
Generating Abstract Test Cases from User Requirements using MDSE and NLP

Sai Chaithra Allala1, Juan P. Sotomayor1, Dionny Santiago1, Tariq M. King2, and Peter J. Clarke1
1School of Computing and Information Sciences , Florida International University, Miami, FL 33199, USA

2EPAM, 41 University Drive Suite 202, Newton PA, 18940, USA
{salla010, jsoto128, dsant005}@cis.fiu.edu, tariq king@epam.com, clarkep@cis.fiu.edu

Abstract—Model-driven software engineering (MDSE) has
emerged as a popular and commonly used method for
designing software systems in which models are the primary
development artifact over the last decade. MDSE has resulted
in the trend toward further automating the software process.
However, the generation of test cases from user requirements
still lags in reaching the required level of automation. Given
that most user requirements are written in natural language,
the recent advances in natural language processing (NLP)
provide an opportunity to further automate the test generation
process.

In this paper, we exploit the advances in MDSE and NLP
to generate abstract test cases from user requirements written
in structured natural language and the respective data model.
We accomplish this by creating meta-models for user require-
ments and abstract test cases and defining t he appropriate
transformation rules. To support this transformation, helper
methods are defined t o e xtract t he r elevant i nformation from
user requirements related to testing. To show the feasibility of
the approach, we developed a prototype and conducted a case
study with use cases and test cases from a Payroll Management
System.

Keywords—Abstract Test Cases; Model-Driven Software Devel-
opment; Natural Language Processing; Software Testing; User
Requirements.

I. INTRODUCTION

Testing continues to be the major approach to ensuring soft-
ware quality during development. Many studies have shown
that automating the generation of test cases from requirements
can substantially reduce costs and improve the efficiency of the
testing process [1]. An essential aspect of the software process
is the consistency of the artifacts developed starting from
the requirements through software design and implementation
[2]. User requirements, written as use cases or user stories,
are the basis for developing system test cases and help the
developer to answer the following question. “Are we building
the right product?” Software testing is becoming increasingly
challenging as the complexity of systems continues to evolve
and the deployment of applications becomes more demanding
[3], [4].

During the past decade, there have been many attempts to
automate the generation of test cases from user requirements
(formal or informal) [5]–[9] with some success. However,
more needs to be done to keep pace with the advances in other
areas of software development, and some of these advances
can even be integrated into the software testing process. Three
such areas with major advancements include Model-driven
Software Engineering (MDSE), Artificial I ntelligence (AI),
and Natural Language Processing (NLP). Combining different
techniques from these areas has the potential to significantly

automate the generation of test cases from requirements,
thereby reducing the overall cost of testing and improving the
efficiency of the testing process.

In this paper, we extend the work presented by Allala et al.
[10] that introduces an approach to automatically generating
test cases from user requirements using MDSE and NLP.
These extensions include the following. (1) Providing more
details on the overall process that generates test cases from use
cases or user stories. (2) Describing meta-models for enhanced
user requirements (EURs)(user requirements and data models)
and abstract test cases (ATCs). (3) Describing the underlying
algorithm used in the model-to-model (M2M) transformation
from the EUR meta-model to the ATC meta-model.

The underlying concepts of model transformations are a vi-
tal ingredient to our approach. Using our automated approach,
we attempt to answer two questions: (1) How similar are the
ATCs generated using our automated approach compared to
the ATCs generated using a manual approach? (2) What are
the major limitations of using our approach to generate ATCs?
The contributions of the work presented in the paper include
the following:

• Meta-models for enhanced user requirements (EURs) and
abstract test cases (ATCs).

• An algorithm that generates a EUR model from user
requirements (use cases) and a data model (ER model).

• A transformation that generates ATCs from EUR models.
• Results of a case study that compares manually generated

ATCs against the ATCs generated from the prototype
using our approach.

The paper is organized as follows. Section II provides
background and related work. Section III describes our high-
level approach to transforming user requirements to test cases
and introduces an illustrative example. Section IV describes
the EUR meta-model and generation EUR models. Section V
describes the transformation from EUR models to ATCs. We
then present a case study in Section VI and conclude the paper
in Section VII.

II. LITERATURE REVIEW

In this section, we provide a brief introduction to Model-
Driven Software Engineering (MDE) and Natural Language
Processing (NLP) and compare our work to the most closely
related work in the literature.

A. Background

A meta-model can be defined as an abstraction of a model,
highlighting the properties of the model itself [11]. If a model

744

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS57517.2022.00080

adheres to the properties of the meta-model, then the model
conforms to the meta-model.

A transformation includes a set of rules that allows to create
a target model (M2) from a source model (M1). The rules
defined by the transformation are at the level of the meta-
models.
Natural Language Processing (NLP), a component of Artificial
Intelligence and Computational Linguistics [5], has the goal
of performing human-like language processing. NLP requires
several levels of language processing that may interact with
each other [12].

One of the most widely used tools for NLP is Stanford
CoreNLP [13], which is a toolkit that provides an extensible
pipeline that provides core natural language analysis. The
Stanford CoreNLP consists of several components including
Tokenization - splits text into a sequence of tokens; Sentence
Splitting - splits a sequence of tokens into sentences; POS
tagging - labels tokens with their POS tags; Syntactic Parsing -
provides a complete syntactic analysis based on a probabilistic
parser; Sentiment Analysis - uses deep learning to annotate the
parse trees; and Conference Resolution - creates a conference
graph that allows for various annotations.

B. Related Work

The research literature contains a broad spectrum of work
on automatically generating test cases using MDSE [14], and
more recently using NLP [5]. Most of the related work use
the term Model-Driven Engineering (MDE) to refer to MDSE.
However, few works use both MDSE and NLP to generate test
cases automatically. We first review the work related to MDSE,
then those related to NLP, and finally those with both MDSE
and NLP.
MDSE: Gutiérrez et al. [14] present an approach to gener-
ating functional test cases from functional requirements. The
approach uses four meta-models and four transformations. The
first transformation occurs between functional requirement
meta-models, an endogenous transformation within the same
meta-model. The second and third transformations are from
the functional requirement meta-model to the test scenarios
and test values meta-models. The final transformation occurs
from the three previously used meta-models to the test case
meta-model. The test scenario meta-model includes concepts
that support test coverage criteria on the specification, e.g.,
path analysis. The test values meta-model includes concepts
for test value generation, such as the category partition method.
The transformations are implemented using QVT and the Java
language.

Hue et al. [15] propose an MDE approach (USLTG) that
takes as input a use case model and a class diagram and
transforms it into a model in the Test Case Specification
Language (TCSL). The authors developed TCSL as part of
their work. USLTG uses three algorithms to transform a use
case model into a TCSL model. The algorithms in USLTG
are used in a pipeline manner to (1) generate use case
scenarios and constraints, (2) generate test input data for
each scenario, and (3) generate a TCSL model. The use case

model supports selecting and using test coverage criteria with a
UML activity diagram, thereby supporting path coverage. The
paper describes the USLTG implementation and a case study
showing how test cases are generated for a library application.

Our approach does not use any static or dynamic UML
models that represent the system requirements. However, we
use many of the transformation and meta-model concepts key
to MDE. We generate a user requirements instance model
directly from the natural language user requirements and the
data model, then generate abstract test cases using M2M
transformations.
NLP: Garousi et al. [5] conducted a systematic literature
mapping (SLM) on the approaches used to extract test cases
from natural-language requirements using NLP. The authors of
this SLM included 67 academic peer-reviewed papers and 38
associated tools from 2001 to 2017. The SLM focused on three
broad categories of research questions, including NLP-assisted
software testing - which refers to any NLP-based techniques or
tools that assist any software testing activity, and those works
that include empirical case studies.

As previously stated, the most common tool used found in
the SLM was the Stanford CoreNLP [13]. The natural lan-
guage requirements used both a restricted and non-restricted
format. One of the main issues raised by the authors was the
accuracy score of the NLP-based test generation approaches,
currently between 70% and 90%.

Thummalapenta et al. [16] present a technique that auto-
mates test generation starting with a test case written in natural
language and generates a sequence of procedure calls with
parameters that can be automatically executed.

The test case in natural language uses a restricted vocabulary
that makes POS tagging easy using a natural language parser.
The first phase is to break a test step (two or more segments)
into preliminary segments based on conjunction words. The
second phase is to tag each preliminary segment, identifying
the noun (subject), verb, a second noun (object). The third
phase removes ambiguities from the preliminary segments.

Similar to the approaches by Garousi et al. [5] and Thum-
malapenta et al. [16], we also use the NLP levels of morphol-
ogy, syntax, and semantics when processing user requirements.
Unlike these approaches, we do not create executable test
cases in this work; we create abstract test cases that require
an instance of a data model to create executable test cases. In
addition, we do not use any other formal representation except
for representing the user requirements and the applications’
data model as an enhanced user requirements model. This
model is used as input to the transformation that produces
the abstract test case model.
MDE and NLP:

Wang et al. [9] describe their approach to automatically
generating test cases from natural language specifications,
referred to as Use Case Modeling for System-level Acceptance
Tests Generation (UMTG). UMTG takes as input uses cases
written in structured natural language (Restricted Use Case
Modeling (RUCM)) and a domain model (a class diagram)
and generates executable system test cases for acceptance

745

Figure 1. Overview of the high-level transformation process.

testing. UMTG uses NLP to build Use Case Test Models
(UCTMs) from the RUCM specifications. UMTG uses five
NLP analysis to extract the pre, post and guard conditions
(constraints) needed to generate the test inputs for the test
cases. The empirical results using two industrial case studies
show that UMTG can automatically and correctly generate
95% of the OCL constraints from the RUCM specifications,
of which 99% of the constraints are correct.

Our approach is closer to that of Wang et al. [9] on the front
end of the processing using NLP. That is, we use a data model
that represents the data tables and relationships the application
uses, whereas Wang et al. uses a domain model represented
as a class diagram. In addition, we implicitly capture the
behavioral semantics of the use cases in the user requirements
model used as input to the transformation to generate abstract
test cases. We do not generate executable test cases in this
phase of our work. The generation of test cases is left for
future work using an instance of the data model and given
specific coverage criteria.

III. OVERVIEW OF APPROACH

In this section, we provide an overview of our approach to
transforming user requirements to test cases while discussing
an example use case and the related entity-relationship model.

A. High-level Transformation

Figure 1 shows a high-level view of the transformation
process from user requirements to test case generation. Figure
1 is updated from the previous published work [10] and uses
additional models and processes in the transformation. The
following enumerated list describes each of the major phases
in the overall transformation process.

(1) The source for the transformation process is either a use
case (upper left side of Figure 1.1.a - Format 1: Use
Case) or a user story (bottom left side of the figure (b) -
Format 2: User Story). The template used to submit the
user requirement (use case or user story) is an instance
of the meta-model defined in 2.a.

(2) Requirements Meta-Model (a) - represents the definition
of the meta-model for the abstract syntax of the user

requirement (b). A UML class diagram and Object Con-
straint Language (OCL) rules are used to define the meta-
model. Details of the user requirements meta-model can
be found in [10]. Source Model (b) - represents the use
case or user story that conforms to the use requirements
meta-model.

(3) Enhanced Requirements Meta-Model (a) - represents
the definition of the meta-model for an extension of
the user requirements that includes elements from the
application’s data model, referred to as the Enhanced
User Requirements Model (EURM). The Enhanced User
Requirements Model (b) - is created by analyzing the user
requirements using NLP and accessing an instance of the
data model for the application.

(4) Transformation Rules and Helpers (a) - stores the trans-
formation rules and helper functions needed to sup-
port the transformation process. The Transformation En-
gine(b) - uses the transformation rules and helper func-
tions defined in (4.a) to transform the source model (3.b)
to the target model (5.b) using a M2M transformation. We
use M2M Atlas Transformation Language (ATL) [17].

(5) Abstract Testing Meta-Model (a) - represents the defini-
tion of the meta-model for the abstract syntax for abstract
test cases. Abstract Test Case Model (b) - represents an
abstraction of the test case generated from the EURM.
These abstract test cases are later instantiated to concrete
test cases that can be executed by the system.

(6) Generation Rules and Helpers (a) - provides rules and
helper functions needed to create concrete test cases. Test
Case Generator (b) - generates multiple concrete test
cases from an abstract test case by accessing an instance
of the application’s data model and using the rules and
helper functions. Test case generation rules can be based
on existing test generation techniques such as equivalence
partitioning, or boundary value analysis [18].

(7) Test Case - represents the format of the final concrete test
cases generated with all the data values.

(8) NLP Techniques - represents the algorithms and tech-
niques required to process the user requirements. In this
work, we used the Stanford Natural Language Processing

746

Figure 2. Example of the login use case for the Payroll Management System
(PMS).

toolkit [5] to process the user requirements.
(9) Repository (a) - contains the data model for the ap-

plication and stores the intermediate model representa-
tions generated during NLP processing EURM model
transformation. Repository (b) - contains instances of the
application data model that are used during concrete test
case generation.

In this paper, we describe the models and process from
phase 2, the reading of the user requirements, to phase 5, the
generation of the abstract test cases, as shown in Figure 1.
Only the use case format for user requirements is used.

B. Example of Use Case and Data Model

In this section, we introduce an illustrative example that
includes a use case from an application named Payroll Man-
agement System (PMS) and the associated data model. PMS
is used for calculating the pay of the employees at a company
and was developed in a graduate software engineering class at
Florida International University. PMS includes the following
use cases login, logout, adding new employees, reporting
hours worked, submitting employee time sheets, and approving
employee time sheets.

We use a trivial use case as the example, that is, logging
into the PMS system, as shown in Figure 2. We use a reduced
format of the use case template that focuses mainly on the
functionality of the transaction. In future work, we will include
the entire format of the use case, including the non-functional
requirements.

We decided to represent the data model for the system as
an entity-relationship diagram (ERD). The Partial ERD for
PMS is shown in Figure 3. The ERD in the figure shows a
subset of the entities (5/9) used in the design of PMS. The
5 entities are User, Employee, Employer, Department
and Security Question. The relationships between the
entities are described as follows. Each user belongs to a
department, while each user is either an employee or employer,
and every user has one or more security questions.

Figure 3. Partial entity-relation diagram (ERD) for PMS.

IV. ENHANCED USER REQUIREMENTS MODEL

This section details how the Enhanced User Requirements
Model (EURM) is generated from the user requirements
model, data model, and the entities generated during NLP.

A. Enhanced User Requirements Meta-model

To support the transformation process shown in Figure 1 we
define a meta-model for the EURM. This meta-model is shown
in the box labeled 3(a) in Figure 1. A partial representation
of the enhanced user requirements meta-model, referred to as
EUR-MM, is shown in Figure 4. EUR-MM consists of UserReq
- the user requirements meta-model derived from the meta-
model described in Allala et al. [10] and a DataModel that
represents parts of the meta-model for an enhanced entity-
relation model [19].

The UserReq, showing in Figure 4 shows the meta-model
for the use cases and consists of a Goal - a summary of
the intent of the use case; Actor - external entity interacting
with the system; Precondition - constraints that should
hold before the functionality in the use cases is performed;
Description - the flow (Flow) of steps (Step) represent-
ing the functionality; and Postcondition - the constraints
that should hold after execution of the flow representing the
functionality. The DataModel consists of one or more enti-
ties (tables) in the data model. Each DM_Entity consists of
one or more table attributes (DM_Attribute). The concept
of an alias (Alias) is introduced into the meta-model that
connects various terms used in the use case to the actual names
of entities and attributes in the data model. The SysEntity
class refers to different elements of the actual system, such as
pages, page fields, and sessions.

Not shown in Figure 4 are the classes representing the
components of a constraint and the components of a step in
the flow of the functionality for the use case. A constraint
is composed of the entities (CEntity) and an operator
(COperator) that may be a combination of logical, rela-
tional, and membership applied to entities. Each step in the
flow process is composed of SSubject - the main actor
in the step, SAction the action performed by the subject,
SObject - the receiver of the action, and optionally SDest

747

Figure 4. Partial enhanced user requirements (EUR) meta-model.

- the intended target of the action. The classes described in
this paragraph may all have aliases related to elements of the
data model or other elements of the system, e.g., an attribute
in a data model entity, a page, or a field in a page. An instance
of the EUR meta-model in Figure 4 is shown on the left side
of Figure 6.

B. Generating the EURM

In this section, we describe how user requirements are
processed using NLP-based techniques, see box 8, and the
data model in the repository, see the cylinder labeled “a” in
box 9 in Figure 1. After we define the structure of a model
that conforms to a meta-model, we apply NLP techniques to
perform linguistic analysis on the user requirements text. The
NLP processing workflow uses features from the Stanford
CoreNLP suite [5] such as the tokenizer, sentence splitter,
POS tagger, and dependency parser. After NLP processing,
there is still some ambiguity regarding the context and POS
tagging of words. We use manual input in cases where a value
cannot be identified when applying our matching procedure.
A knowledge base is created to keep track of the user input
and maps phrases used in the EURM to the phrases used in
the user requirements. This mapping approach supports the
substring matching for all the matching procedures.

Algorithm 1 shows the details of the algorithm used to
process a user requirements model (URM) and create an
enhanced user requirements model (EURM). The algorithm
consists of two procedures (1) the main, gen_EURM, see
line 1, and (2) the preprocessor, preproc_URM, see line 39.
Both procedures take in two parameters, URM and Repos - a
reference to the repository containing all the processed NLP
entities, the application data model, and associated graphs.

Algorithm 1 Algorithm showing the generation of an EURM
from a user requirements model and data model
1: gen EURM (URM, ref Repos)

/*Input: URM - User Requirements Model;
Repos - Repos - repository for NLP entities and data model (DM)

Output: EURM - enhanced user requirements model; */
Repos - updated repository */

2: eurm ← createEURM()
3: preproc URM(URM, Repos) /*See line 39*/
4: for each entryType ∈ URM do
5: if entryType.equals(UC ID) then
6: eurm.addUseCase ID(entry)
7: end if
8: if entryType.equals(GOAL) then
9: eurm.addGoal(entry)

10: end if
11: if entryType.equals(ACTOR) then
12: /*performs fuzzy substring matching with annotated SROs*/
13: /*if no match or match probability low ask user*/
14: matchActor = matchingActor(entry, Repos)
15: eurm.addActor(matchActor, Repos) /*checks DM for aliases*/
16: end if
17: if entryType.equals(PRECOND) then
18: for each entry ∈ precond do
19: /*matchPrecond is a list containing CEntity1, COperator,*/
20: /* CEntity2*/
21: matchPrecond = matchingPrecond(entry, Repos)
22: /*checks DM for aliases in addPrecond*/
23: eurm.addPrecond(matchPrecond, Repos)
24: end for
25: end if
26: if entryType.equals(DESCRIPT) then
27: for each entry ∈ descript do
28: /*matchDescript is a list containing SSubject, SAction, */
29: /* SObject, SDest*/
30: matchDescript = matchingDescript(entry, Repos)
31: /*need to check DM for aliases in addDescript*/
32: eurm.addDescript(matchDescript, Repos)
33: end for
34: end if
35: if entryType.equals(POSTCOND) then
36: /*similar to precond, see lines 17 to 25*/
37: end if
38: end for
39: preproc URM (URM, ref Repos))

/*Input: Same as in Line 1
Output: Repos - Repository updated with artifacts from NLP and DM */

40: for each entry ∈ URM do
41: /*Uses POS tagging and PennTreebank Project*/
42: anpos ← create(entry) /*returns annotated pos*/
43: /*Calls APIs in OpenIE pipeline*/
44: anobjs ← pipeline(apos) /*returns annotated objects*/
45: ansros ← generate(anobjs) /*returns annotated SROs*/
46: Repos.add(entry, ansros)
47: end for
48: for each field ∈ DM do
49: dmgraph ← addToGraph(field) /*creates bidirectional graph*/
50: end for
51: Repos.add(dmgraph)

The preprocessing procedure preproc_URM, lines 39 to
51, performs the NLP activities described in the first paragraph
of this section. For each entry in the URM and annotated POS,
anpos, is created, which is then sent through the pipeline to
create annotated objects, anobjs, for the entry. These objects
are then processed to generate annotated subject, relation, and
objects (SROs), ansros, and added to the repository along
with the entry. The preprocessing procedure also creates a
bidirectional graph for the data model, line 49, which is later

748

used to create aliases for the elements of the URM.
The main procedure starting at line 1 produces as output a

EURM and the updated repository. This procedure starts by
creating a EURM, eurm, an instance of the EUR meta-model
containing only its structure, see line 2. As each component
of the EURM is processed, it is updated with the processed
UR entry details, e.g., lines 6, 9, 15, 23, and 32. In line 3, the
preprocessing procedure is called. Lines 5 through 10 check
if the entry is a use case id, UC_ID or a goal, GOAL and add
them to the EURM unchanged.

Lines 11 to 16 process the entry of type actor, ACTOR. This
involves calling the procedure matchingActor that takes
the UR entry and repository as parameters. All the matching
procedures do a fuzzy substring matching to see if entries in
the UR entry match entities in the data model (dmgraph)
and phrases stored in the knowledge base for the EURM. If
the threshold is satisfied, the match is done automatically.
Otherwise, user input is required, the EURM is updated,
and the mapping is added to the knowledge base. Currently,
we have a high threshold since determining the appropriate
threshold will be considered in future work. The matching
algorithms for the precondition, description, and postcondition
are all tailored based on the structure of the EURM meta-
model. For example, some phrases used in the URM may need
to be replaced by phrases used in the knowledge base of the
EURM.

Lines 17 to 25 show the processing performed on each
entry in the precondition component of the UR model. The
matchingDescript procedure returns a list consisting of
CEntry1, COperator and CEntry2 as a JSON-like string
stored in matchDescript. For each precondition entry, the
POS and SRO nouns are checked, and fuzzy substring match-
ing is performed on the data model to create the CEntity1.
For the COperator, the POS verbs (e.g., has, have, clicks,
etc.) are checked, followed by the SRO relations. A POS verb
and SRO relation match mean the same word occurs in the
knowledge base for constraint operators, ignoring case or a
subset, e.g., enter or enters. The fuzzy substring function is
invoked if there is no direct match. In the case of duplicates,
the most frequent match is selected. If no match is made,
the system asks for a manual review. The processing for the
CEntry2 is similar to the CEntry1 except the focus is on
nouns and adjectives.

The processing of the description component (DESCRIPT)
of the UR model, lines 26 to 34, is similar to the precondition,
except there are four parts to be generated, SSubject,
SAction, SObject, and SDest, see Section IV-A for a
description of these parts. The processing of the postcondition
component (POSTCOND), see lines 35 to 37, is similar to that
of the precondition, lines 17 to 25. An EURM for the user
requirement in Figure 2 is shown on the left side of Figure 6.

V. TRANSFORMING EURS TO ABSTRACT TEST CASES

In this section we describe how EURMs are transformed
into abstract test cases (ATCs). This description includes the
ATC meta-model and the Atlas Transformation Language

(ATL) rules in Figure 5 used during the transformation pro-
cess. The transformation process is shown in the boxes labeled
3, 4 and 5 in Figure 1.

A. Abstract Test Case Meta-model

The meta-model, ATC-MM, consists of an abstract test case
ATC and a data model DataModel. The data model is similar
to the one used in the EUR meta-model, shown in Figure 4.
The ATC meta-model consists of Purpose - a description of
the ATC, TestSetup - that state the system should be in for
the successful execution of the test case, and I_EO_Pairs
- the inputs and the expected output of the test case. The
test setup and expected outputs are both defined as constraints
(Constraint). These constraints may be either a data
model constraint (DM_Constr) or a system state constraint
(SysState_Constr). Each ATC input consists of a flow
(ATC_Flow) and steps (ATC_Step) similar to the EUR
meta-model. The ATC meta-model currently includes four
enumeration types DM_Operators - the operators related
to the data model, Page_State - the state of the page the
actor is accessing, Session_State - the current state of the
system, and Input_Action - the action taken by the actor.

The data model constraint DM_Constr is composed of
a data model entity, data model operator (DM_Operator),
and data model attribute. The system state constraint consists
of a page state or a session. Similar to the data model
operator, the page state and session state are also enumerated
types. For each enumerated type we show the initial set
i.e Input_Action (enters,click on,select) which may be
expanded upon in future work. An instance of the ATC
meta-model is shown on the right side of Figure 6. Due to
page length restriction the ATC meta-model diagram was not
included in this paper.

B. Transformation rules

An ATL model-to-model transformation, is composed of
a set of transformation rules and helpers that handles the
mapping between the source meta-model (EUR) elements,
shown in figure 4, and the target meta-model (ATC) elements
mentioned above. Each rule specifies how the source model
elements must be matched and navigated in order to initialize
target model elements. The transformation processes uses
declarative rules for testcaseID, purpose and so on.

Figure 5 shows several rules used in the transformation
engine. In this example, the execution starts on line 16 with the
rule Precondition2Testsetup, which iterates through
each precondition entry and generates an entry for test setup
by calling the lazy rule Constraints2TConstraint, line
5. The Constraints2TConstraint rule then transforms
each component of the precondition entry into its counterpart
in the test setup entry, starting with the component subject.
The precondition subject is transformed using the lazy rule
CSubject2Subject.

The source pattern used in each rule is shown after the
keyword from and the target pattern is shown after the
keyword to. The source and target patterns are uniquely

749

Figure 5. Atlas transformation language.

labeled, usually with a lowercase letter, e.g., a, before the
colon (:). Note that there can be multiple target patterns for
a rule. The left arrow (←) signifies the binding between the
result of an expression and a feature name. The expression on
the right side of the left arrow may be an OCL expression
that processes a collection, see line 18 in Figure 5. ATL
can manipulate collections similar to OCL. The right side of
the left arrow may also use helper functions to assist with
processing collections.

Helper functions can be used to define (global) vari-
ables and functions. They can call each other (recursion is
possible) or they can be called from within rules. In the
example in Figure 5 we define a helper function, lines 1
to 3, which iterates over each precondition entry and this
allows the target pattern ATC!TestSetup to invoke the rule
Constraints2TConstraint for each precondition entry.

C. Illustrative Example of Transformation

In Figure 6 we show an example of transformation from
EURM to ATC. On the left side of the figure we show the
EURM that is created from the use case shown in Figure
2. The right side shows the ATC generated using the trans-
formation process described in this section, Boxes 3, 4, and
5 in Figure 1. Starting at the top of Figure 6, we transform
User_Req_ID to the Abstract_Test_Case_ID and the
Goal to the Purpose with small changes to the text. The
Actor in our case is Employee and is represented as User
in our data model we use the above algorithm in Section IV-B
to connect the entity DM_Entity which further consists of
one or more attributes (DM_Attribute) that are User_ID
and User_PWD.

We use a combination of Actor and Precondition to
generate the entries for Test Setup. In this example each
entry in the Test Setup is generated from the components
of the precondition CEntity, COper, CEntity and SDest
(optional). The first entry in the precondition (Employee
has User.User ID and User.User PWD) is transformed into
the first two entries of the test setup (1. Employee has
User.User ID and 2. Employee has User.User PWD).

Figure 6. Illustration showing the transformation of an enhanced user
requirements model to an abstract test case model.

A similar approach is used to transform each entry in
the Description component of the EURM. That is, the
SSubject, SAction and SObject representing 1. Em-
ployee enters Username = User.User ID and Password =
User.User PWD is transformed into the Inputs entries (1.
User enters value for User.User ID) and (2. Employee enters
value for User.User PWD). A similar approach to transform-
ing the precondition is used for the postcondition. The main
difference is that the certain keywords are translated into
system state.

VI. CASE STUDY

The case study is used to validate the approach by auto-
matically generating abstract test cases from use cases and
comparing the results to the manually generated abstract test
cases. The research questions being investigated are: (1) How
similar are the abstract test cases (ATCs) generated using the
MDSE, and NLP automated approach compared to the ATCs
generated using the manual approach? (2) What are the major
limitations of using the MDSE and NLP automated approach
to generate ATCs? We discuss the results of the case study in
the context of these questions.

A. Setup

As described in Section III-B, the user requirements for the
experiments came from a project from a graduate software
engineering class at Florida International University (FIU) in
Fall 2015. The name of the application is the Payroll Manage-
ment System (PMS) and is used to calculate the employees’
pay at a company. The students were required to submit three
deliverables, including a requirements specification document,
a design document, and a final document that included unit,
subsystem, and system test cases. The student project consisted

750

TABLE I
USER REQUIREMENTS (USE CASES) CONTAINED IN THE INPUT FOR THE

EXPERIMENTS.

Use Cases
ID Goal
1 PMS-01-Login-

Employee
Employee enters his/her username and
password to login to the system

2 PMS-02-Login-
Employer

Employer enters his/her username and
password to login to the system

3 PMS-210-Logout-
Employee

Employee clicks on logout button to
logout of the system

4 PMS-211-Logout-
Employer

Employer clicks on logout button to
logout of the system

5 PMS-05-
ApproveTimeSheet

The employer approves the Employee’s
timesheet submitted information

6 PMS-04-
ModifyTimeSheet

The employer modifies the Employee’s
timesheet information

7 PMS-13-
AddEmployee

The Employer adds a new Employee to
the system by visiting the Manage tab

8 PMS-03-
SearchEmployee

The Employer searches for the Em-
ployee’s information

9 PMS-08-
SaveTimeSheet

Employer saves Employee’s timesheet
in the system

10 PMS-06-
CalculatePay

Employer request that the system cal-
culate the pay for the Employee

11 PMS-09-PayCheck The Employee views their paycheck
12 PMS-07-ChangePwd-

Employee
The Employee changes their password

of 28 use cases, of which 12 use cases were implemented
for the PMS application. Table I shows the user requirements
consisting of 12 use cases used in the case study. The columns
from left to right in the table are row number, use case id, and
the goal of the use case. One of these use cases, shown in
Row 1 of the table (PMS-02-Login-Employee), was the
illustrative example in the paper.

The abstract test cases (ATCs) used in the case study were
generated using the approach shown in Figure 1 and manually
by the authors of the paper, independent of the lead author
who implemented the automated system. Additional details
on the process of how the ATCs were manually generated are
presented in Section VI-B.

B. Processing ATCs
Manually Generating ATCs: The research team, excluding the
person implementing the automated approach in this paper,
generated one ATC using system test cases from five projects.
These projects included the PMS graduate student project and
the four undergraduate student projects. Therefore to generate
one ATC, at least five test cases were used. Before creating the
ATCs, the team members reviewed the complete meta-model
for ATCs; a partial meta-model mentioned in Section V-A.
After the team members understood the meta-model and what
instances of an ATC model looked like, two team members
working independently generated their ATCs. Generating an
ATC involved each member reviewing their five test cases
and the data model instances (databases) from the various
projects and reverse engineering them to get the ATC. After
the generation of the ATCs was completed for each of the 12
use cases in Table I, the two team members compared their

ATCs for any discrepancies. Discrepancies were resolved by a
third team member, independent of the lead author, to create
a single ATC.

Automatically Generating ATCs: A prototype was developed
using the Eclipse Modeling Framework (EMF) [20] to generate
the ATCs from user requirements, similar to the use case
shown in Figure 2. The prototype was built using a pipe-and-
filter architecture where the source was the XML representa-
tion of the use case and the sink the XML representation of the
ATC. EMF [20] is a modeling framework and code generation
framework for building tools and other applications. EMF
uses the Ecore modeling language. OCLinEcore [21] provides
a textual concrete syntax that makes both Ecore and OCL
accessible to users. As previously stated, the Stanford-NLP [5]
toolkit was used for the natural language analysis, see Section
IV-B. The intermediate models generated in the prototype
used the XML Metadata Interchange (XMI), a standard for
exchanging metadata information [22].

Comparing ATCs: The comparison of the manually and auto-
matically generated ATCs were done based on the structure of
the meta-model for ATCs. The entries for test case id, purpose,
test setup, inputs, and expected outputs were compared for
similarities. Comparing the entries for test setup, inputs, and
expected outputs was more complicated than the other parts
of the ATC. These components include references to the data
model, state of the data model, actors, input actions, system
state (sessions), pages (types, fields, and buttons), and output
actions.

C. Results

As stated in the previous section, the comparison of the
ATCs generated manually and automatically by the prototype
is done based on the structure of the ATC meta-model. Table
II shows the results obtained when comparing the manually
and automatically generated ATCs. The columns from left
to right in Table II starting at Column 3 are: Test Setup,
Inputs, Expected Outputs, FP - False Positives, FN - False
Negatives, Pre - Precision, Rec - Recall, and F1 - combination
of precision and recall. The ATC components are further
divided into the following parts, test setup: constraints - subject
(Subj), data model constraint (DM-C), system state constraint
(Sys-C); inputs: each step - Actor, Action, Entity; and expected
outputs (similar to test setup).

False Positives (FP) represent the overall number of data
points not labeled in the manual ATCs but generated by the
prototype from the user requirements model. False Negatives
(FN) represent the overall number of data points labeled in
the manual ATCs but are not generated by the prototype from
the user requirements model.

We use the following formulas when computing the Preci-
sion, Recall and F1 Score [23].

Precision (Pre) = TP/(TP + FP) (1)

Recall (Rec) = TP/(TP + FN) (2)

751

TABLE II
RESULTS OBTAINED WHEN COMPARING MANUALLY AND AUTOMATICALLY GENERATED ABSTRACT TEST CASES (ATCS). FP - FALSE POSITIVES, FN -

FALSE NEGATIVES, PRE - PRECISION, REC - RECALL, DM-C - DATA MODEL CONSTRAINT, SYS-C - SYSTEM CONSTRAINT.

Use Cases Test Setup Inputs Expected Outputs FP FN Pre Rec F1

Subj DM-C Sys-C Actor Action Entity Subj DM-C Sys-C

1 PMS-01-Login-Employee 3 2 1 3 3 3 1 1 1 0 3 1.0 0.86 0.92

2 PMS-02-Login-Employer 3 2 1 3 3 3 1 1 1 0 4 1.0 0.82 0.90

3 PMS-21-Logout-Employee 3 2 1 1 1 1 1 NA 1 1 3 0.92 0.79 0.85

4 PMS-21-Logout-Employer 3 2 1 1 1 1 1 NA 1 1 3 0.92 0.79 0.85

5 PMS-05-ApproveTimeSheet 2 2 0 6 6 1 1 1 1 3 4 0.87 0.83 0.85

6 PMS-04-ModifyTimeSheet 2 2 0 17 17 10 1 1 1 24 10 0.68 0.84 0.75

7 PMS-13-AddEmployee 2 2 0 7 5 7 5 5 0 2 14 0.94 0.70 0.80

8 PMS-03-SearchEmployee 3 2 1 1 1 1 5 5 0 3 13 0.86 0.59 0.70

9 PMS-08-SaveTimeSheet 3 2 1 11 11 11 1 1 1 8 11 0.84 0.79 0.82

10 PMS-06-CalculatePay 3 1 1 1 1 1 4 4 0 3 2 0.84 0.89 0.86

11 PMS-09-PayCheck 2 2 0 1 1 1 4 4 0 3 2 0.83 0.88 0.86

12 PMS-07-ChangePwd-Employee 2 2 0 5 5 5 1 1 1 3 15 0.88 0.59 0.71

F1 Score = 2 ∗ (Pre ∗Rec)/(Prec+Rec) (3)

Row 1 of Table II shows the data collected when the
manually generated ATC for the use case PMS-01-Login-
Employee is compared to the automatically generated ATC
from the prototype. In the test setup there are 3 subject
(Subj) entries (Employee), 2 data model constraints DM-
C (has User.User_ID and has User.User_PWD), and
one system constraint Sys-C (is on login page). An
example of the ATC is shown on the right side of Figure
6. The inputs and expected outputs of the ATC follow the
same pattern. The similarity scores for the ATC in Row
1 are as follows. The false positive score is 0 - all data
points in the manually generated ATC are the same as the
automatically generated ATC. The false negative score is
3 - the manually generated ATC contains additional de-
tails at the end of the inputs that identify the fields where
the data is entered, e.g., Employee enters value of
User.User_ID in the user_id field. Using equa-
tions 1 to 3, the Precision, Recall, and F1 score are computed
using the false positive and false negative scores. The NA in
the table states that using the entry in the test cases component
is not applicable.

The login use cases in Rows 1 and 2 of Table II have the
highest similarity scores since the transformation process is
straightforward, and they only use two attributes from the data
model. However, the modify timesheet use case in Row 6
has the lowest Precision score (0.68) between the manually
generated ATC and automatically generated ATC. This score is
because there is some repetition in the automatically generated
ATC. For example, two entries can be combined that refer
to the employer clicking to view the employee information.
Row 8, showing the search employee use case has the lowest
recall score (0.59) since the false negatives are high relative
to the number of entities compared. This score is because the
implemented data model structure (database) is different from

the data model structure used in the design (ER diagram). We
discuss this issue in more detail in the following section.

D. Discussion

Similarity of automatically and manually generated ATCs.
The first research question related to the similarity of ATCs
automatically generated, using the MDSE and NLP approach,
and manually generated is answered using the results in Table
II. In general, the Precision and Recall scores are relatively
high, with the lowest score for Precision being 0.68 and
the lowest score for Recall being 0.59. These scores can be
considered outliers since the other scores for Precision are
above 0.83 and for Recall above 0.70. The F1 scores are also
relatively high, with the lowest score being 0.70.

The results shown in Table II are due to the experience
gained after generating ATCs using the ER diagram from
the student project’s design document and realizing that the
implemented data model was very different from the design.
The first pass using the ER diagram from the design document
produced higher numbers of false positives and false negatives,
resulting in Precision, Recall, and F1 scores that were lower
than the values presented in Table II. For example, the data
from first pass for the login use case in Row 1 have false
positives - 8, false negatives - 5, Precision - 0.62, Recall -
0.72 and the F1 score - 0.67. To obtain the values in Table
II we created an ER diagram for the implemented data model
and used it in the prototype.
Limitations of the approach. Several factors affect the gen-
eration of accurate ATCs using the approach presented in
this paper. Many of these factors are related to consistency
between the requirements, design, and implementation of the
system. Usually, the semantic gap tends to widen over time
between the requirements, design, and implementation. As
development progresses, changes are made to the design and
not reflected in the requirements. Similarly, changes made
during implementation are not reflected in the design. Since
testing is performed after the system is implemented, automat-

752

ically generating test cases from the requirements and design
can only be done with a high level of accuracy if there is
consistency across the artifacts generated in the requirements,
design, and implementation phases.

Since our approach relies on NLP, inherent factors impact
the accurate processing of user requirements written in natural
language statements. These factors include ambiguity and
incompleteness of the natural language statements. In addition,
using different terms in the requirements and data model
design that refers to the same concept makes it difficult to do
exact string matching, thereby forcing the use of alternative
approaches. We mitigate these factors by asking the user
to perform the match between the substrings or resolve the
meaning of a phrase at runtime. The user intervention allows
us to create a domain-specific knowledge base that can be used
in future string matching or phrase resolutions.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present our approach that automatically
transforms user requirements into abstract test cases (ATCs)
using model-driven software engineering (MDSE) and natural
language processing (NLP). The approach begins with the con-
struction of an enhanced user requirements (EUR) model. The
EUR model is created from the user requirements model (use
cases) and a data model (ER diagram) using NLP techniques
and an algorithm we developed. To support the transformation
from EUR models to ATCs, we developed meta-models for
EUR models and ATCs. A prototype was developed to perform
the transformation using the Eclipse Modeling Framework and
the ATLAS transformation language.

We evaluated our approach by performing a case study using
12 use cases from a graduate software project, test cases from
the graduate project, and 4 undergraduate software projects.
The ATCs generated using the prototype were compared to the
ATCs manually generated by members of the research team.
The comparison involved inspecting the fields of the generated
ATCs against the manually created ATCs to determine the pre-
cision, recall, and F1 scores. The results were very promising,
assuming that the user requirements and data model design
were consistent with the implementation of the final system.
In the future, we plan to extend this work to generate concrete
test cases from the ATCs using an instance of the data model
(database) and one or more test generation techniques, e.g.,
boundary value analysis.

REFERENCES

[1] D. Kumar and K. Mishra, “The impacts of test automation on software’s
cost, quality and time to market,” Procedia Computer Science, vol. 79,
pp. 8–15, 12 2016.

[2] T. M. Hangensen and B. B. Kristensen, “Consistency in software system
development: Framework, model, techniques, & tools,” SIGSOFT Softw.
Eng. Notes, vol. 17, no. 5, pp. 58–67, Nov. 1992. [Online]. Available:
http://doi.acm.org/10.1145/142882.142914

[3] J. P. Sotomayor, S. C. Allala, D. Santiago, T. M. King, and P. J. Clarke,
“Comparison of open-source runtime testing tools for microservices,”
Software Quality Journal, pp. 1–33, 2022.

[4] D. Smith, D. Villalba, M. Irvine, D. Stanke, and N. Harvey, “Accelerate
state of devops report,” DORA & Google Cloud, 2021, https://services.
google.com/fh/files/misc/state-of-devops-2021.pdf.

[5] V. Garousi, S. Bauer, and M. Felderer, “NLP-assisted software
testing: A systematic mapping of the literature,” Information and
Software Technology, vol. 126, pp. 1–20, 2020, paper no. 106321.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950584920300744

[6] K. Jin and K. Lano, “Generation of test cases from uml
diagrams - a systematic literature review,” in 14th Innovations
in Software Engineering Conference (Formerly Known as India
Software Engineering Conference), ser. ISEC 2021. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3452383.3452408

[7] M. Kassab, J. F. DeFranco, and P. A. Laplante, “Software testing: The
state of the practice,” IEEE Software, no. 5, pp. 46–52, 2017.

[8] D. Santiago, J. Phillips, P. Alt, B. Muras, T. M. King, and P. J. Clarke,
“Machine learning and constraint solving for automated form testing,”
in 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE), 2019, pp. 217–227.

[9] C. Wang, F. Pastore, A. Goknil, and L. C. Briand, “Automatic generation
of acceptance test cases from use case specifications: An nlp-based
approach,” IEEE Transactions on Software Engineering, vol. 48, no. 02,
pp. 585–616, feb 2022.

[10] S. C. Allala, J. P. Sotomayor, D. Santiago, T. M. King, and P. J. Clarke,
“Towards transforming user requirements to test cases using mde and
nlp,” in 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), vol. 2, 2019, pp. 350–355.

[11] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, 1st ed. Morgan & Claypool Publishers, 2012.

[12] E. D. Liddy, “Natural language processing.” in Encyclopedia of Library
and Information Science. New York, NY: Marcel Decker, Inc., 2001.

[13] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, P. Inc, S. J. Bethard,
and D. Mcclosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations, 2014, pp. 55–60.

[14] J. Gutiérrez, M. Escalona, and M. Mejı́as, “A model-driven
approach for functional test case generation,” Journal of Systems
and Software, vol. 109, pp. 214–228, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121215001703

[15] C. Hue, D.-H. Dang, N. Binh, and H. Truong, “Usltg: Test case
automatic generation by transforming use cases,” International Journal
of Software Engineering and Knowledge Engineering, vol. 29, pp. 1313–
1345, 09 2019.

[16] S. Thummalapenta, S. Sinha, N. Singhania, and S. Chandra, “Automat-
ing test automation,” in 2012 34th International Conference on Software
Engineering (ICSE), 2012, pp. 881–891.

[17] F. Jouault and I. Kurtev, “Transforming models with atl,” in Satellite
Events at the MoDELS 2005 Conference, J.-M. Bruel, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 128–138.

[18] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2017.

[19] R. D. N. Fidalgo, E. M. a. De Souza, S. España, J. B. De Castro, and
O. Pastor, “Eermm: A metamodel for the enhanced entity-relationship
model,” in Proceedings of the 31st International Conference on Concep-
tual Modeling, ser. ER’12. Berlin, Heidelberg: Springer-Verlag, 2012,
p. 515–524.

[20] Eclipse Foundation Inc., “Eclipse Modeling Framework,” https://www.
eclipse.org/modeling/emf/, 2019, [Online; accessed 10-Jan-2019].

[21] R. Gerbig, J. Cadavid, and A. S., “The OCLinEcore Language,”
https://wiki.eclipse.org/OCL/OCLinEcore, 2019, [Online; accessed 10-
Jan-2019].

[22] Object Management Group, “XML Metadata Interchange Specification,”
https://www.omg.org/spec/XMI/, 2019, [Online; accessed 07-Feb-2019].

[23] D. Powers, “Evaluation: From precision, recall and f-factor to roc,
informedness, markedness & correlation (tech. rep.),” School of Infor-
matics and Engineering Flinders University, Adelaide, Australia, Tech.
Rep. SIE-07-001, December 2007.

753

