
A Distance- ased Dynamic Random Testing Strategy for
Natural Language Processing DNN Models

Yuechen Li, Hanyu Pei, Linzhi Huang and Beibei Yin*
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China

liyuechen@buaa.edu.cn, peihanyu@buaa.edu.cn, huanglinzhi@buaa.edu.cn, yinbeibei@buaa.edu.cn
*corresponding author

Abstract—Deep neural networks (DNNs) have achieved
tremendous development while they may encounter with
incorrect behaviors and result in economic losses. Identifying
the most represented data become critical for revealing
incorrect behaviours and improving the quality DNN-driven
systems. Various testing strategies for DNNs have been
proposed. However, DNN testing is still at early stage and
existing strategies might not sufficiently effective. Dynamic
random testing (DRT) strategy uses the feedback mechanism to
guide the test case selection, which has been proved to be
effective in fault detection. However, its efficacy for Natural
Language Processing (NLP) DNN models has not been
thoroughly studied. In this paper, a Distance-based DRT with
prioritization (D-DRT-P) is proposed, which combines the
priority information and distance information into DRT to
guide the selection of test cases and testing profile adjustment.
Empirical studies demonstrate that D-DRT-P can improve the
fault detecting effectiveness than other test prioritization
strategies in most cases.

Keywords- Dynamic random testing, Test prioritization, Deep
neural networks, Natural language processing, Software cyber-
netics.

I. INTRODUCTION

The technology of Deep Learning (DL), based on Deep
Neural Network (DNN), has achieved great process and
widely deployed in various domains, including medical image
processing, speech recognition, automatic driving, natural
language processing (NLP) etc. [1]. NLP is an essential
branch of DL and with its rapid development, NLP has made
breakthroughs at the application and technology level. Text
classification is a classical problem in NLP which aims to
assign labels or tags to textual units and includes rich and
diverse data from different sources [2]. However, DL suffers
from software faults that may cause dangerous accidents.
Especially for NLP based on DL, natural language usually
contains richer information than image data, and has the
characteristics of subjectivity, ambiguity and irregularity,
which prompts that extracting insights from text can be chal-
lenging and time-consuming.

The technology of software testing is a vital means to
ensure software quality and reliability. DNN testing strategies
aim at identifying and selecting the most representative data
for improving the quality of DNN-driven systems. Inspired by
code coverage in traditional software testing, researchers have

proposed several neuron coverage criteria to measure the
adequacy of DNN testing, such as DeepXplore [3],
DeepGauge [4] and DeepCT [5]. They utilize the distribution
of neuron activation values and the relationship between
adjacent neuron layers. Intuitively, a test suite with higher
neuron coverage seems to reveal more faults in DNN-based
systems. Thus, it is rational to select a test suite with higher
neuron coverages. However, some researchers point out that
the resource cost of collecting the activation state of neurons
could be too expensive [6]. And some neurons covered criteria
can easily achieve maximum coverage, which could limit the
effectiveness of neurons coverage as a test case selection
strategy [7].

On the other hand, several test case prioritization strategies
are also proposed. This technology sorts test cases with
specific rules. For example, DeepGini [8] is proposed by Feng
et al., which takes the use of the Gini coefficient to measure
the likelihood of test case being misclassified. Likelihood-
based Surprise Adequacy (LSA) is proposed by Kim et al. [9]
to measure the surprise of an input as the difference in DNN
system’s behavior between the input and the training data.
Generally, test case prioritization strategies rank the test cases
according to their evaluation scores, and then select test cases
in the order from high scores to low scores (or vice versa).
Studies have shown that prioritization strategies are effective
in DL-based software testing since a good prioritization
technique can prioritize test cases that are more likely to reveal
errors in classification.

However, one of disadvantages of test prioritization
strategies is that the order of test case selection might be
overconfident. Usually, test cases with higher scores are more
likely to be misclassified by DNN and trigger the failure.
Nevertheless, it’s a probabilistic rather than an inevitable
event, that is, test cases with high scores may not be identified
as faults, and vice versa for those with low scores. Especially
as the scores drop, the effectiveness of test prioritization guidi-
ng the selection of test cases reduces gradually. NLP testing is
a relatively emerging field that lack of well-labeled datasets.
The accuracy of DNN models might be undesirable in text
classification problems, which may affect the effectiveness of
testing strategies that merely explore prioritization. Besides,
the order of the test prioritization represented by DeepGini etc.
is relatively fixed, so adding random factors that obey the
probability distribution in the testing process is a necessary
attempt to further improve the fault detection ability.

842

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS57517.2022.00089

Dynamic random testing (DRT) strategy utilizes the
testing results as feedback information to guide the selection
of test cases, which has been proved to be effective in fault
detection process [10][11]. More specifically, suppose that the
test cases are divided into subdomains 1 2 }, and
each is allocated with selection probability . DRT selects
a subdomain according to the testing profile 1 2 ,
then selects a test case from the chosen subdomain in
accordance with uniform probability distribution. If a failure
is triggered by a test case in the subdomain the selection
probability of will increase from to , and the
selection probabilities of other subdomains will decrease

1 ; otherwise, the selection probability will decrease
to , and the selection probabilities of other subdomains
will increase 1 .

DRT changes the testing profile based on whether faults
are detected, which guarantees failure-causing inputs being
selected faster and thus improves the fault detection
effectiveness. However, if the DRT applied in the traditional
software is directly introduced to the DL software, the results
from the output layer of DNN will not fully utilized. Thus,
taking the advantages of the feedback mechanism of DRT and
test prioritization, the effectiveness of DNN testing can be
further improved. Therefore, we propose a DNN-DRT
strategy, namely Distance-based DRT with test prioritization
(D-DRT-P) strategy in this paper, which is referred to the
principle of DRT and geared towards DL-based software.
Based on the above methods, D-DRT-P, considered as a
theoretically feasible optimization strategy, uses the feature of
test cases for classification and selection of test cases, and
adjusts the testing profile based on distance information
among subdomains, along with the results that whether text
inputs are misclassified. To validate the fault detection
effectiveness of DNN-DRT strategy, we conduct experiments
for D-DRT-P and baseline methods with three well-designed
DNN models and public datasets for text classification. The
experimental results demonstrate that D-DRT-P strategy can
achieve better performance in most cases.

The contribution of this paper is as follows:
1) We propose a DNN-DRT strategy, namely D-DRT-P in

this paper, which takes advantage of test prioritization method
and feedback mechanism of DRT. This can improve the fault
detection effectiveness on DL-based NLP software.

2) We introduce a low-dimensional feature vector in re-
gard to the fault detection of NLP software, which can gather
faults by clustering and dividing test cases to detect faults
faster in the selected subdomain.

3) We conduct a series of experiments to investigate the
performance of DNN-DRT strategy with baseline testing
strategies. The results show that DNN-DRT can achieve better
fault detection performance than other test prioritization me-
thods.

The remainder of this paper is organized as follows: The
background is introduced in section II. The DNN-DRT
strategy is presented in section III. The experimental setup is
described in Section IV. The experimental results are analyzed

in Section V. Threats to validity are summarized in Section VI.
Related works on testing strategies are presented in Section
VII. Conclusions and future works are summarized in Section
VIII.

II. BACKGROUND

A. The architecture of DNN testing
A DNN can be explained as an iterative function chain

1 2 mapping from input data vector to the output
vector . Then, is utilized to stand for the whole
DNN in the respective of black-box model, and

1 2 1() ()D DDNN F F F F() D DDNN F F() D D 11y x x2 1(F F2 12 (1)

where represents the depth of the DNN, which usually
refers to the sum of hidden layers and output layers. The
function 1 2 1 represents the relation of
the hidden layers in the DNN, and represents the
relationship with the output layer.

Each hidden layer maps the forward input to a vector,
and each element in the vector is an independent, parallel
neuron. For a DNN with a fixed width , the vector
composed with neurons in the -th hidden layer can be
represented by ℝ 1 2 1 . If all the hidden
layers are considered, then the hidden layers form a matrix

ℝ 1 containing the values of each neuron in the
hidden layers. Taking a test case as the input of DNN, the
hidden layer value matrix can be represented as

(1)
,1 ,2 ,(1)[, , ,] W D

t t t t D[, ,t,1 ,2[,1 ,2[, ,[1 22H h h h ,(],(
W

,(,(,(,(
(1)W (

1)]1)

If we take the text classification problem of classes as
an example to analyze the entire DNN processing, any test
case will be transformed into a high-dimensional
semantic vector as the input of DNN model , and
then output a -dimensional vector according to the
categories,

T

,1 ,2 ,, , , m
t t t t my y y, ,, ,t,1 ,2y y1, ,22t 1 222y

T

,

T

,
m

m,y,

The goal of a constructed DNN is to approximate the
output result to the theoretical classifier , that is, by
continuously adjusting the weights in the internal neurons of
DNN, so that 1 2 .

In general, researchers expect a normalized output. The
function is to map each element value of the output
vector to the range of 0 1 according to its relative
proportion, in which the probability vector can represent
the probability of each classification,

T

,1 ,2 , 1, , , (0,1) , 1m
t t t t m tp p p 1 11t, , (0,1) ,, ,t,1 ,2,2p 1, ,2t 1 2Pr Pr

T

,

T

,,
T

m,,,

where the mathematical expression of is
,

,

,

1

t i

t j

y

t i t m
y

j

e
p softmax

e
1

,t i,y

t

e
softmax

t j,y

j

e
1

m
y (2)

Since the network output elements are all finite numbers
(∞ ∞), and only lim

∞
0. Therefore, each

843

element of the probability vector cannot reach the
boundary value in the respective of probability, that is,
0 1 0 1 0 1 . Finally, the output of test case is the

classification result based on , which is shown as follow,

,
{1, ,2, }

() argmax t i
i m

class t p
{ , ,{1,2,

argma
i {1 2

g
{1 2 }

tp
,,

(3)

Taking the simple DNN shown in Figure 1 for an example,
it’s aimed to classify into the reasonable class of the input text
among three candidates. If test case , the text What a clam
shame. is input in the DNN, it will be changed into a high-
dimensional semantic vector as input layer and a 3-
dimensional probability vector will be output at last.
According to 0 02 0 04 0 94 T , 3 . In
another word, the text is of neither class which excludes hate
and offensive factors.

What a clam
shame.

Output
layer

Input
layer

Hidden layers
(1)W D

Input text

1()F ()DF

Neurons

Hate speech (0.02)

Offensive language (0.04)

Neither (0.94)

Class

Figure 1 A sample of NLP DNN model

B. Test case prioritization

In the field of software testing, test case prioritization is a
classic issue raised by Rothermel et al. [12] as follows. Given
a test set 1 2 , its generating sequence is

{ {1,2, , }, , }
k kn nt k N t T{1,2, , }{ , ,{ , ,{ , ,{1,2, ,

k
,,},

When testing by prioritization, the order of test follows
above sequence. Let :f T as the mapping function
from the given test set to real domain and it gives a kind of
standard to guide the formation of a suitable sequence. A
prioritization sequence means that the top test cases are more
important than the bottom ones in some ways, so

1
{1,2, , 1} : () ()

i in ni N f t f t{1,2, , 1} : () ()
i ini
) (i {1,2, , 1} : () (() () () (

1
)

1
1}, 1}

In this paper, Gini impurity and information entropy are
introduced to measure the likelihood of test cases to be
classified wrongly. Above two metrices can connect test
cases and their equivalent numerical values, and then expose
test cases that are prone to misclassification in the test set.

1) Gini impurity

Given a test case and a DNN that outputs the
vector 1 2

T , Gini impurity is
defined to measure the likelihood of being classified
differently in two randomized trials,

2
,

1

() 1
m

t i
i

t p()) 11
m

i 1

2
m

t i,p ,t i, (4)

where ranges in 0 1 .

2) Information entropy

Information entropy can be regarded as the uncertainty of
a random variable, which is similar to Gini impurity in the
sense of uncertainty. A random variable with higher
information entropy means higher uncertainty. For a test case

and corresponding probability vector , the information
entropy is calculated as follows,

, 2 ,
1

() log
m

t i t i
i

H t p p2 ,l
m

i2 ,p2log2
i 1

m

t,,,t, (5)

where ranges in 0 log2 . The unit of information
entropy defined is binary bit, and the formular means the
mathematical expectation of the uncertainty defined by
logarithm.

In order to study the effect of combining several metrics,
weighted average method can be added and generate a
composite metric. Let the metric as 1 2 1
composed with 2 kinds of mapping functions
1 2 , so

1 1
* *

1 2 1
1 1

(; , , ,) () 1 ()
n n

n i i i n
i i

t w w w w f t w f t1 2(; ,1 2; ,; ,1 2
i

n

i

11

11

11n 1 1
**

111n

)*(*(*ww*()*
i i ((

*
i i 1))f (f *(ww11 iiiw))(n (nnf (n

1i 1

ww1,)n,)1)1)1

(6)

where 1 2 0 1 are adjustable weighted values
and let 1 . And 1 2 are linear
norm-alized function of 1 2 , where

*
() min ()

() {1,2, , }
max () min ()

i it T
i

i it T t T

f
f t t

t i
f

n
f

ft tmax () min)i()
T t T

) min) min)

(min ()
{1,2,

)
i

max ()

i()f ()i()
t

)
Tt

min (m
t

(iT
min (min
T

min ((it T
min (mini (min (

, }

In this paper, assume that 1 , 2 and
1 2 1 . Since Gini impurity and

information entropy are proposed based on probability theory
and information theory respectively, generating a composite
metric using an adjustable parameter has certain research
significance for analyzing the relation between above two.

844

Test case
selection

Testing profile
adjustment

Is termination
condition
satisfied?

Training
data

Testing
data

Tr
ai

n

Vectorization Feature
extraction

Distance
measurement

K-means
clustering

Test case Analysis
DNN

No

Yes

Distance
Matrix

Test case
clusters

Figure 2 The framework of D-DRT-P strategy

III. METHOD

The proposed framework of D-DRT-P is shown in Figure
2. The testing process is as follows. First, the features of test
cases are extracted and then transferred to vectors referred to
DNN. Then they are classified to several disjoint subdomains
by using k-means clustering method. Second, the distance
matrix is calculated based on the classification results. Third,
the test case is selected according to the testing profile. Fourth,
the testing profile is adjusted based on the testing results and
distance information among subdomains and the testing
process can be considered as the mapping 0 1 ,

0, is classified correctly by DNN
()

1, is misclassified by DNN

t
Test t

t

0 is c0 is c0,

1, is m1, is mi11
(8)

The testing process stops when the terminate condition is
satisfied.
A. Feature vectors of test cases

For the part of test case clustering, the reference of
clustering is defined as s-dimensional feature vector t,

T
1 2[(), (), , ()] s

t sz t z t z t[(), ()1 2[(), (),1 2(), (),(), (1 2(),1 2z T, ()] s
s,, (,

where 1 2 is each feature of . Mentioned
the mapping function ℝ for test prioritization,
and have similarities in quantifying test case .

For text data, the data type input to DNN is high-
dimensional vector, but after some preliminary experiments,
it is found that word vector is not suitable as the feature vector
for clustering in dynamic random testing because excessive
dimensions will dilute the role of more critical elements
theoretically. Intuitively, each element in the word vector is
not actually related to the test case being easily misclassified.

Therefore, to guide fault detection and expose specific test
cases, can be composed with 1 kinds of quantified
uncertainty information and 2 kinds of data inherent
properties, where 1 2 . For the first part, Gini impurity

and information entropy are introduced in the
paper and for the other part, of test case shows its

property output from DNN. Therefore, can be combined
with above three features in the following experiments, where

1 2 3
T and 1 2 3 are the

weights of each feature.
B. Test Case Classification

1) Clustering of Test Cases
K-means clustering method is efficient and scalable to

partition the test cases of large data sets. It first randomly
selects k test cases, each of them is set to be the initial center
of each cluster. The Euclidean distance between remaining test
cases and the centers of clusters are calculated, and test cases
are assigned to their closest cluster. Suppose 1 2
represent clusters, and there are test cases in
1 2 . And 1 2 , where
1 2 . Then the coordinate of each cluster

center 1 2 is updated according to the -
dimensional feature vector of each test case and it
equals to the mean value, which is calculated as

,
, {1,2, , }, {1,2, , }

i

t j
i j

t C i

z
i k ja s

c
, }, {1,2, , }, },},

For the next round, the Euclidean distance between each
test case and the updated center of each cluster is calculated,
and the test cases are assigned to the closest clusters
individually. This process is repeated until the test cases in
each cluster no longer change, or the sum of the squared error
(SSE) converges. The of k-means clustering method is
calculated with

2

1
(,)

i

k

i Ct
iSSE d t C

where represents the distance between test case of
and the mean value of . By above adjusting rounds, when

test cases in each cluster remain unchanged compared with the
previous round, the current round can be considered as the
final state. It should be noted that the clustering results might
not be desirable since the selection of initial test cases may
have a great effect on the clustering process. Therefore, we

845

usually conduct k-means clustering method several times, and
the result with the minimum is selected as the final
classification.

2) Distance Matrix Generation
The distance matrix is introduced by Pei et al when

proposing Distance-based DRT (D-DRT) [13]. In D-DRT, the
adjustment of the testing profile is based on both the testing
results and the distance information among subdomains.
Assuming that there are 2 testing profiles

1 2 in the test suite and ℎ ℎ ℕ dimensions in
the feature vector of the test case, for the -th testing profile ,
the coordinates of the cluster center can be represented as

1 2 ℎ . Then, the Euclidean distance between any
subdomains and is

2
, ,

1

(,) () , {1,2, , }
h

i j i l j l
l

d C C a a i j k i j, {1,2, j, {1,2,,
l

h

1

2()2
h

i l j l, ,, ,()2
i l, , } i, }

From this, the distance matrix is defined as

1 2 1

2 1 2

1 2

0 , ,

, 0 ,

, , 0

k

k

k k

d C C d C C

d C C d C C

d C C d C C

d C C d C C20 1d C C2,1 , kC,, k1 21

k01d C , 1 C,0d C C Ck, kC,11 011

d C C d C C2k k1, 1 02k , 1d C C d C C, ,k , 1 0d C C d C C

D

d C1d C11

d C2d C22d C2d C2,22d C2

00

Since , the distance matrix is a real
symmetric matrix T . During the profile adjustment
process, the selected test case will be removed from the testing
profile when detected. Then, all the testing profiles will
become empty in the end.
C. Test case selection

At first 0 , adjusting parameters are set and
test set is divided into ℕ 2 clustering subdom-
ains 1 2 as testing profiles. Each subdomain has
1 0 2 0 0 test cases respectively and the initial

selection probability distribution of each clustering is
1 0 2 0 0 . Assuming that the sum of selected

features is , the -th feature value 1 2 of
can be considered as guideline of test prioritization.
During the testing process 0 , based on the

probability distribution 1 2 at the -th
step, select a subdomain , where 1 2 . Next,
according to the probability distribution 1 2 of
test cases of , select the -th test case
1 2 . Then,

1) for original DRT, the selection probability of test cases
is

1
, 1,2, , ()

()i l
l

p i c n
c n()

, , ,
()

1
1 2

1
, 1,2,, 1,2,

()c (
)(l, (, ((,

where the selection mechanism of is chosen based on
uniform distribution. Above strategies for selection are
similar to traditional DRT and D-DRT without internal
information of software execution.

2) for D-DRT-P, the selection mechanism is related to the
feature value ,

()
, 1,2, , ()

()
l

i l

t C

z t
p i c n

z t
lCl

)
1 2, ,

z (
1,2,1,2,

)z (

t

z ()z (
lCl

, 1
)
, 1

()

z
11

z ((

()z (

)z (
, ()l,, (,

To reduce the randomness in the testing process, the
process is to directly select the test case with the largest
probability value, where satisfies

{1,2, , ()} {1,2, , ()}
argmax argmax ()

l l

i i
i c n i c n

u p z t)(((
{ , ,{1,2,

(argmax argmax (argmax
i

((((
{1 2
g

{1 2
g ()i

, ()} ()}l l()} { , , ,, (((i {1,2, , (({1,2, ,
(

()} {1 2 ()}
i g

(i {1 2 (
(

D. Testing profile adjustment
When is input into DNN, and the result(pass/fail) of

classification is recorded, so as to judge whether the fault is
detected. If is misclassified, increase the probability
of being selected and update the selection probability of the
testing profile from the -th to the (1)-th step,

() , () 1
(1)

1, () 1
l l

l
l

P n P n
P n

P n

, () 1l,, ((,()P ()
1)

P ()l ()P ()l ()l

11,1,11

() , () 1
(1) ,

0, () 1
j j l

j
l

P n P n
P n j l

P n

() 1((()P ()
1)

()P (
ll

, () 1j l,,, ((,,
j ll

P ()()jP ()jjj

11
, jjjj

0,0,00

If is not misclassified, reduce the probability of ,
and update the selection probability as well,

() , ()
(1)

0, ()
l l

l
l

P n P n
P n

P n

, ()l,, ((,()P ()
1)

P ()l ()P ()l ()l

0,0,00

() , ()
(1) ,

, ()

j j l

j j
l

P n P n
P n j l

P n

, (),, ((,()P ()P ()()jP ()j

1)
()

j l
(

j l
, ()j l,,j()jjjj

, j
jjjjjj ,,j

Noticed that the parameters and determine
the degree of probability change, the adjustment parameters

of the 1 2 2 de-pend on
the following situations:

(1) for original DRT, the probability changes of the
remaining subdomains keep consistent,

1

1

j

j

k

k

j k

j k

k 111

k 11
(2) for D-DRT-P, the probability changes of the remaining

subdomains are related to the distance between ,

{1,2, , }\{ }

{1,2, , }\{ }

(,)

,
(,)

,

j l
j

i k l i l

j l
j

i k l i l

d C C

d C C
d C C

d C C

d C C
j

j
d C C

)d()d(,,

d C C
)d(,,

d C C

(
i k l d
d(

d{1,2,{1,2,

(,j l,,(,

d

i k l dd{1,2,{1,2,

(,j l,,(,

d

}\{ }}\{ }}\{,,

}\{ }}\{ }}\,,

After testing current , remove it from the selected
subdomain. If the subdomain remains no test cases, its
probability is evenly distributed to other non-empty
subdomains.

846

E. Algorithm
The algorithm of D-DRT-P strategy is as follows.

Algorithm 1: D-DRT-P
Input: : the test set; : the number of subdomains; : the set of
feature vectors of test cases; : characteristic of test case; : DNN
model under test; : adjusting parameters; : the set of ground
labels.
Output: : the testing results.

1 ;
2 Classify into subdomains 1 2 ;
3 Set initial testing profile 1 2 ;
4 ;
5
6 while the testing stop criteria is not satisfied do
7 Select a subdomain according to 1 2 ;
8 Select a test case with highest prioritization;
9 ;

10
11 if then
12 1 2 1 ;
13 1 ;
14 else
15 1 2 2 ;
16 0 ;
17 end
18
19 end

Remarks:
The algorithm of D-DRT-P aims at detecting faults of

input text test set , and finally judging whether the test case
is a fault. All the test results can be recorded as the set

. in line 1
shows clustering process by k-means according to sum of
clustering and the set of feature vector and
output the classes of clustering Class as well as the clustering
centers CC. Then, line 2-5 initialize testing profile and
distance matrix to prepare for testing processing. Noticed that
compared to traditional D-DRT with initial probability
following uniform distribution, DNN-DRT can more clearly
assign weights with the feature value , such as

1

() /

(0)

() /

i

j

i
t C

i k

j
j t C

z t c

P

z t c
jt C

t iC

jj

() / iz t c() /() /t() /
t iC

j jt C1

k

j() / jz t c() /() /t() /

which means that the probability may be determined as the
proportion of the feature value density in
each testing profile . Next, line 6-23 are the finite feedback
process of fault detection and profile adjustment in which test
case is selected referred to prioritization of uncertainty and
the profile is changed by 1 or

2 according to the detection result of
whether the ground value equals the output class

. The entire loop structure ends after reaching
the stop criteria.

In a word, D-DRT-P continuously adjusts the testing
profiles by real-time feedback to find faults earlier. However,
the number of subdomains affects the quality of defined
testing profiles, and impacts the sensitivity of profile
adjustment. Therefore, adopting an appropriate group of
parameters is critical to the effectiveness of the
algorithm.

IV. EXPERIMENTAL SETUP

Some experimental studies are conducted in this paper to
evaluate the performance of the proposed D-DRT-P strategy.
We aim to answer the following questions.

RQ1 How do DNN-DRT strategies perform in terms of
fault detection effectiveness compared with other test case
prioritization strategies?

RQ2: How does the parameter tuple have effect
on the performance of DNN-DRT?

RQ3 How do DNN-DRT strategies perform under diff-
erent datasets?
A. Subjects

The DNN-based software is constructed by DNN models
and it comes to be done after model training. The selected
DNN models in this paper are TextCNN, TextRNN and Bert.
There is introduction of above well-known models:

1) TextCNN: It was proposed by Yoon Kim in 2014 [14],
and utilizes Convolutional Neural Network (CNN) to extract
key information similar to -grams in sentences. The model
consists of the following process: input the preprocessed text
data into the input layer, then perform text feature extraction
in the embedding layer, and then obtain filtered multiple
feature maps in the convolutional layer. It is further reduced
in the transformation layer, and finally the probability
distribution of each category in the classification task will be
obtained in the softmax layer.

2) TextRNN: It was proposed by Liu et al. in 2016 in order
to solve the problem that long sequence information cannot be
modeled in CNN and the hyperparameter adjustment of filter
size is too cumbersome [15]. Compared with CNN, Recurrent
Neural Network (RNN) sacrifices running speed to capture
long-range dependencies in the sequence

3) Bert: It’s short for Bidirectional Encoder Represen-
tations from Transformers and was represented by Devlin et
al. [16] in 2018 by Transformers’ bidirectional encoder. The
obvious advantage of Bert is that the pre-trained model can be
fine-tuned with an additional output layer to create state-of-
the-art models for various tasks without requiring extensive
modifications to the task-specific architecture.

In our experiments, three kinds of datasets in the NLP
domain for text classification, are used to train, verify and test
models. Table 1 shows basic information of selected open-
source datasets and fault distribution after testing each DNN.
As to the part of dataset, Hate speech and offensive language
(short for Tweets) is Davidson et al.’s collection of tweets
containing terms from the Hatebase.org dictionary, and
samples are labeled as hate speech, offensive speech and non-
offensive speech [17]. Topic labeled news dataset (short for

847

News) is provided by NewsCatcher team and 108,774 news
articles are labelled with 8 topics such as business,
entertainment, health, nation, science, sports, technology and
world [18]. IMDB movie reviews (short for Reviews) is a
dataset for binary sentiment classification containing
substantially more data than previous benchmark datasets and
provides 50k movie reviews labelled with positive or negative
ones [19]. With regard to the fault distribution, the model
accuracy varies with datasets and DNNs, which further
reveals the necessity of introducing and analyzing multiple
datasets and DNNs.

Table 1 Datasets and DNN models

Dataset # of
classes

DNN
models

of
faults

of
training

data
of test

cases

Tweets 3
TextCNN 593

24,783 12,007TextRNN 264
Bert 1,533

News 2
TextCNN 536

76,142 2,000TextRNN 487
Bert 384

Reviews 8
TextCNN 2,154

50,000 7,500TextRNN 2,093
Bert 1,735

For above datasets, different methods are used to divide
the data. For example, the size of tweet dataset is relatively
small, so the training set can be larger to ensure higher
accuracy of DNN model. The news dataset and movie review
dataset have large-scale samples, of which 70% of data are
assigned to the training set and the 15% are divided into the
validation set, but the former dataset only samples a small
amount of data as test set, and the latter take the remaining 15%
as test set. The above data segmentation method shows the
diversity of the dataset, and then reflect the general effecti-
veness of the proposed strategy in subsequent experiments.
B. Variables and Measures

1) Independent variable
The independent variable of the experiment is the testing

strategy. To evaluate the performance of proposed strategies,
RT, three types of test prioritization strategies Gini, Entropy,
GE-0.5, and four types of DNN-DRT strategies DRT-R, DRT-
P, D-DRT-R, D-DRT-P are included in the following exper-
iments.

RT: RT selects and executes test cases from the entire test
suite randomly.

Gini: Gini selects and executes test cases according to the
order of decline.

Entropy: Entropy selects and executes test cases
according to the order of decline.

GE-0.5: Gini-Entropy with =0.5 (GE-0.5) selects and
executes test cases according to the order of 0 5 decline
where 1 , 2 .

In addition, four types of DNN-DRT strategies are
explored on the basis of previous research, considering
whether to apply prioritization and distance-based information.

DRT-R: Dynamic Random Testing with Random
selection (DRT-R) selects and executes test cases in the
chosen testing profiles randomly.

DRT-P: Dynamic Random Testing with test
Prioritization (DRT-P) selects and executes test cases in the
chosen testing profiles randomly.

D-DRT-R: Distance-based Dynamic Random Testing
with Random selection (D-DRT-R) selects and executes test
cases in the chosen testing profiles according to the
prioritization of decline.

D-DRT-P: Distance-based Dynamic Random Testing
with test Prioritization (D-DRT-P) selects and executes test
cases in the chosen testing profiles according to the
prioritization of decline.

2) Dependent variables
The dependent variable for RQ1 to RQ3 is the metric for

characterizing the fault detection effectiveness of the cand-
idate strategies. Since there are faults misclassified by DNN
in each version of software program and the following exper-
iments intend to detect all seeded faults in a round of testing
faster. APFD (Average Percentage of Faults Detection) is
used in this study to evaluate the performance and measures
the prioritization effectiveness in terms of the rate of faults
detection of a test set [20]. Let the test set as with test
cases and 1 2 faults, and
1 2 as the order of the -th fault to be detected in the

testing processing. Then APFD can be defined as

1 1
1

2

FN

i
i

F

o
APFD

N N N
1 i

N N NN N2N N2

1

FNF

io 1i
i 1

i

where the larger the value of APFD, the faster the fault
detection of the selected order. It is easy to prove that the range
of is

2
1

2
, that is, its value relates to

the defect proportion . Therefore, the evaluation of the
performance for testing strategies also needs to consider the
characteristics of the test set and the original dataset itself. In
the follow-up experiments, in order to eliminate the intuitive
influence of fault distribution, it is advisable to linearly
normalize as so that 0 1 .

848

Table 2 Average fault detection effectiveness for strategies

Fault Detect ()
RT

Test Prioritization DNN-DRT
Dataset Model Gini Entropy GE-0.5 DRT-R DRT-P D-DRT-R D-DRT-P

Tweets
TextCNN 0.4989 0.8978 0.8942 0.8962 0.8708 0.9099 0.8705 0.9080
TextRNN 0.5019 0.9220 0.9214 0.9219 0.8316 0.9252 0.8307 0.9231

Bert 0.5001 0.8792 0.8759 0.8777 0.8436 0.8796 0.8438 0.8800

Reviews
TextCNN 0.4988 0.8109 0.8109 0.8109 0.5426 0.8121 0.5428 0.8122
TextRNN 0.5000 0.8448 0.8448 0.8448 0.5298 0.8448 0.5299 0.8447

Bert 0.4999 0.8697 0.8697 0.8697 0.5318 0.8806 0.5318 0.8805

News
TextCNN 0.4976 0.8219 0.8153 0.8191 0.7621 0.8225 0.7621 0.8225
TextRNN 0.5005 0.8124 0.8120 0.8128 0.7546 0.8129 0.7546 0.8129

Bert 0.4998 0.8334 0.8308 0.8324 0.7445 0.8335 0.7445 0.8334

0.8100
0.8300
0.8500
0.8700
0.8900
0.9100

4 6 8 10 12 15 20 50 80 100

TextCNN (εk=C1, δk=C2)

0.8100
0.8300
0.8500
0.8700
0.8900
0.9100

4 6 8 10 12 15 20 50 80 100

TextCNN (ε=C1, δ=C2)

0.7400
0.7600
0.7800
0.8000
0.8200
0.8400

4 6 8 10 12 15 20 50 80 100

Bert (εk=C1, δk=C2)

0.7400
0.7600
0.7800
0.8000
0.8200
0.8400

4 6 8 10 12 15 20 50 80 100

Bert (ε=C1, δ=C2)

Legend

0.7500

0.8000

0.8500

0.9000

0.9500

4 6 8 10 12 15 20 50 80 100

TextRNN (ε=C1, δ=C2)

0.7500

0.8000

0.8500

0.9000

0.9500

4 6 8 10 12 15 20 50 80 100

TextRNN (εk=C1, δk=C2)

k

APFD*

k

APFD*

k

APFD*

k

APFD*

k

APFD*

k

APFD*

Figure 3 Effect of parameter tuple (k, ε and δ) on performance of DNN-DRT

C. Experimental Settings and Process
Three series of experiments are conducted in this paper to

answer the proposed research questions. For RQ1, we
compare DNN-DRT strategies with RT, Gini, Entropy and
GE-0.5 in terms of fault detection effectiveness. For RQ2, we
conduct experiments on four DNN-DRT strategies under
different parameter tuples. For RQ3, the performances of
DNN-DRT are examined under different datasets. Besides,
all the mentioned datasets are applied in the experiment of
RQ1 and only the Tweets is adopted in RQ2 and RQ3 for
further research.

The experiment is executed on a PC, which is powered by
a 1.80GHz Intel (R) Core (TM) i7-8550U CPU Quad
processor and has 16.0 GB RAM. A testing platform is
developed to conduct the experiment automatically and an
automated test oracle is utilized to detect failure. A failure is
triggered if the output class of DNN are inconsistent with the
ground label.

The experiment is conducted on three types of text datasets
and DNN models that is nine versions of DL software need to
be tested. Test cases are selected according to the specific te-

sting strategies and the stopping criterion for testing is that the
entire test set is executed. Each testing process with random-
ness is repeated for 100 times to avoid deviation as these stra-
tegies have certain stochasticity.

V. EXPERIMENTAL RESULTS

A. RQ1: Fault Detection Effectiveness
As can be seen from Table 2, in terms of effectiveness,

Gini performs best in most cases compared with other test
prioritization strategies while DRT-P and D-DRT-P with the
guidance of test prioritization significantly outperform DRT-
R and D-DRT-R. And all the s of DRT-P and D-
DRT-P with the feedback mechanism in the Tweets, Reviews
and News are not inferior to those of Gini, Entropy and GE-
0.5 merely with test prioritization. Especially for Tweets in
the datasets and TextCNN in the DNN models, the
improvement of DRT-P and D-DRT-P over Gini for
effectiveness is more obvious, where the maximum and
minimum of optimized degree are respectively 0.0121(Tweets,
TextCNN) and 0.0006 (News, TextCNN).

849

Gini DRT-R DRT-P D-DRT-R D-DRT-P

*

Gini DRT-R DRT-P D-DRT-R D-DRT-P

**

Gini DRT-R DRT-P D-DRT-R D-DRT-P

TextCNN,) (10000 8, 0(, 0)FN N(,TextCNN,) (7500,600)FN N(,TextCNN,) (5000,400)FN N

TextRNN,) (10000 3, 0(, 0)FN N (,TextRNN,) (7500, 225)FN N (,TextRNN,) (5000,150)FN N

Gini DRT-R DRT-P D-DRT-R D-DRT-P Gini DRT-R DRT-P D-DRT-R D-DRT-PGini DRT-R DRT-P D-DRT-R D-DRT-P

* * *

Bert,) (10000,(1200), FN N Bert,) (750 9(, 0, 00)FN N Bert,) (500 6(, 0, 00)FN N

Gini DRT-R DRT-P D-DRT-R D-DRT-P Gini DRT-R DRT-P D-DRT-R D-DRT-PGini DRT-R DRT-P D-DRT-R D-DRT-P

* * *

Figure 4 Fault detection effectiveness of DNN-DRT under different datasets

B. RQ2: The effect of parameter tuple (, ,) on DNN-DRT
In this section, we investigate the effect of parameter

tuple on performance of DNN-DRT strategies, in
which 10 different s (from 4 to 100 and unequally spaced)
are examined. Previous experiments on DRT usually ignore
the relationship between adjusting parameters (and) and
the number of subdomains . Intuitively, if parameters and

remain unchanged, then the testing profile adjustment
process will be sensitive when the number of is large. It
may lead to drastic fluctuation of the testing profile and thus
decrease the fault detection effectiveness. Therefore, we set
two kinds of settings of adjusting parameters in this section,
which is as follows.

1) The value of the parameters is fixed, that is
1 2.

2) The value of the parameters is related to that is
1 2. Namely, the increment and decrement of

the selected probability of the subdomain are set as and
.
The experimental results are shown in Figure 3 and 1 2

are set as 0.05 and 0.01. We can conclude that has major

effect on effectiveness. As increases, the performa-nce of
DNN-DRT increases first and then decreases. Besides, when
the values of the parameters are related to , all the
four DNN-DRT strategies under three DNN models
fluctuates in a small range, and the test effectiveness does not
show an obvious downward trend even is large. When the
values of the parameters are fixed, the testing
effectiveness shows a significant downward trend when is
large. It can be verified that the parameters have effect
on performance of DNN-DRT, and associating with
might be a better approach when applying DRT in practice.
C. RQ3: Comparison on fault detection effectiveness of
DNN-DRT under different datasets

Datasets in NLP are characterized by the scarcity of valid
data and the high cost of manual labeling. However, a well-
performing testing strategy should have low dependencies on
specific datasets, that is, its test results don’t fluctuate greatly
with the sizes of test sets and influence of specific test cases,
so it is necessary to study the impact of test sets on test results.
In the following experiment, a series of test sets are generated
with different and in which test cases and inserted

850

faults are sampled from the original data set randomly in the
following experiment.

Assume that the faults in the original data set are
uniformly distributed, that is fault proportion of gen-
erated test sets by random sampling keeps similar to the
original. So, fault proportion settings of test sets in the same
DNN are set equivalent and those in the different DNNs are
related to the estimated prediction accuracies after the initial
testing.

In the experiment of RQ1, Gini is generally better than the
other two strategies based on test prioritization in effective-
ess, so this experiment only compares Gini with four types of
DNN-DRT strategies. Since the generation and testing
process of the test sets under the same parameter tuple

have certain randomness, the test method may be
carried out by repeating 100 times. The following boxplot
may be used to represent the test effectiveness with as
the metric.

It can be found from Figure 4 that for different test sets
under the same dataset and model, the median values of the
testing strategies are approximately constant. As decreases
of a certain dataset and model, the results become more
divergent and random. On the contrary, the introduction of
test prioritization reduces the statistical uncertainty. For
DRT-P and D-DRT-P strategies, the ranges of s are
wider than those of Gini and narrower than those of DRT-R
and D-DRT-R, but they usually achieve larger non-outlier
maximum values while their non-outlier minimum values
don’t drop too much.
D. Summary

It can be observed that the proposed DRT-P and D-DRT-
P strategies outperform RT, Gini, Entropy, GE-0.5, DRT-R
and D-DRT-R in terms of APFD in the nine versions. Test
prioritization greatly improves the effectiveness of testing
strategies by introducing reasonable reference from the DNN
output. The closed-loop feedback mechanism optimizes the
original strategy, and the effect is obvious in certain versions.
Therefore, DRT-P and D-DRT-P strategies can be considered
as better strategies and optimizations in general.

The initial experimental results show that DRT-P and D-
DRT-P are slightly better than Gini under part of circu-
mstances. As the matter of fact, the parameter tuple
has greatly influence on the test effectiveness of DNN-DRT.
The results of comparison indicate that if the strategies
maintain effective, the adjustment parameters should
decrease accordingly, when increases.

How different test sets influence the fault detection of
testing strategies is also investigated and the results reveal that
the average effectiveness of both test prioritization and DNN-
DRT strategies isn’t affected by sizes of test sets and specific
test cases. In particular, APFDs of DRT-P and D-DRT-P
strategies tend to achieve higher upper limit while ensuring
that the lower limit is not too low, that is, it’s more likely to
obtain a more satisfactory result than that of test prioritization
in a single run.

VI. THREATS TO VALIDITY

Some potential threats to the validity of our experimental
study are discussed in this section.

First, one obvious threat to validity is the selection of
subject programs. In our experiment, the testing strategies are
conducted on three NLP datasets and three DNN models.
They cannot represent all test objects since the number of
datasets and models are limited. It is hard to guarantee that our
strategies will exhibit similar results on other programs.
Nevertheless, these datasets and DNN models have been
widely used in many practical studies to investigate testing
performance. They can reflect the data characteristics and
fault distribution in real situations to certain extent. The
principle of DNN-DRT can also be applied in many other
forms. We look forward to the application of our techniques
in more areas.

Second, a possible threat is related to the measures of fault
detection effectiveness. In our study, we use APFD to evaluate
the performance of testing strategies. Other widely used
metrics, such as F-measure (expected number of test case
executions required to detect the first failure in a specific test
run) and E-measure (expected number of faults being detected
by executing a certain number of test cases) are not applied in
experiment. These metrics can be included in our future study
to evaluate testing strategies from more perspectives.
Nevertheless, to increase the credibility of experimental
results, each trial is repeated 100 times to avoid bias, and the
conclusion of our experiment can be adequately supported.

In addition, the training of DNN models requires a
relatively long time, and the setting of epochs and iteration
times might have effect on accuracy of models. Therefore, it
is difficult to guarantee that our methods and models can be
fully reproduced.

VII. RELATED WORKS

In this section, some of the major state-of-the-art works
on software testing strategies and DNN testing strategies are
introduced.
A. Software testing strategies

Random Testing (RT) is a well-known software testing
technique [21]. In RT, the test cases are selected randomly
from the input domain according to any given distribution
[22]. The simplicity of RT makes it widely used in many
testing fields. However, RT ignores the structural information
concerning software and historical data during the testing
process, which may lead to several difficulties in improving
their effectiveness through internal or external guidance.
Some testing strategies were proposed to enhance the fault
detection effectiveness, including Adaptive Testing (AT)
[23], Adaptive Random Testing [24] and DRT [10].

AT is in the context of software cybernetics which
emphasizes the interplay of control science and software
engineering [23]. In AT, the software testing process is
modeled as an optimal and adaptive control problem. And the
test case selection process can be adjusted online to make an
optimal testing decision [25]. Experimental results show

851

that AT outperforms RT in terms of fault detection effect-
tiveness, however, it requires additional execution time in
real applications. Therefore, some AT-based strategies have
been proposed to improve fault detection effectiveness and
efficiency, including AT-RT hybrid approach [26], AT
strategy based on moment estimation [27] and AT strategy
based on the coverage spectrum and operational profile [28].
Another widely studied testing strategy is ART [24], which
aims at using fewer test cases to detect the first failure. The
intuition of ART is that the failure-causing inputs are
clustered, and selecting a test case far away from previously
executed non-failure-causing test cases will be more likely to
detect a failure. In ART, the test case is not selected randomly
but rather selected by calculating the total distance from all
previously selected test cases such that the total distance is
maximized [29]. Many ART-based algorithms were proposed
due to the inception of ART, such as Mirror ART [30],
Randomized Random Testing (RQRT) [31], and Random
Border Centroidal Voronoi Tessellations (RBCVT) [32]. Both
AT and ART can significantly improve fault detection effecti-
veness, however, the sophisticated algorithm behind them
hinders the enhancement of testing efficiency. Besides, the
intuitions of ART and AT are similar to our approach since
they are based on the same hypothesis of similar behavior.

DRT is also in the context of software cybernetics [23],
which dynamically changes the testing profile so that the test
cases with higher failure detection rates will have higher
selection probabilities. Some improved DRT strategies have
been proposed, i.e., history-based DRT (DRT-h) [33],
adaptive DRT (A-DRT) [34] optimization DRT (O-DRT) [35],
Adaptive Partition Testing (APT) [36] and D-DRT [13],
aiming at enhancing the fault detection effectiveness. The
experimental results have shown that these DRT-based
strategies can improve the effectiveness under certain
circumstances. However, the setting of optimal parameters
may vary with different types of software. Our study focusses
on combining the principle of DRT into DNN testing to
improve the testing process, The ideas behind these methods
can also be applied in the D-DRT-P to enhance the fault
detection effectiveness in future works.
B. DNN testing strategies

Inspired by traditional test coverage metrics, a few resear-
chers believe that the distribution of neuron activation values
plays an important role in DL software. They propose a series
of structured test coverage metrics based on neuron activation
values by counting and tracking the distribution of neuron
activation values or the changing relationship between
adjacent neuron layers.

Coverage criteria is a type of testing strategies borrowed
from traditional software testing in the early days. Some
researchers believe that the distribution of neuron activation
values plays a vital role in intelligent software testing. In
2017, Pei et al. proposed DeepXplore [3], the first white-box
testing framework based on neuron coverage in real DL
systems. And DeepCover [37] introduces more coverage
criteria such as symbol-symbol, distance-symbol, symbol-
value, and distance-value coverage. Later, DeepGauge [4],
DeepCT [5], DeepPath [34], etc. have done further research
on coverage-guided testing criteria by extracting the internal

information of the DNNs. Compared with the black-box
model, the coverage criteria based on the white-box model
requires deep analysis of the neuron states in the DNN, which
greatly increases the complexity and has great limitations in
its testing effectiveness.

Test case prioritization, another type of DL software-
oriented testing mechanism, has the advantage of being
relatively simple and effective. It prioritizes test cases by
calculating the weight or test significance in the candidate set,
aiming to detect the test cases with higher defect detection
rates or easier misclassification faster. Kim et al. propose
LSA [9] to measure how close an input is to the class
boundary. Li et al. propose a test selection strategy of Cross
Entropy-based Sampling (CES)[39] to evaluate the accuracy
of the operating environment. Feng et al. propose DeepGini
based on the statistical perspective of DNN [8], which adopts
Gini impurity to estimate the probability of test cases being
classified differently in a simple and effective way. Besides,

and Geometric diversity-based prioritization (GD)
[40], etc. are also used as the metrics to point the suitable
order of selection. However, the above prioritization
strategies focus on image data more compared with text data.
Most of the effective comparisons are based on experimental
results, and it’s not clear to analyze theoretically and intuit-
tively.

VIII.CONCLUSION

DNN has achieved great process and widely deployed in
many domains and suffer from software faults that may cause
economic losses. NLP contains richer information and has the
characteristics of subjectivity, ambiguity and irregularity,
which prompts that extracting insights from text can be
challenging and time-consuming. It is essential to ensure the
quality and reliability of NLP-DNN models. However, DNN
testing is still at early stage and existing strategies might not
sufficiently effective.

We propose a D-DRT-P strategy in this paper. It utilizes
the priority information and distance information to enhance
the DRT strategy. The priority information is used to classify
the test suite and guide the test case selection inside the
subdomains, and distance information is adopted to adjust the
testing profile, along with testing results.

We conducted experiments to compare the four kinds of
DNN-DRT with other test prioritization strategies on three
NLP datasets and three well-known DNN models. The
experimental results demonstrate that DNN-DRT strategies
can achieve better performance than RT, Gini, entropy and
GE-0.5 in most cases. And we find that both priority
information and distance-based adjustment can enhance the
effectiveness of DRT, and priority information might be more
effective in improving the fault detection effectiveness.
Besides, the parameter tuple has greatly influence on
the test effectiveness of DNN-DRT, and associating
with might be a better choice when applying DNN-DRT in
practice. In addition, the effectiveness of DNN-DRT strat-
egies is little affected by sizes of test sets and specific test
cases.

Future works include combining more feature analysis
methods and uncertainty measurement methods into D-DRT-

852

P strategy, so that the fault detection capacity of test cases can
be evaluated more comprehensively. Besides, we tend to
conduct experiments on wider range of datasets and models,
and verify the effectiveness and efficiency of our strategies
through more metrics.

ACKNOWLEDGMENT

This work is supported in part by National Key R&D
Program of China under Grant 2021YFB1600601, in part by
the National Natural Science Foundation of China under Grant
61772055 and Grant 61872169.

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning.” Nature, 2015,

521(7553):436.
[2] M. Shervin, et al. “Deep learning--based text classification: a

comprehensive review.” ACM Computing Surveys (CSUR) 2021, 54.3:
1-40.

[3] K. Pei, Y. Cao, J. Yang, et al. “Deepxplore: Automated whitebox
testing of deep learning systems”. Mobile Computing and
Communications Review, 2018, 22(3):36-38.

[4] L. Ma, Y. Liu, J. Zhao, et al. “DeepGauge: Multi-granularity testing
criteria for deep learning systems.” ACM/IEEE International
Conference. ACM, 2018:120-131.

[5] L. Ma, J. Xu, F, M. Xue, et al. “DeepCT: Tomographic combinatorial
testing for deep learning systems.” 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019: 614−618.

[6] Z. Li, X. Ma, C. Xu and C. Cao. “Structural coverage criteria for neural
networks could be misleading.” Proc. of the 41st Int’l Conf on Software
Engineering: New Ideas and Emerging Results. 2019: 89−92.

[7] J. Chen, M. Yan, Z. Wang, Y. Kang, and Z. Wu, “Deep neural network
test coverage: How far are we?” 2020. arXiv preprint
arXiv:2010,04946.

[8] Y. Feng, Q. Shi, X. Gao, et al. “DeepGini: prioritizing massive tests to
enhance the robustness of deep neural networks.” Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 2020:177–188.

[9] J. Kim, R. Feldt and S. Yoo. “Guiding deep learning system testing
using surprise adequacy.” 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE) 2019.

[10] K.Y. Cai,, H. Hu, C.H Jiang, and F. Ye. “Random testing with
dynamically updated testing profile.” Proceedings of the 20th
International Symposium On Software Reliability Engineering (ISSRE
2009), 2009: 1-2.

[11] H. Pei, K.Y. Cai, B. Yin, A.P. Mathur, and M. Xie, “Dynamic random
testing: Technique and experimental evaluation.” IEEE Transactions
on Reliability, 2019, 68(3):872-892.

[12] Rothermel, Gregg, et al. “Prioritizing test cases for regression testing.”
IEEE Transactions on software engineering. 2001. 27.10: 929-948.

[13] H. Pei, B. Yin , M. Xie and K.Y. Cai. “Dynamic random testing with
test case clustering and distance-based parameter adjustment.”
Information and Software Technology, 2021, 131(12):106470.

[14] K.Yoon. “Convolutional neural networks for sentence classification
[OL].” arXiv Preprint. 2014.

[15] P. Liu, X. Qiu and X. Huang. “Recurrent neural network for text
classification with multi-task learning.” arXiv preprint
arXiv:1605.05101. 2016.

[16] D. Jacob, et al. “Bert: Pre-training of deep bidirectional transformers
for language understanding.” arXiv preprint arXiv:1810.04805. 2018.

[17] D.Thomas, et al. “Automated hate speech detection and the problem of
offensive language.” Proceedings of the international AAAI
conference on web and social media. 2017, 11(1).

[18] https://www.kaggle.com/datasets/kotartemiy/topic-labeled-news-
dataset.

[19] https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-
50k-movie-reviews.

[20] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G.Rothermel, “A
static approach to prioritizing junit test cases.” IEEE Transactions on
Software Engineering, 2012, 38(6):1258-1275.

[21] W.J. Gutjahr. “Partition testing vs. random testing: The influence of
uncertainty.” IEEE Transactions on Software Engineering, 1999, 25(5):
661-674.

[22] T.Y. Chen, and Y.T. Yu, “On the relationship between partition and
random testing.” IEEE Transactions on Software Engineering, 1994,
20(12), 977-980.

[23] K.Y. Cai. “Optimal software testing and adaptive software testing in
the context of software cybernetics.” Information and Software
Technology, 2002, 44(14):841-855.

[24] T.Y. Chen, T. Tse, and Y. Yu. “Proportional sampling strategy: a
compendium and some insights.” Journal of Systems and Software,
2001, 58(1): 65-81.

[25] K.Y. Cai, B. Gu, H. Hu, and Y. Li, “Adaptive software testing with
fixed-memory feedback.” Journal of Systems and Software, 2007,
80(8):1328-1348.

[26] J. Lv, H. Hu, K.Y. Cai. and T.Y. Chen, “Adaptive and random partition
software testing.”. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2014, 44(12):1649-1664.

[27] P. Xiao, Y. Yin, Liu, B. Jiang, and Y.K. Malaiya, “Adaptive testing
based on moment estimation.” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 2017 50(3):911-922.

[28] A. Bertolino, B. Miranda, R. Pietrantuono, and S. Russo. “Adaptive
test case allocation, selection and generation using coverage spectrum
and operational profile.” IEEE Transactions on Software Engineering,
2019:1-18.

[29] J. Chen, L. Zhu, T.Y. Chen, D. Towey, F.C. Kuo, R. Huang, and Y.
Guo. “Test case prioritization for object-oriented software: An adaptive
random sequence approach based on clustering.” Journal of Systems
and Software, 2018, 135:107-125.

[30] R. Huang, H. Liu, X. Xie, and J. Chen. “Enhancing mirror adaptive
random testing through dynamic partitioning.” Information and
Software Technology.2015, 67:13-29.

[31] H. Liu, and T.Y. Chen, “Randomized quasi-random testing.” IEEE
Transactions on Computers, 2015, 65(6):1896-1909.

[32] A.Shahbazi, A.F. Tappenden, and J. Miller, “Centroidal voronoi
tessellations-a new approach to random testing.” IEEE Transactions on
Software Engineering. 2012, 39(2):163-183.

[33] L. Zhang, B. Yin, J. Lv, K.Y. Cai, S.S. Yau and J. Yu. “A history-based
dynamic random software testing.” Computer Software and
Applications Conference Workshops (COMPSACW), 2014 IEEE 38th
International, 2014:31-36.

[34] Z. Yang, B. Yin, J. Lv, K.Y. Cai, S.S.Yau, and J. Yu. “Dynamic
random testing with parameter adjustment.” Computer Software and
Applications Conference Workshops (COMPSACW), 2014 IEEE 38th
International, 2014:37-42.

[35] Y.,Li, B. Yin, J. Lv, and K.Y. Cai, “Approach for testing profile
optimization in dynamic random testing.” Computer Software and
Applications Conference (COMPSAC), 2015 IEEE 39th Annual. 2015,
(3): 466-471.

[36] C.A. Sun, H. Dai, H. Liu, T.Y. Chen, and Cai, K.Y. “Adaptive partition
testing.” IEEE Transactions on Computers, 2018, 68(2), pp.157-169.

[37] Y. Sun, X. Huang and D. Kroening. “Testing deep neural networks.”
arXiv preprint arXiv:1803.04792, 2019.

[38] J. Sekhon, C. Fleming. “Towards improved testing for deep learning.”
Proc. of the 41st Int’l Conf. on Software Engineering: New Ideas and
Emerging Results. 2019: 85−88.

[39] Z. Li, X.Ma, C. Xu, C. Cao, J. Xu, and J. Lü. “Boosting operational
DNN testing efficiency through conditioning.” In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering. 2019: 499–509.

[40] Z. Aghababaeyan, M. Abdellatif, , L. Briand and M. Bagherzadeh,
“Black-box testing of deep neural networks through test case diversity.”
2021, arXiv preprint arXiv:2112.1259.

853

