445 0.8335 0.7445 0.8334
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Figure 3 Effect of parameter tuple (k, ε and δ) on performance of DNN-DRT

C. Experimental Settings and Process
Three series of experiments are conducted in this paper to

answer the proposed research questions. For RQ1, we 
compare DNN-DRT strategies with RT, Gini, Entropy and 
GE-0.5 in terms of fault detection effectiveness. For RQ2, we 
conduct experiments on four DNN-DRT strategies under 
different parameter tuples. For RQ3, the performances of 
DNN-DRT are examined under different datasets.  Besides, 
all the mentioned datasets are applied in the experiment of 
RQ1 and only the Tweets is adopted in RQ2 and RQ3 for 
further research.

The experiment is executed on a PC, which is powered by 
a 1.80GHz Intel (R) Core (TM) i7-8550U CPU Quad 
processor and has 16.0 GB RAM.  A testing platform is 
developed to conduct the experiment automatically and an 
automated test oracle is utilized to detect failure.  A failure is 
triggered if the output class of DNN are inconsistent with the 
ground label.

The experiment is conducted on three types of text datasets 
and DNN models that is nine versions of DL software need to 
be tested. Test cases are selected according to the specific te-

sting strategies and the stopping criterion for testing is that the 
entire test set is executed. Each testing process with random-
ness is repeated for 100 times to avoid deviation as these stra-
tegies have certain stochasticity.

V. EXPERIMENTAL RESULTS

A. RQ1: Fault Detection Effectiveness
As can be seen from Table 2, in terms of effectiveness,

Gini performs best in most cases compared with other test 
prioritization strategies while DRT-P and D-DRT-P with the 
guidance of test prioritization significantly outperform DRT-
R and D-DRT-R.  And all the s of DRT-P and D-
DRT-P with the feedback mechanism in the Tweets, Reviews
and News are not inferior to those of Gini, Entropy and GE-
0.5 merely with test prioritization.  Especially for Tweets in 
the datasets and TextCNN in the DNN models, the 
improvement of DRT-P and D-DRT-P over Gini for 
effectiveness is more obvious, where the maximum and 
minimum of optimized degree are respectively 0.0121(Tweets,
TextCNN) and 0.0006 (News, TextCNN).
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Figure 4 Fault detection effectiveness of DNN-DRT under different datasets

B. RQ2: The effect of parameter tuple ( , , ) on DNN-DRT
In this section, we investigate the effect of parameter

tuple on performance of DNN-DRT strategies, in 
which 10 different s (from 4 to 100 and unequally spaced) 
are examined. Previous experiments on DRT usually ignore 
the relationship between adjusting parameters ( and ) and 
the number of subdomains . Intuitively, if parameters and 

remain unchanged, then the testing profile adjustment 
process will be sensitive when the number of is large. It 
may lead to drastic fluctuation of the testing profile and thus 
decrease the fault detection effectiveness. Therefore, we set 
two kinds of settings of adjusting parameters in this section, 
which is as follows.

1) The value of the parameters is fixed, that is 
1 2.

2) The value of the parameters is related to that is
1 2. Namely, the increment and decrement of

the selected probability of the subdomain are set as and 
.
The experimental results are shown in Figure 3 and 1 2

are set as 0.05 and 0.01. We can conclude that has major 

effect on effectiveness. As increases, the performa-nce of 
DNN-DRT increases first and then decreases. Besides, when 
the values of the parameters are related to , all the 
four DNN-DRT strategies under three DNN models 
fluctuates in a small range, and the test effectiveness does not 
show an obvious downward trend even is large. When the 
values of the parameters are fixed, the testing 
effectiveness shows a significant downward trend when is 
large. It can be verified that the parameters have effect 
on performance of DNN-DRT, and associating with 
might be a better approach when applying DRT in practice.
C. RQ3: Comparison on fault detection effectiveness of
DNN-DRT under different datasets

Datasets in NLP are characterized by the scarcity of valid 
data and the high cost of manual labeling. However, a well-
performing testing strategy should have low dependencies on 
specific datasets, that is, its test results don’t fluctuate greatly 
with the sizes of test sets and influence of specific test cases,
so it is necessary to study the impact of test sets on test results.
In the following experiment, a series of test sets are generated 
with different and in which test cases and inserted
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faults are sampled from the original data set randomly in the
following experiment.

Assume that the faults in the original data set are 
uniformly distributed, that is fault proportion of gen-
erated test sets by random sampling keeps similar to the 
original. So, fault proportion settings of test sets in the same 
DNN are set equivalent and those in the different DNNs are 
related to the estimated prediction accuracies after the initial 
testing.

In the experiment of RQ1, Gini is generally better than the 
other two strategies based on test prioritization in effective-
ess, so this experiment only compares Gini with four types of 
DNN-DRT strategies. Since the generation and testing 
process of the test sets under the same parameter tuple 

have certain randomness, the test method may be
carried out by repeating 100 times. The following boxplot 
may be used to represent the test effectiveness with as
the metric.

It can be found from Figure 4 that for different test sets 
under the same dataset and model, the median values of the 
testing strategies are approximately constant. As decreases 
of a certain dataset and model, the results become more 
divergent and random. On the contrary, the introduction of
test prioritization reduces the statistical uncertainty. For 
DRT-P and D-DRT-P strategies, the ranges of s are 
wider than those of Gini and narrower than those of DRT-R
and D-DRT-R, but they usually achieve larger non-outlier 
maximum values while their non-outlier minimum values 
don’t drop too much.
D. Summary

It can be observed that the proposed DRT-P and D-DRT-
P strategies outperform RT, Gini, Entropy, GE-0.5, DRT-R
and D-DRT-R in terms of APFD in the nine versions.  Test 
prioritization greatly improves the effectiveness of testing 
strategies by introducing reasonable reference from the DNN
output. The closed-loop feedback mechanism optimizes the 
original strategy, and the effect is obvious in certain versions. 
Therefore, DRT-P and D-DRT-P strategies can be considered 
as better strategies and optimizations in general. 

The initial experimental results show that DRT-P and D-
DRT-P are slightly better than Gini under part of circu-
mstances. As the matter of fact, the parameter tuple 
has greatly influence on the test effectiveness of DNN-DRT. 
The results of comparison indicate that if the strategies 
maintain effective, the adjustment parameters should 
decrease accordingly, when increases.

How different test sets influence the fault detection of 
testing strategies is also investigated and the results reveal that 
the average effectiveness of both test prioritization and DNN-
DRT strategies isn’t affected by sizes of test sets and specific 
test cases. In particular, APFDs of DRT-P and D-DRT-P
strategies tend to achieve higher upper limit while ensuring 
that the lower limit is not too low, that is, it’s more likely to 
obtain a more satisfactory result than that of test prioritization 
in a single run.

VI. THREATS TO VALIDITY

Some potential threats to the validity of our experimental 
study are discussed in this section. 

First, one obvious threat to validity is the selection of 
subject programs. In our experiment, the testing strategies are 
conducted on three NLP datasets and three DNN models.
They cannot represent all test objects since the number of 
datasets and models are limited. It is hard to guarantee that our 
strategies will exhibit similar results on other programs. 
Nevertheless, these datasets and DNN models have been 
widely used in many practical studies to investigate testing
performance. They can reflect the data characteristics and 
fault distribution in real situations to certain extent. The 
principle of DNN-DRT can also be applied in many other 
forms. We look forward to the application of our techniques
in more areas.

Second, a possible threat is related to the measures of fault 
detection effectiveness. In our study, we use APFD to evaluate 
the performance of testing strategies. Other widely used 
metrics, such as F-measure (expected number of test case 
executions required to detect the first failure in a specific test 
run) and E-measure (expected number of faults being detected 
by executing a certain number of test cases) are not applied in 
experiment. These metrics can be included in our future study 
to evaluate testing strategies from more perspectives.
Nevertheless, to increase the credibility of experimental 
results, each trial is repeated 100 times to avoid bias, and the 
conclusion of our experiment can be adequately supported. 

In addition, the training of DNN models requires a 
relatively long time, and the setting of epochs and iteration 
times might have effect on accuracy of models.  Therefore, it 
is difficult to guarantee that our methods and models can be 
fully reproduced.

VII. RELATED WORKS

In this section, some of the major state-of-the-art works 
on software testing strategies and DNN testing strategies are 
introduced.
A. Software testing strategies

Random Testing (RT) is a well-known software testing
technique [21]. In RT, the test cases are selected randomly 
from the input domain according to any given distribution
[22]. The simplicity of RT makes it widely used in many 
testing fields. However, RT ignores the structural information 
concerning software and historical data during the testing 
process, which may lead to several difficulties in improving 
their effectiveness through internal or external guidance. 
Some testing strategies were proposed to enhance the fault 
detection effectiveness, including Adaptive Testing (AT) 
[23], Adaptive Random Testing [24] and DRT [10].

AT is in the context of software cybernetics which 
emphasizes the interplay of control science and software 
engineering [23]. In AT, the software testing process is 
modeled as an optimal and adaptive control problem. And the 
test case selection process can be adjusted online to make an 
optimal testing decision [25]. Experimental results show 
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that AT outperforms RT in terms of fault detection effect-
tiveness, however, it requires additional execution time in 
real applications. Therefore, some AT-based strategies have 
been proposed to improve fault detection effectiveness and 
efficiency, including AT-RT hybrid approach [26], AT
strategy based on moment estimation [27] and AT strategy 
based on the coverage spectrum and operational profile [28]. 
Another widely studied testing strategy is ART [24], which 
aims at using fewer test cases to detect the first failure. The 
intuition of ART is that the failure-causing inputs are 
clustered, and selecting a test case far away from previously 
executed non-failure-causing test cases will be more likely to 
detect a failure. In ART, the test case is not selected randomly 
but rather selected by calculating the total distance from all 
previously selected test cases such that the total distance is 
maximized [29]. Many ART-based algorithms were proposed 
due to the inception of ART, such as Mirror ART [30], 
Randomized Random Testing (RQRT) [31], and Random 
Border Centroidal Voronoi Tessellations (RBCVT) [32]. Both 
AT and ART can significantly improve fault detection effecti-
veness, however, the sophisticated algorithm behind them 
hinders the enhancement of testing efficiency. Besides, the 
intuitions of ART and AT are similar to our approach since 
they are based on the same hypothesis of similar behavior. 

DRT is also in the context of software cybernetics [23],
which dynamically changes the testing profile so that the test 
cases with higher failure detection rates will have higher 
selection probabilities. Some improved DRT strategies have 
been proposed, i.e., history-based DRT (DRT-h) [33], 
adaptive DRT (A-DRT) [34] optimization DRT (O-DRT) [35], 
Adaptive Partition Testing (APT) [36] and D-DRT [13], 
aiming at enhancing the fault detection effectiveness. The 
experimental results have shown that these DRT-based 
strategies can improve the effectiveness under certain 
circumstances. However, the setting of optimal parameters 
may vary with different types of software. Our study focusses 
on combining the principle of DRT into DNN testing to 
improve the testing process, The ideas behind these methods 
can also be applied in the D-DRT-P to enhance the fault
detection effectiveness in future works. 
B. DNN testing strategies

Inspired by traditional test coverage metrics, a few resear-
chers believe that the distribution of neuron activation values 
plays an important role in DL software. They propose a series 
of structured test coverage metrics based on neuron activation 
values by counting and tracking the distribution of neuron 
activation values or the changing relationship between 
adjacent neuron layers. 

Coverage criteria is a type of testing strategies borrowed 
from traditional software testing in the early days. Some 
researchers believe that the distribution of neuron activation 
values plays a vital role in intelligent software testing. In 
2017, Pei et al. proposed DeepXplore [3], the first white-box 
testing framework based on neuron coverage in real DL 
systems. And DeepCover [37] introduces more coverage 
criteria such as symbol-symbol, distance-symbol, symbol-
value, and distance-value coverage. Later, DeepGauge [4],
DeepCT [5], DeepPath [34], etc. have done further research 
on coverage-guided testing criteria by extracting the internal 

information of the DNNs. Compared with the black-box
model, the coverage criteria based on the white-box model 
requires deep analysis of the neuron states in the DNN, which 
greatly increases the complexity and has great limitations in 
its testing effectiveness.

Test case prioritization, another type of DL software-
oriented testing mechanism, has the advantage of being 
relatively simple and effective. It prioritizes test cases by 
calculating the weight or test significance in the candidate set, 
aiming to detect the test cases with higher defect detection 
rates or easier misclassification faster. Kim et al. propose 
LSA [9] to measure how close an input is to the class 
boundary. Li et al. propose a test selection strategy of Cross 
Entropy-based Sampling (CES)[39] to evaluate the accuracy 
of the operating environment.  Feng et al. propose DeepGini 
based on the statistical perspective of DNN [8], which adopts 
Gini impurity to estimate the probability of test cases being 
classified differently in a simple and effective way.  Besides,

and Geometric diversity-based prioritization (GD) 
[40], etc. are also used as the metrics to point the suitable
order of selection. However, the above prioritization 
strategies focus on image data more compared with text data. 
Most of the effective comparisons are based on experimental 
results, and it’s not clear to analyze theoretically and intuit-
tively.

VIII.CONCLUSION

DNN has achieved great process and widely deployed in 
many domains and suffer from software faults that may cause 
economic losses. NLP contains richer information and has the 
characteristics of subjectivity, ambiguity and irregularity,
which prompts that extracting insights from text can be 
challenging and time-consuming. It is essential to ensure the 
quality and reliability of NLP-DNN models. However, DNN 
testing is still at early stage and existing strategies might not 
sufficiently effective.

We propose a D-DRT-P strategy in this paper. It utilizes 
the priority information and distance information to enhance 
the DRT strategy. The priority information is used to classify 
the test suite and guide the test case selection inside the 
subdomains, and distance information is adopted to adjust the 
testing profile, along with testing results.

We conducted experiments to compare the four kinds of 
DNN-DRT with other test prioritization strategies on three 
NLP datasets and three well-known DNN models. The 
experimental results demonstrate that DNN-DRT strategies
can achieve better performance than RT, Gini, entropy and 
GE-0.5 in most cases. And we find that both priority 
information and distance-based adjustment can enhance the 
effectiveness of DRT, and priority information might be more 
effective in improving the fault detection effectiveness. 
Besides, the parameter tuple has greatly influence on 
the test effectiveness of DNN-DRT, and associating 
with might be a better choice when applying DNN-DRT in 
practice. In addition, the effectiveness of DNN-DRT strat-
egies is little affected by sizes of test sets and specific test 
cases.

Future works include combining more feature analysis 
methods and uncertainty measurement methods into D-DRT-
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P strategy, so that the fault detection capacity of test cases can 
be evaluated more comprehensively. Besides, we tend to 
conduct experiments on wider range of datasets and models, 
and verify the effectiveness and efficiency of our strategies 
through more metrics.
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