
Predictive Mutation Analysis of Test Case Prioritization for Deep Neural Networks

Zhengyuan Wei, Haipeng Wang, Imran Ashraf, and W.K. Chan∗

Department of Computer Science, City University of Hong Kong, Hong Kong, China
zywei4-c@my.cityu.edu.hk, haipewang5-c@my.cityu.edu.hk, iashraf3-c@my.cityu.edu.hk, wkchan@cityu.edu.hk

*corresponding author

Abstract—Testing deep neural networks requires high-quality
test cases, but using new test cases would incur the labor-
intensive test case labeling issue in the test oracle problem.
Test case prioritization for failure-revealing test cases alleviates
the problem. Existing metric-based techniques analyze vector-
based prediction outputs. They cannot handle regression models.
Existing mutation-based techniques either remain ineffective
or incur high computational costs. In this paper, we propose
EFFIMAP, an effective and efficient test case prioritization tech-
nique with predictive mutation analysis. In the test phase, without
performing a comprehensive mutation analysis, EFFIMAP pre-
dicts whether model mutants are killed by a test case by the
information extracted from the execution trace of the test case.
Our experiment shows that EFFIMAP significantly outperforms
the previous state-of-the-art technique in both effectiveness and
efficiency in the test phase of handling test cases of both
classification and regression models. This paper is the first work
to show the feasibility of predictive mutation analysis to rank
test cases with a higher probability of exposing model prediction
failures in the domain of deep neural network testing.

Keywords—Test case prioritization; mutation analysis; testing

I. INTRODUCTION

Deep neural network (DNN) models find their applications
in many application domains, e.g., machine translation [1], im-
age segmentation [2], medical diagnosis [3], and autonomous
driving [4]. Previous studies [5]–[9] show DNN models easy
to produce unexpected outputs by samples slightly perturbed
from the training ones. Infamous examples include casualty
incidents and racial discrimination [10]–[12]. A major bot-
tleneck in developing DNN models is the evaluation of their
quality, such as correctness, robustness, and fairness. Many
testing techniques [5], [7], [8], [13]–[19] have been proposed
to address different technical challenges in this bottleneck.

A common problem faced by many testing techniques is the
lacking of the oracles (groundtruth labels) of the test cases.
Although there are methods (such as metamorphic testing or
generic oracle) to identify test cases exposing model failures,
they focus on specific kinds of errors (e.g., semantic errors [20]
or numerical bugs [21]). Besides, retraining with more labeled
samples is the most popular to improve DNN models. In
general, producing groundtruth labels of novel samples is
human-intensive. Tu et al. [22] reported that manually label-
ing 22,500+ commits required 175 person-hours. Thus, the
labeling-cost problem remains a key challenge in DNN testing.

‡ This research is supported in part by the CityU MF EXT (project no.
9678180).

The problem of test case prioritization (TCP) is to label an
affordable number of test cases to reveal the misbehavior of a
DNN model (denoted as model S) earliest possible. There are
two general categories of effective TCP techniques: metric-
based [16], [23], [24] and mutation-based [5], [9], [25].

The former category of techniques [16], [23], [24] measures
the likelihood of the misbehavior of S on each test case t in a
test pool. The core idea is to formulate an effective metric to
measure such a likelihood. Many metrics applicable to mea-
sure classification models have been proposed. DeepGini [16]
measures the Gini impurity [26] on the probability vector
produced by a model. Dissector [23] proposes a PVscore
metric based on multiple probability values in each output
vector of the model under test and its submodels. However,
the assumption of having multiple values in the output vector
of a model makes Dissector inapplicable to handle regression
model [27], which only produces a single value as output.
LSA/DSA [19] profile the feature maps of S on processing
t and compare them with those from the training samples to
compute a metric that measures the degree of surprise. They
can handle both classification and regression models, but their
comparison process is time-consuming because each test case
t needs to compare with the whole training dataset.

The latter category [5], [9], [25] uses mutation analysis,
generating mutants of S and deciding whether a sample kills
a mutant. They rank test cases according to their metrics or
ranker models in the test phase. The high computational cost of
mutation testing is a barrier to the wider adoption of mutation
testing in the industry [28]–[30], and mutation testing for DNN
models intensifies the problem as the execution of a DNN
model is also computationally expensive. The most relevant
technique to address this issue in the traditional program
testing domain is PMT [31]–[33]. PMT defines a set of
program-specific (type- or operator-based) features. It extracts
them from the program’s peer versions or peer projects for
learning and prediction as well as from each mutant of such a
peer version/project for deciding whether this mutant is killed
or alive for learning. But, it fails to learn if the internal states
of the program across versions vary significantly, and fails to
predict if the features between the program and its mutant
always vary or if all DNN operators and functions are always
executed in every inference, which is common across DNN
models. In the DNN testing domain, Prima [5] has to execute
mutants to generate its model-relevant and mutation-specific

682

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS57517.2022.00074

features when building its ranker model and prioritizing the
test cases in the test phase. Its high computational cost problem
in the test phase remains unsolved.

In this paper, we propose EFFIMAP (Efficient Mutation
Analysis for Prioritization), a novel, effective and efficient
technique to prioritize test cases in the DNN testing domain.
EFFIMAP includes three components: Generator, Tracer, and
Estimator. We formulate Generator with novel strategies to
construct both model mutants and sample mutants. It incre-
mentally builds a set of high-quality model mutants with
increasingly higher failure-revealing effects, which collectively
makes the mutants achieve higher killing coverage on incorrect
test cases in the validation dataset. It also formulates a novel
autoencoder strategy to generate sample mutants to address
the inadequate data issue and guides the autoencoder model’s
training process to kill increasingly more mutants with diverse
sample mutants. The execution of S with each sample (or
sample mutant) as input is profiled by Tracer to generate
a novel distribution-oriented execution trace, capturing the
distribution-relevant log data on how the sample (or the sample
mutant) is progressively transformed across layers into the
model output, making the trace sensitive to the distribution
shifts between the model under test and its model mutants.
We then build a machine-learning Estimator with a single
execution trace as an input, which learns the differences in the
outputs between model mutants and S on the corresponding
sample for predictive mutation analysis for ranking. In the test
phase, the execution trace of a novel sample will be input to
Estimator to predict the extent of killing these mutants and
compute an enhanced mutation score according to a novel
metric. EFFIMAP then prioritizes these novel samples by
the enhanced mutation score for labeling effort reduction. In
this way, the expensive mutant execution process appearing
in the test phase in the existing techniques is replaced by
our predictive analyzer, Estimator, which requires no mutant
execution in the test phase.

We evaluate EFFIMAP on four models on the challenging
task of prioritizing novel samples, unlike adversarial examples
with clear clues of incorrectness generated from original
samples. The results show EFFIMAP outperforms Prima in the
effectiveness of test case prioritization with a computational
cost reduction of 95%–98% in the test phase. We also show
the first work in predictive mutation-adequate test suite con-
struction in the DNN testing domain guided by our predictive
ranking analysis.

The main contribution of this paper is twofold: (1) The
paper presents the first work of predictive mutation analysis
without mutant execution in the test phase in the DNN testing
domain. (2) It shows the novelty, feasibility, effectiveness, and
efficiency of EFFIMAP for test case prioritization.

In the rest of the paper, Sections II to IV present the pre-
liminaries and our technique with an evaluation, respectively.
We will review the closely related work in Section V. Section
VI concludes this paper.

II. PRELIMINARIES

A. Classification and Regression DNN Models

A DNN model S contains a set of layers with unique
indexes (from 1 to g). The input to first layer f1 is a sample
t. The last layer fg produces an output of S, donated as S(t).
The input of layer fi ̸=1 is the output of its preceding layer.
Each value in output feature map of layer fi ̸=g is a neuron.

The kinds of model outputs vary by model type and the
prediction error δt of S(t) is computed with its ground truth
of t, donated by lt. The correctness of model S with sample t
as input is defined based on the prediction error. We also call
an incorrect prediction of S as a failure.

For a classification model, S(t) is a probability vector where
the predicted class Sc(t) = argmaxc S(t)[c]. If Sc(t) = lt,
then δt is 0, otherwise 1, The output S(t) is deemed correct
if δt = 0, otherwise incorrect. For a regression model, S(t)
is a value, and δt is |S(t) − lt|. The output S(t) is deemed
correct if δt < ϵ, otherwise incorrect, where ϵ is a given
instance-specific bound based on S’s performance [34], [35].

When assessing S on a dataset T , we divide T into
two subsets, one containing all correct samples ({t ∈ T |
S(t) is correct}) and another containing all incorrect samples
({t ∈ T | S(t) is incorrect}), denoted by T+ and T×, respec-
tively. The performance of model S on a dataset T is measured
by the accuracy for a classification model, defined as the ratio
of correct samples (i.e., |T+|/|T |), and the mean square error
(MSE) for a regression model, i.e., 1

|T |
∑

t∈T (δt)
2.

B. Terminologies in Mutation Analysis

Mutating a model S and a sample t produce a model mutant
(S) and a sample mutant (t′), respectively [5], [25].

We define a Boolean predicate ∆(S,S, t) to give 1 (true)
if (1) Sc(t) = Sc(t) for S as a classification model or (2)
|S(t) − S(t)| > ϵ for S as a regression model, otherwise
0 (false). If ∆(S,S, t) is true, we say that S covers t
and, interchangeably, t kills S. The sample t is called a
mutant-killing sample. Given a set of mutants S used in
mutation analysis, the ratio of mutants killed by a sample
t is called the mutation score (achieved by t on S), i.e.,
|{S ∈ S | ∆(S,S, t) = 1}|/|S|. Given a dataset T , the set
of samples each killing the mutant S is referred to mutant
coverage (achieved by S on T), and the largest subset of S
killed by T is called the mutation coverage (achieved by S on
T). A test case is a sample t in the test phase, and the set of
selected test cases during testing constructs a test suite. A test
suite X (where X ⊆ T) is mutation-adequate with respect to
S if the mutation coverage of T and X are the same.

C. Variational Autoencoder

Variational autoencoder (VAE) [36] consists of a pair of
encoder and decoder neural network components with a sam-
pler in between. When producing a variant of t, the encoder
encodes t to a feature map in a latent space; the sampler
generates additional inputs from a normal distribution N(0, 1)
followed by adding them to the feature map; and the decoder
decodes the perturbed feature map to produce a variant of t.

683

D. Dissector, PMT, and Prima

Dissector [23] asserts a model S predicts a sample t with
higher confidence of its predicted class than a submodel of S.
It generates a sequence of submodels from S. A submodel
is donated as S with probability vector as output. Let the
highest and second highest probability values of S(t) and the
probability value of Sc(t) be a, b, and c, respectively. Dissector
computes a SVscore defined as c/(b+ c) if a = c, otherwise
c/(a+ c). It then computes a PVscore metric by the weighted
normalization of SVscores from these submodels. In the test
phase, Dissector executes the test cases over the model S and
the submodels and then ranks the test cases by the PVscore.

We cast PMT into DL model testing by treating a model
as if it is a program. PMT [31] and Prima [5] each produce
a set of m model mutants (denoted by S1) and the sets of n
sample mutants for each sample t (denoted by Tt).

In the ranker building phase (aka training phase), they
execute each model in {S} ∪ S1 over all samples in {t} ∪ Tt

for each t in Tv and collect the respective model output, where
Tv is the validation dataset of S. PMT utilizes a cross-version
or cross-project model of S. It defines 15 code-based features
for t and uses a predicate indicating a mutant is killed as
the target for learning. However, these code-based features
for each t very little in the DNN test domain, harming the
effectiveness of PMT on the TCP problem. Prima computes six
kinds of mutation-specific features for t, such as the number of
killed mutants and the mean difference in predicted probability
between each killed mutant and S. It collects the prediction
error of S(t) (where t ∈ Tv) as the targets for learning. Both
of them apply an existing machine learning algorithm [37] to
produce a ranker R. The number of samples in the training
dataset for R is |Tv|, which is much smaller than the training
dataset for S, lowering their effectiveness.

In the test phase, they produce the features of each novel
sample t. Prima uses R to estimate the prediction error
of S(t), which requires the executions of both model and
sample mutants. PMT extracts features from S to predict
the predicates and then compute the mutation score. They
prioritize test cases in descending order of the final output.
Prima must conduct a total of n(m + 1)|Te| executions (for
m model mutants and n sample mutants for each sample in
the test pool Te for ranking) with feature synthesis for each
t ∈ Te, which makes it slow in the test phase.

III. OUR TECHNIQUE

This section presents EFFIMAP, a novel predictive mutation
analysis technique for test case prioritization. EFFIMAP has
three components: Generator, Tracer, and Estimator. Fig. 1
depicts its main workflow.

A. Overview

Generator produces model mutants and sample mutants for
predictive mutation analysis. Apart from addressing the chal-
lenge of inadequate data issues in predictive-based mutation
techniques, it formulates a novel technique to generate mutants
strongly correlated to the misbehavior of S.

Figure 1: An overview of EFFIMAP.

Tracer captures mutation-independent execution features on
the inference, which is sensitive to the correctness of the
model S, thereby enabling the predictive mutation analysis
on individual samples. Tracer profiles each layer of S and
produces a sequence of values, called execution trace.

Estimator bridges the gap between the execution features
and the correctness of S. It firstly maps the execution trace
to the mutation results of the set of model mutants S and
then applies an enhanced mutation analysis to compute a novel
mutation score as the metric for prioritization.

B. Target Orientated Mutant Generation

1) Model Mutation: Generator fuzzily generates a set of
model mutants S with two objectives to increase the mutant
diversity to distinguish different failing test cases. Such di-
versity is measured by the mutation coverage incrementally
on incorrect samples. Moreover, mutants with higher failure-
revealing energy are selected.

We define the failure-revealing energy (energy for short) of
a model mutant S on the validation dataset T as follows:

Energy(S,S, Tv) = |{t ∈ T×
v | ∆(S,S, t) = 1}|

− |{t ∈ T+
v | ∆(S,S, t) = 1}|

(1)

where T×
v and T+

v contain the incorrect samples and correct
samples divided by the correctness of S on Tv .

Similarly, to generate mutants with distinguishing abilities,
we have reviewed existing works on their cause-and-effect
chains to the performance of S. Some works [25], [38] contain
random mutation operators to construct a better test suite but
lack fault-revealing abilities, which we do not include in the
work. Some works present such abilities. He et al. [39] show
different filters in convolutional layers contributing unequally
to the performance and ReAct [40] shows the rectification of
activation effective in detecting anomalies due to mismatched
normalization.

Generator constructs three mutation operators:
• Prune Convolution: disable one filter in a convolutional

layer by setting the corresponding output channel to a
zero matrix.

• Revert Normalization: substitute the values of an output
channel of a normalization layer back to the values of the
corresponding input channel of the same layer.

684

Algorithm 1: Generate model mutants
Input : DNN model S, Validation dataset Tv ,

Mutation operators O, Number of mutants m,
Performance margin η, Fuzzing resource γ

Output: A set of model mutants S
1 p← Evaluate(S, Tv)
2 T×

v ← FindIncorrect(S, Tv)
3 C ← FindKillers(S,S, T×

v)
4 S← ∅, e∝ ←∞, γ0 ← GetTime()
5 while GetElapseTime(γ0) < γ do
6 S ← GenerateMutant(O,S)
7 p′ ← Evaluate(S, Tv)

8 if S /∈ S and |p′−p|
p ≤ η then

9 C ′ ← FindKillers(S,S, T×
v)

10 c← NewCoverage(C,C ′)
11 e← Energy(S,S, Tv)
12 if |S| < m then
13 S← S ∪ {(S, c, e)}
14 C ← C ∨ C ′, e∝ ← min(e∝, e)
15 continue
16 end if
17 if c = 1 then
18 S← S \ { first s ∈ S | cs = 0 }
19 S← S ∪ {(S, c, e)}
20 C ← C ∨ C ′

21 else if e > e∝ then
22 S′ ← { first s ∈ S | es < e ∧ cs ≤ c }
23 // skip below if S′ is empty
24 S← S \ S′ ∪ {(S, c, e)}
25 e∝ ← min({e | ∀e ∈ s ∈ S})
26 end if
27 end if
28 end while

• Rectify Activation: cap the values of activated neurons in
a selected activation layer to β% of the highest value in
the same output feature map.

Alg. 1 shows the algorithm of Generator to generate model
mutants. It accepts a model S, a validation set Tv , a set
of mutation operators O, the number of required mutants to
generate m, a parameter of performance margin η, and a
fuzzing resource γ as inputs.

At line 1, it evaluates the performance p of the model S
as the baseline on the validation dataset Tv via the function
Evaluate(). It separates the set of incorrect samples T×

v from
Tv (line 2) via the function FindIncorrect(). The function
FindKillers(a, b, c) returns a predicate vector containing the
value of ∆(a, b, t) for each sample t in c. (In line 3, the inputs
of both a and b are S so that the returned predicate vector C
is a zero vector.) Next, it initializes the variables representing
the set of model mutants S, the minimum energy e∝, and the
current fuzzing timestamp γ0 to an empty set, the infinity, and
the current time, respectively (line 4).

From lines 5–27, it goes into a fuzzing loop to generate
model mutants iteratively until the fuzzing resource γ is ex-
hausted. The fuzzing process is limited to a bounded execution
time, and if the duration time measured via the function
GetElapseTime() is larger than γ, the process terminates. In
each iteration, it randomly applies one mutation operator
in O to mutate S, gets a mutant S through the function
GenerateMutant() at line 6, and measures the performance p′

of the mutant S (line 7) over Tv . It checks whether the mutant
is new (S /∈M) and whether it behaves similarly to S at line
8. The mutant is deemed similar if its performance is close to
that of S within η%. The algorithm then attains the predicate
vector C ′ of the pair of S and S on T×

v via FindKillers(),
measures whether there is new coverage of C ′ over C via
NewCoverage(), and computes the energy of S according to
Eq. 1 at lines 9–11.

The algorithm has two phases: collect a new mutant or
update an existing one. It stays in the first phase if the
number of mutants in S is less than m (line 12). It puts the
new mutant into S annotated with its new coverage indicator
c and energy e (line 13). The predicate vector C and the
minimum energy e∝ are maintained (line 14) by performing
the element-wise logical-or operation with C and the min()
function, respectively. The algorithm begins the second phase
if S contains m mutants. The objective is to find “more
interesting” mutants by checking (1) whether the new mutant
can cover new elements in T×

v (i.e., whether c = 1 at line 17),
(2) whether the energy of the new mutant is more powerful
than the minimum energy (i.e., whether e > e∝ at line 21).
If (1) holds, the algorithm drops the first element in S that its
new coverage indicator is 0 and then adds the annotated new
mutant to S, followed by maintenance of predicate vector C
(lines 18–20). Otherwise, if (2) holds, it drops the first element
in S that its energy is less than that of S and its coverage is not
better than that of S, followed by maintenance of the minimum
energy (lines 22–25). However, if no such element is found,
lines 24–25 will be skipped.

2) Input Mutation: Typically a learning-based method re-
quires enormous data to achieve an accurate approximation,
and the validation set is only a relatively small set of samples.
Using the original validation dataset of one model as the
training dataset for another model would easily lead the latter
model to suffer from a severe overfitting problem due to the
inadequate data issue. EFFIMAP formulates a novel generative
strategy to enrich the validation dataset to alleviate this prob-
lem. Generator trains an adopted variational autoencoder A to
minimize the reconstruction loss of A, and, further, regularizes
A to generate valuable sample mutants that could reveal the
model failures during its training process.

Alg. 2 shows the algorithm to build a variational autoen-
coder for generating sample mutants. It accepts the model S,
a validation dataset Tv , an autoencoder model A, and the
maximum training epochs ρmax as inputs. Like Alg. 1, it
splits the set T×

v with all incorrect samples from the validation
set Tv (line 1) and prepares a zero vector indicating distinct
correctness of S for each t in T×

v via FindDistinct() (line

685

Algorithm 2: Build autoencoder for input mutation
Input : DNN model S, Validation dataset Tv ,

Autoencoder A, Training epochs ρmax

Output: A trained autoencoder Â
1 T×

v ← FindIncorrect(S, Tv)
2 D ← FindDistinct(S, T×

v , T×
v)

3 Â ← A(), ρ← 0
4 while ρ < ρmax do
5 T×

⋄ ← AugmentData(T×
v ,¬D)

6 Â′ ← Train(Â, T×
⋄)

7 T⋇
v ← Sample(Â′, T×

v)
8 D′ ← FindDistinct(S, T×

v , T⋇
v)

9 if D′.sum() > D.sum() then
10 D ← D′

11 Â ← Â′

12 end if
13 ρ← ρ+ 1
14 end while

2), followed by initialization of the trained autoencoder Â
to random state and the current trained epoch to 0 (line 3).
The funciton FindDistinct(a, b, c) returns a vector containing
prediction difference between a(t1) and a(t2) for each sample
pair (t1, t2) in (b, c). Note that in line 3, the inputs of both b
and c are T×

v so that the returned vector D is a zero vector. The
algorithm iteratively trains Â (lines 4–14) with ρmax epochs.

Wang et al. [9] show anomaly samples are more likely to
cross the decision boundaries if S is slightly mutated. Our
insight is that a slight mutation on a sample to produce an
anomaly sample also has a higher chance of changing the
prediction of S so that S can distinguish them. Therefore,
in line 5, the algorithm perturbs incorrect samples of T×

v if
they do not have such changing effect (indicated by ¬D) by
data augmentation methods (e.g., Image transformation [41],
mixup [42], and adversarial example generator [43]) via Aug-
mentData(). The function AugmentData() perturbs t in T×

v

only if its indicator in ¬D is true but does not mutate other
samples, producing an enhanced T×

⋄ for training.
The algorithm then trains the autoencoder A with T×

⋄ and
produces a candidate model Â′ at line 6. It uses Â′ to sample
one mutant from each t in T×

v via Sample() and produces
T⋇
v (line 7). It then calls FindDistinct() with T×

v and T⋇
v as

inputs to attain the distinctness vector D′ at line 8. It validates
whether the generated sample mutants have higher changing
effects (line 9), and if so, it keeps this optimized model state
to Â and updates D.

Generator uses the trained Â to generate n sample mutants
for each sample t in Tv , constructing T ⋆

v with Tv included for
subsequent steps.

C. Execution Trace as Features

We are inspired by a fundamental concept in deep learning:
A DNN model encodes a distribution of samples (aka. input
distribution) and transforms the input distribution into an

output distribution through a series of intermediate trans-
formations. Tracer profiles the distribution-relevant statistics
from the feature maps and the descriptive statistics from the
output of S as log data. As mutation analysis is already
computationally expensive, Tracer is designed only to profile
the computationally-efficient log data.

Tracer records the following kinds of log data as an execu-
tion trace to capture the processing in the forward inference
on predicting a sample.

• Log on Distribution: The mean and the variance of the
feature map for each layer of the model.

• Log on Heatmap: The proportion of the neurons produced
by each activation layer, where neurons have been deac-
tivated before and after the activation layer.

• Task Specific Log: The value of the Shannon entropy [44],
[45] on the output of the model.

For the first kind of log, our insight is that the distribution
shift on the feature maps of an incorrect sample will sooner
or later occur when propagating across layers for feature
extraction; otherwise, the extracted features without showing
any distribution difference are less likely to be predicted
through the output layer to produce an incorrect output. The
second kind of log intends to capture the non-linearity property
of DNN, from which the performance of a DNN model heavily
depends on neuron activation. The third kind of log collects
descriptive statistics on the model output.

Tracer generates the execution traces of all the samples in
the dataset T ⋆

v produced by Generator for the next step.

D. Predictive Mutation Analysis for Ranking

Estimator receives the outputs from Generator and Tracer,
both of which have the design to produce a good set of outputs
for the predictive mutation analysis. It collects the mutation
results of samples and sample mutants between the model and
model mutants and builds a predictive estimator to produce the
predicates of killings.

Rather than learning from the differences between a pair
of execution features on how to kill a model mutant, we aim
to significantly reduce the high mutant execution cost in the
subsequent test phase. Thus, the challenge is learning from
the execution features to predict whether the sample kills
each model mutant. Our insight is that given a fixed model
mutant S which mutates a specific position of S, if a sample
t can kill S, the execution features (from the feature maps
of the mutated layer) of S must be altered, resulting in the
predicate of killing to be true. In mutation analysis with a
set of fixed model mutants S, the execution trace captures the
execution features of S, and the mutation results are the set of
predicates of killings of S. Estimator adapts a learning-based
algorithm to connect these two sets of distributions to encode
the differences in execution features between S and S. In this
paper, we demonstrate the feasibility.

To ease readers follow, we recap the artifacts from the
above: Generator fuzzily generates a set of m model mutants
S and a dataset T ⋆

v containing n sample mutants of each t
of Tv and all samples of Tv for mutation analysis. Tracer

686

profiles the execution trace of all samples in the dataset T ⋆
v

by inferencing the model S with each sample t.
We note the execution trace of S(tj) as ϕj for each sample

tj in T ⋆
v , and the set of all these execution traces as Φ. We

assume the set of model mutants S is an ordered set. For
each model mutant Si in S, Estimator measures whether each
sample tj can kill the model mutant Si, indicating by the
predicate ∆(S,Si, tj). We note the predicate vector of tj to
be πj , where πj [i] = ∆(S,Si, tj), and the set of predicate
vectors of all samples in T ⋆

v is donated by Φ.
Estimator learns to map Φ to Π. It adopts the XGBoost

framework [37] to construct an estimator model, denoted as
E , and utilizes the scikit-learn tools [46] to fit E to the training
data (i.e., from Φ to Π). We choose a decision-tree model
because the number of log data in an execution trace is
not large. The decision-tree algorithm is scalable and more
effective under this condition [47], and the prediction result is
human-explainable. The trained estimator is notated as Ê . Note
that the above-mentioned procedure to construct Ê requires
only being conducted once in an offline manner.

In the test phase, for each test case t in the test pool, Tracer
profiles the execution of S(t) and produces the execution trace
ϕt. The execution trace ϕt is input to the estimator Ê to
attain the predicate vector πt representing the mutation result.
Since the produced πt is also a probability vector representing
the confidence with respect to whether each model mutant is
killed, it can also yield the Shannon entropy [44], [45] from the
underlying probability vector πt. Our insight is that in normal
cases for a model under test, its mutants should not easily be
all killed, even though there may be a surprise that one/few
mutant(s) is killed; thus, the higher entropy implies a higher
probability of misbehavior of a model (more informative).
Estimator computes the Shannon entropy of πt, donated as
sh(πt), and binarizes πt with 0.5 as the threshold to attain the
predicate vector and computes the mutation score, donated as
ms(πt). Then Estimator computes the informative mutation
score defined as:

ims(πt) = sh(πt) · ms(πt) (2)

where sh(πt) and ms(πt) are defined above. The informative
mutation score is the metric of Estimator to prioritize the test
cases in the test pool.

Unlike the existing work of Prima, EFFIMAP executes no
(sample or model) mutants in the test phase, significantly
reducing the computational cost of applying a comprehensive
mutation analysis and advancing state of the art.

IV. EVALUATION

A. Research Questions

We aim to answer the following three research questions,
• RQ1: Is EFFIMAP effective in prioritizing novel test

cases compared with existing state-of-the-art techniques?
• RQ2: Is EFFIMAP effective in reducing the computa-

tional cost compared to the state-of-the-art mutation-
based technique?

• RQ3: Is the test suite construction guided by EFFIMAP
effective in exposing model prediction failures?

B. Experimental Setup

1) Implementation and Environment: We implement all
techniques in Python v3.8, XGBoost v1.5.2 [37], Scikit-learn
v0.24.2 [46], and Pytorch v1.8.1 [48]. We run all experiments
on a Ubuntu 20.04 server equipped with a 48-core 3.0GHz
Xeon CPU, 256GB RAM, and a 2080Ti GPU. All codes of
the experiments are available at GitHub [49], which will fetch
the public datasets automatically.

We compare EFFIMAP (EM) with Dissector (DS) and
Prima (PM). DS and PM are the current state-of-the-art
techniques in test case prioritization using the metric-based
and mutation-based approaches, respectively. We download the
code [50] of Dissector [23] and the code [51] of Prima [5].
These two tools do not include all the code to make them
executable (i.e., no sub-models generation in [50] and no
building learning-to-rank models in [51], which are stated in
their code repositories’ README pages). We implement the
missing parts according to their original papers [5], [23], where
we generate the sub-models of the model under test for DS
and the learning-to-rank models for PM. The training settings
for the sub-models are reused from their original models. The
hyperparameters for training PM’s learning-to-rank models are
set according to Section IV.C of the original paper [5].

We set the number of model mutants m to 100 and the
number of input mutants n to 200, which are adopted from
Prima [5] for a fair comparison. The perturbation margin η%
for Alg. 2 is set to 5%, following [35], and the fuzzing resource
γ is set to 10 minutes for a reasonable time. The parameter β%
of the Rectify mutation operator is set to 90% (best parameter
in [40]). We download the autoencoder A from Github1 for
Alg. 2, with the training epochs ρmax = 100. We adopt the
Gaussian Noise operation [52], which is also used in existing
testing and debugging works [9], [25], to implement the
function AugmentData() with Gaussian distribution of N(0, 1).
For constructing the estimator E , we set n estimators = 1000
and max delta step = 5 when fitting the estimator of EM to
its training data.

2) Model and Dataset: We evaluate EFFIMAP on both
classification and regression tasks. We select subjects (mod-
els and datasets) that have been widely used in previous
studies of DNN testing. As such, four models with their
datasets are selected. They include (1) ResNet32 [53] pre-
trained on CIFAR100 [54], (2) ResNet18 [55] pretrained on
TinyImageNet [56], (3) MLP-based model M3 [57] built
for MNIST [58], and (4) CNN-based model M4 [57] built
for SVHN [59]. The former two models are pretrained on
corresponding datasets, while for the latter two datasets, we
can not find any pretrained models with our best effort. To
evaluate PMT, we also introduce ResNet56 and VGG13 both
from [53] to serve as the cross-version and cross-project of
ResNet32, respectively. We randomly split each downloaded

1https://github.com/AntixK/PyTorch-VAE/blob/master/models/vanilla vae.py

687

TABLE I: Descriptive Statistics of Subjects

ID Task Dataset Model #Data #Classes Perf
1 C CIFAR100 ResNet32 50K/10K 100 70.16
2 C TinyImageNet ResNet18 100K/9K 200 69.67
3 R MNIST MLP-M3 50K/10K 10 0.85
4 R SVHN CNN-M4 73K/23K 10 1.4
* #Data = original numbers of training/test samples; Perf = perfor-

mance, accuracy for classification (C), MSE for regression (R).

test dataset on 1:9 to construct the validation dataset Tv and
the test pool Te. Note that test cases in Te are all novel
samples never trained by the downloaded model, and the
prioritization is conducted on these novel samples.

To obtain the well-trained models for M3 and M4 on
regression tasks, we apply the code from [55], [60] on M3

and M4 to produce regression value. The groundtruths of their
corresponding datasets are integers from 0 to 9 for regression.
We have evaluated the MSE performance of the trained models
on their test datasets, and both M3 and M4 match the reported
high performance in the tutorials [55], [57], [60]. The instance-
specific bound ϵ to determine the correctness for M3 and M4

are set to η% of the square root of their MSE performance.
Table I shows the descriptive statistics of each subject (model
+ dataset), all achieving high performance.

3) Metrics: We adopt the formula from [5] to measure
the prioritization effectiveness using the metric Ratio of Area
Under Curve (RAUC): Given a test pool Te and a model under
test S, we note Lrank to an ordered list containing all the test
cases in Te, which is sorted by a technique. Suppose O is
the test oracle of S which can measure the correctness of
S on each test case t in Te. O(t) = 0 if S(t) is correct,
otherwise O(t) = 1. With the assistance of the test oracle O,
we can sort all the test cases of Te into another ordered list
Loracle in descending order by the correctness (i.e., fulfilling
the condition: ∀i < j, Loracle[i] ≥ Loracle[j]).

Let cum(L, k) be a function to compute the accumulated
sum of the values of the top-k elements in a list L, defined
as cum(L, k) =

∑k
i=1 L[i]. The area under curve (AUC) for

the top-k elements in a list L where k ≤ |L|, denoted by
AUC(L, k), is defined as AUC(L, k) =

∑k
i=1 cum(L, i). The

RAUC for a given ranked list Lrank produced by a technique
on Te and measured for the top-k elements is defined as
RAUC(Lrank, k) = AUC(Lrank, k)/AUC(Loracle, k).

Like [5], we measure the RAUCs for the top-k elements of
Lrank, where k ∈ {100, 200, 300, 500}, as well as the top-k%
of the list, where k% is equivalent to α|L| number of elements,
where α ∈ {10%, 20%, 30%, 50%, 100%}.

We profile the elapsed time starting from each stage of
techniques until generating the ranked lists over the whole
test pool Te, using the time() function provided in Python, to
measure the efficiency.

Suppose Xadq is a set of mutation-adequate test suites from
Te. Let X×

adq = {X ∈ Xadq | ∃t ∈ X , t is incorrect} be
its largest subset, in which each test suite contains at least
one incorrect test case. We measure the ratio |X×

adq|/|Xadq|
(indicating the probability of a test suite with incorrect test

cases), and refer to it as the Ratio of Effective Test Suite
(RETS). Suppose X is a test suite in Xadq . We measure
the Ratio of Effective Test Case (RETC) of X by the ratio
of the number of incorrect test cases in X to the mean
number of mutants killed by a test case in X , defined as
|{t ∈ X | t is incorrect}|/ 1

|X |
∑

t∈X |{S ∈ S | t kills S}|, to
take into account that techniques each kill its own set of model
mutants. A higher RETS or RETC value indicates a more
effective technique.

4) Experimental Procedures: Experiment 1a for RQ1 on
Effectiveness: We execute Alg. 1 and Alg. 2 with each pre-
trained model S with its validation dataset. They produce a
set of m mutants S and a well-trained autoencoder Â. We use
Â to generate n sample mutants for each sample in Tv . Each
sample and its mutants t is fed to S to extract its execution
trace ϕt and is also fed to each model mutant S ∈ S to
compute its predicate vector πt. We then input the set of
execution traces Φ with their corresponding predicate vectors
Π as groundtruths to train the estimator E . The test dataset
is served as the test pool Te under prioritization. In the test
phase, we profile the execution trace for each test case t in Te

on S and input the trace to the trained estimator Ê to obtain t’s
predicate vector and compute the entropy. Then, we compute
the informative mutation score of t according to Eq. (2). The
test cases in Te are then sorted by the informative mutation
score in descending order to produce a ranked list L. We also
configure DS and PM according to their original papers to
generate their ranked lists. We measure each prioritized list L
of test cases output by each technique through RAUC(L, k) for
the top k or k% elements, and denote the results as RAUC-k
and RAUC-k%. For the result of RAUC-100%, we also note
it as RAUC-ALL.

Experiment 1b for RQ2 on Efficiency: We repeat experiment
1a and measure elapsed time of each stage in each technique.

Experiment 2a for RQ3 on Mutation Analysis: We evaluate
to what extent these mutation-adequate test suites can expose
model prediction failures effectively. It simulates a scenario of
making an assessment on test suites.

To construct a mutation-adequate test suite for denoted as
X , our procedure is as follows: We iteratively and randomly
pick a test case t from the test pool Te and add it into X
(initialized as empty) if t is predicted to kill at least one
more mutant in S than X , i.e, X ∪ {t} increases the mutation
coverage over S until X is mutation-adequate. When X and Te

achieve the same mutation coverage, the mutation-adequate X
is constructed. Note that each technique produces its own set
of model mutants S. We repeat the above procedure 1000 times
for each technique on each model and measure the RETC on
each constructed test suite and the RETS on the set of test
suites. This experiment is conducted on PM and EM as they
are mutation-based techniques.

Experiment 2b for RQ3 on Mutation Analysis: An incorrect
test case at the bottom section of a prioritized list of test
cases (i.e., the sublist containing the test cases ranked lower
than all others) is unlikely to be picked for labeling. Finding
incorrect test cases in this section by simply going through the

688

TABLE II: Results of RAUC of all techniques.

ID Task Tech RAUC
100 200 300 500 10% 20% 30% 50% ALL

1 C DS 100.0 100.0 100.0 99.75 97.78 95.25 93.36 91.31 91.31
1 C PM 61.73 65.61 64.92 62.51 61.44 59.67 54.15 57.11 67.60
1 C EM 100.0 100.0 100.0 99.87 99.31 98.18 96.16 93.04 93.04
2 C DS 99.96 99.28 99.01 98.63 97.42 95.55 93.50 91.87 91.87
2 C PM 65.21 60.57 56.91 59.89 57.21 59.36 53.52 55.89 66.63
2 C EM 98.03 99.01 99.34 99.54 99.63 98.54 96.48 93.48 93.48
3 R DS n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
3 R PM 69.75 69.11 71.31 66.76 63.86 57.60 54.65 53.26 42.83
3 R EM 73.57 74.11 74.01 73.24 71.54 71.81 71.76 71.83 71.83
4 R DS n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
4 R PM 61.99 66.51 61.88 62.99 53.57 50.86 52.55 54.22 51.02
4 R EM 72.08 72.37 77.43 77.67 71.18 68.28 67.29 66.39 66.39
* C = classification, R = regression, Tech. = technique, n.a. = can’t handle.

ranked list will likely waste most labeling efforts, and yet, not
examining this section will risk missing some critical samples,
thus the task is challenging. We studied how to address this
problem by constructing mutation-adequate test suites.

We examine the ranking list L generated by DS on each
classification model and identify the L’s bottom-k̄ section that
contains 2a/10% of all incorrect test cases in L for a = 2 to 6.
For instance, if a = 3, the percentage is 0.8%. We construct,
using the procedure in Experiment 2a by picking test cases
from each such bottom-k̄ section, to produce 1000 mutation-
adequate test suites. For each regression model, we reorder the
test cases in Te in the descending order of the mean square
error of an individual test case to construct a resultant list L
and repeat the above procedure to construct test suites from
the bottom-k̄ section that also contains 2a/10% of incorrect
test cases in L for a = 2 to 6. Then, we sort the test suites
in ascending order of their test suite sizes and select the top-
most 100 test suites, followed by measuring the proportions
of incorrect test cases in each such test suite.

C. Results and Data Analysis

1) Answering RQ1: Table II summarizes the prioritization
results on RAUC achieved by DS, PM, and EM. EM achieves
the highest RAUC scores among the techniques for all k and
has wider applicability than DS. We find EM outperforming
PM on all four models by large extents in the number of
selected incorrect test cases for every selection range.

On classification models, PM is significantly less effective
than EM and DS. These models have 100–200 classes. In
[5], PM was effective on models with fewer classes by
one order of magnitude (e.g., 10 classes). The result shows
that the effectiveness of PM does not scale up to handle
more challenging models. We conduct Wilcoxon Signed-Rank
Test [61] to investigate whether the difference between EM
and PM is statistically meaningful using the raw data on each
model. We find all p-values smaller than 0.05, indicating a
significant difference at the 5% significance level.

By considering whether each sample in a ranked list is
incorrect, we find EM and the test oracle produce almost same
rank lists on the classification models. It shows that EM can
be highly effective for classification models. As reviewed in

Figure 2: Efficiency of Techniques (in seconds with log10 scale).

Section II-D, DS’s metric formula blocks it from prioritizing
test cases for regression models, and EM can handle both
regression and classification models. In many application
domains (e.g., object recognition with object counting in an
image), many models have multiple heads of regression and
classification outputs. DS cannot handle them, whereas PM
and EM are applicable. Although DS optimizes for classifica-
tion models, EM can compete with it with wider applicability.

Answering RQ1 (Effective fault-based prioritization):
EFFIMAP is significantly more effective than the previ-
ous state-of-the-art mutation-based approach (Prima) and has
wider applicability than a prior art (Dissector).

2) Answering RQ2: Figure 2 shows the results (in seconds
of log10 scale for elapsed time) on the efficiency of DS,
PM, and EM on four subjects in the test phase. Also, DS
is inapplicable to the two regression models. Each bar shows
the time spent in different stages of a technique on applicable
models. The number on top of a bar sums up the total elapsed
time.

EM achieves the lowest time spent among all three tech-
niques and across all four models. To complete the entire
process of test prioritization in the test phase, EM spends
5.41%, 2.34%, 5.07%, and 3.68% of the time spent by PM.
This difference is mainly due to the elimination of the mutation
executions process, whereas, almost 100% of time spent by
PM is consumed by this process. However, the main overhead
of EM is in the inference time spent by the estimator model
(i.e., the ranking process). Tracer (in gray) spends much less
time than Estimator (in yellow) in all cases. The ratios of
Estimator to TRACE in time spent on the four models are
7.2x, 3.6x, 6.4x, and 8.2x, respectively (where a number like
7.2x means 720%).

The learning-to-rank process and feature extraction in PM
are lightweight (less than 0.1% of the total time spent and
thus not shown in the figure). In DS, almost 99.9% of all the
overheads are occupied by its snapshot profiling.

Answering RQ2 (Efficient fault-based prioritization):
EFFIMAP incurs a significantly lower computational cost
of mutation analysis conducted in the test phase by 18x to
42x compared to the state-of-the-art mutation-based approach

689

Figure 3: Ratios of Incorrect Test Cases Per Killed Mutant

(Prima). EFFIMAP is also slightly more efficient than the
state-of-the-art metric-based technique (Dissector).

3) Answering RQ3: We find from Experiment 2a that in
terms of RETS, across the four subjects, EM (versus PM)
produces 1000 (vs. 417), 1000 (vs. 507), 862 (vs. 848), and
993 (vs. 957) test suites containing incorrect test cases with
an average of 963.75 (vs. 682.25) test suites, respectively.

Figure 3 further summarizes the result of Experiment 2a in
terms of RETC. In the boxplot, there are four pairs of bars
where one pair of bars is for one model. Each pair of bars
represents the pair of EM and PM. The y-axis is the RETC
value. Across the four pairs of bars, EM achieves the averages
of 0.017, 0.025, 0.018, and 0.017, respectively, in terms of
RETC; and PM achieves 0.002, 0.003, 0.007, and 0.006,
respectively. PM consistently achieves smaller values in this
metric. It shows that the ability of PM’s mutants to discover
incorrect test cases is lower than that of EM. PM’s correlation
effect between killing a mutant to the discovery of a failure
(by including an incorrect test case in a constructed test suite)
at the test case level is significantly lower than that achieved
by EM. The bars (excluding the outline regions) between the
two techniques on each plot are completely non-overlapping,
indicating that the differences are significant (confirmed by the
hypothesis testing using HSD [62] for multiple comparisons
with the 5% significance level and Bonferroni correction where
the corresponding p-values ≤ 0.001 in all cases).

Figure 4 summarizes the result of Experiment 2b. Each plot
shows the proportion of incorrect test cases in a test suite in
the scenarios of different concentrations of incorrect test cases
in the test pool (which is the bottom section of L) for selection
(indicated by the value of 2a/10% in the experimental setup).
The y-axis is the ratio of incorrect test cases in a constructed
test suite. Across all models, EM achieves the best results,
followed by DS to examine the bottom-ranked test cases
(applicable to classification models only), and finally PM. Note
that the variances of DS and PM are too small to be visualized
as boxes in the figure.

On the two classification models, the curves for DS and
PM are close to each other, and the curve for EM is located
much above them. At each incorrect test case concentration

level, EM is more effective than PM and DS by 4 folds or
more. On the regression model with ID = 4, the difference
between the pair of curves for EM and PM is relatively small.
We find from the data that some test cases can kill a large
proportion of all model mutants of EM, which leads to a
reduction in the performance gap between EM and PM. On
the regression model with ID = 3, we observe a trend in the
gap between the two techniques, similar to the case of ID =
1. We have conducted hypothesis testing using HSD on the
effective test case ratios to compare techniques. Across all
four models, EM is significantly different from PM and DS at
the 5% significance level with Bonferroni correction (p-values
≤ 0.001 in all cases).

Answering RQ3 (Effective test suite prioritization): EF-
FIMAP significantly outperforms the previous state-of-the-art
technique to produce mutation-adequate test suites with higher
effective test suite ratios and effective test case ratios. When
the concentrations of incorrect test cases in a test pool are low,
EFFIMAP is also more effective than the latter technique.

D. Threats to Validity

We have evaluated the feasibility of applying PMT for test
case prioritization in the DNN testing domain. For ease of
presentation, let PMT be PMT(S,F), where PMT accepts a
model S under mutation analysis for model learning and uses
F as feature definitions. We configure PMT to generate m
model mutants from the cross-version model Scv (ResNet56
with same model architecture family) and cross-project model
Scp (VGG13 with different architecture) and n sample mutants
(where m and n are same as Experiment 1). We configure
PMT with two sets of features for learning, one set is the
set of original code-based features of PMT (donated as Fc)
and another set is the features of Prima (donated as Fm). We
compare their resultant ranking lists on the model under test
(ResNet32) to the random prioritization.

Figure 5 shows the ranking results of all four PMT variants
compared with the random prioritization, where random prior-
itization merely reorders samples randomly, and ideal ordering
is produced by the test oracle. All lines (except ideal) in
the plot almost collapse together. The ranking effectiveness
of PMT variants is just as effective as random prioritization.
Among the four variants, in the zoom-in plot, applying a cross-
project strategy or using code-based features even slightly
performs worse than random prioritization, while using model-
based features performs better. It reveals that PMT (no matter
using cross-version or cross-project strategies for learning to
rank) still requires significant changes to make it outperform
random prioritization, which is challenging (in designing a set
of model-specific features for learning within the same model
architecture, echoing the discussion in Section II.) Thus, we
exclude PMT as a candidate peer technique in our experiments.

Our models and datasets are widely used in previous
testing work and have been well-trained. On each model,
we measure the effectiveness and efficiency of all techniques
whenever applicable. Using more datasets and models, metrics
and hyperparameters can strengthen the generalization of the

690

(a) ID = 1 (b) ID = 2 (c) ID = 3 (d) ID = 4

Figure 4: Failure Detection of Mutation-Adequate Test Suites on Challenging Test Pools.

Figure 5: Ranking results of PMT for cross-version/cross-
project + 2 feature sets. PMT cannot outperform Random.

experiment. We have tried to set m, n, η, and γ to different
values and find that the relative order of the three techniques
in the three RQs remains consistent with the results reported
in this paper. The implementation may contain bugs. To make
the experiment reliable, we reused the available code from [5],
[23] and tested and compared it with their results. Almost 95%
of the time spent by each EM and PM is consumed by the
mutation process, mostly in the offline pre-test phase. Besides
labeling cost reduction, two potential use cases of EFFIMAP
are input validation and guided retraining as reported in related
works [16], [23]. We have empirically evaluated on the model
with ID = 1 that EM can achieve the ROC-AUC value [63]
of 0.8185 measured by the informative mutation score to
reject out-of-distribution samples. Moreover, in this model,
EM outperforms the random selection of adversarial samples
(of gaussian blur type) by 3.16% in robust accuracy after
retraining the model under test with the selected samples. EM
selects stronger adversarial samples. Although we evaluate
EFFIMAP on the image classification and regression tasks
only, the idea of EFFIMAP formulating predictive mutation
analysis for DNN models could be generalized to other tasks
(e.g., object detection) by defining the predicate of mutation.

V. RELATED WORK

Our work is in the area of test case prioritization [9], [16],
[17], [24]. DeepGini [16] computed the Gini impurity on the
probability vector of the classification models to prioritize test
cases. Dissector [23] computed a metric based on the trend

of the relative performance of the model under test and its
submodels. Unlike EFFIMAP, they [16], [23] cannot handle
regression models. Byun et al. [64] measured the confidence,
uncertainty, and surprise for test cases for prioritizing test
cases, and found sentiment measures effective in flagging
problematic inputs. LSA/DSA [19] were built atop the degree
of surprise of test cases with respect to the training samples
for prioritization. However, the surprise metric requires a large
computational resource as the computation happens between
a test case to each training sample. EFFIMAP only needs to
process its TRACER and ESTIMATOR, which is lightweight.
We have extensively reviewed Prima [5] in previous sections
as a mutation-based technique. The experiment of Prima
showed that Prima outperformed LSA and DSA [19] and
DeepGini [16]. EFFIMAP boosts effectiveness and efficiency
compared with Prima. A related area is test case selection.
PEACEPACT [65] perturbed test samples to assess how easy
to generate adversarial examples from them by altering neuron
activation. Zhang et al. [24] computed the activation patterns
of each class as constraints and checked whether a test case
might violate them. EFFIMAP also uses the information about
neuron activation for estimation. DeepReduce [17] reduced a
test suite by prioritizing the test cases within their distribution
of the test suite. EFFIMAP builds a ranking model for test
case prioritization.

Mutation testing [28]–[30] on DNN models is emerging.
DeepMutation [25] was the first mutation testing framework
with model mutants and sample mutants. Wang et al. [9]
used mutation analysis to distinguish adversarial examples
(from clean ones). EFFIMAP also constructs a set of model
mutants with clear cause and effect from the literature.
PMT [31] proposed predictive mutation testing with cross-
version/project strategies for testing traditional programs, but
as we discussed, it was ineffective in the DNN testing domain.
Prima [5] integrated a comprehensive mutation analysis into
TCP. EFFIMAP effectively bridges the gap between predictive
mutation analysis and test case prioritization.

Diverse methods, such as random-based generation [66],
search-based generation [15], [67], and metamorphic relation-
based generation [68]–[70] have been studied for test case
generation. SENSEI [66] fuzzes to generate data for robustness
improvement. DeepHyperion [67] used an illumination search

691

to find misbehaving samples by analysis of selective neurons.
MODE [15] computed differential heat maps and searched a
given dataset to find the samples with a larger dot product
value of its heat map to the former map. Novel metamor-
phic relations were formulated in [68]–[70] to generate test
pairs and detect violations for machine translation models.
EFFIMAP formulates an autoencoder strategy to generate in-
distribution sample mutants to alleviate the lack of data issue,
which is different from the above techniques.

VI. CONCLUSION

We have presented EFFIMAP, a novel predictive mutation
analysis approach to prioritizing test cases while significantly
reducing the computational cost in mutation analysis. EF-
FIMAP comes with a novel target-oriented mutant generation
method to generate a set of diverse mutants. It formulates a
novel distribution-oriented execution trace as features and a
novel and effective mutation analysis strategy to substitute the
traditional mutation analysis performed in the test phase. The
experimental results in this paper demonstrate that EFFIMAP
is effective and efficient in reducing the computational cost
of mutation analysis, showing the feasibility of predictive
mutation analysis in DNN model testing.

REFERENCES

[1] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush, “OpenNMT:
Open-source toolkit for neural machine translation,” in Proceedings of
ACL 2017, System Demonstrations. Vancouver, Canada: Association
for Computational Linguistics, Jul. 2017, pp. 67–72.

[2] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, “Image segmentation using deep learning: A survey,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
1–1, 2021.

[3] M. Bakator and D. Radosav, “Deep learning and medical diagnosis: A
review of literature,” Multimodal Technologies and Interaction, vol. 2,
no. 3, 2018.

[4] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in IEEE Inter-
national Conference on Computer Vision (ICCV), 2015, pp. 2722–2730.

[5] Z. Wang, H. You, J. Chen, Y. Zhang, X. Dong, and W. Zhang, “Prioritiz-
ing test inputs for deep neural networks via mutation analysis,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 397–409.

[6] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles, ser. SOSP ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1–18.

[7] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in 33rd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), 2018, pp. 132–142.

[8] I. Dunn, H. Pouget, D. Kroening, and T. Melham, “Exposing previously
undetectable faults in deep neural networks,” in Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 56–66.

[9] J. Wang, G. Dong, J. Sun, X. Wang, and P. Zhang, “Adversarial sample
detection for deep neural network through model mutation testing,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019, pp. 1245–1256.

[10] C. Olsson, “(2018-03-01) incident number 4 in McGregor, S. (ed.)
Artificial Intelligence Incident Database. responsible ai collaborative.”
https://incidentdatabase.ai/cite/4?lang=en, 2022, accessed: 2022-04-30.

[11] Wikipedia contributors, “Death of elaine
herzberg — Wikipedia, the free encyclopedia,”
https://en.wikipedia.org/w/index.php?title=Death of Elaine Herzberg,
2022, [Online; accessed 19-August-2022].

[12] B. Allyn, “’the computer got it wrong’: How fa-
cial recognition led to false arrest of black man,”
https://www.npr.org/2020/06/24/882683463/the-computer-got-it-wrong-
howfacial-recognition-led-to-a-false-arrest-in-michig, 2020, nPR, June
24, 2020. Online; accessed 30 April 2022.

[13] P. Ji, Y. Feng, J. Liu, Z. Zhao, and B. Xu, “Automated testing for ma-
chine translation via constituency invariance,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2021, pp. 468–479.

[14] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “TensorFuzz:
Debugging neural networks with coverage-guided fuzzing,” in Pro-
ceedings of the 36th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 4901–
4911.

[15] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “Mode: Automated
neural network model debugging via state differential analysis and
input selection,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 175–186.

[16] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “Deepgini: Prior-
itizing massive tests to enhance the robustness of deep neural networks,”
in Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 177–188.

[17] J. Zhou, F. Li, J. Dong, H. Zhang, and D. Hao, “Cost-effective testing
of a deep learning model through input reduction,” in 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE),
2020, pp. 289–300.

[18] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, DeepHunter: A Coverage-Guided Fuzz
Testing Framework for Deep Neural Networks. New York, NY, USA:
Association for Computing Machinery, 2019, p. 146–157.

[19] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in Proceedings of the 41st International
Conference on Software Engineering, ser. ICSE ’19. IEEE Press, 2019,
p. 1039–1049.

[20] Z. Zhang, P. Wang, H. Guo, Z. Wang, Y. Zhou, and Z. Huang,
“Deepbackground: Metamorphic testing for deep-learning-driven image
recognition systems accompanied by background-relevance,” Informa-
tion and Software Technology, vol. 140, p. 106701, 2021.

[21] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.-C. Cheung, and T. Xie, “De-
tecting numerical bugs in neural network architectures,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020. New York, NY, USA: Association for Computing
Machinery, 2020, p. 826–837.

[22] H. Tu, Z. Yu, and T. Menzies, “Better data labelling with emblem (and
how that impacts defect prediction),” IEEE Transactions on Software
Engineering, vol. 48, no. 1, pp. 278–294, 2022.

[23] H. Wang, J. Xu, C. Xu, X. Ma, and J. Lu, “Dissector: Input validation
for deep learning applications by crossing-layer dissection,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE), 2020, pp. 727–738.

[24] K. Zhang, Y. Zhang, L. Zhang, H. Gao, R. Yan, and J. Yan, “Neuron
activation frequency based test case prioritization,” in 2020 International
Symposium on Theoretical Aspects of Software Engineering (TASE),
2020, pp. 81–88.

[25] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang, “Deepmutation: Mutation testing of
deep learning systems,” in 2018 IEEE 29th International Symposium
on Software Reliability Engineering (ISSRE), 2018, pp. 100–111.

[26] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, Mar 1986.

[27] S. Lathuilière, P. Mesejo, X. Alameda-Pineda, and R. Horaud, “A
comprehensive analysis of deep regression,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 42, no. 9, pp. 2065–
2081, 2020.

[28] R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, and A. Groce, “How
hard does mutation analysis have to be, anyway?” in 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE),
2015, pp. 216–227.

692

[29] G. Guizzo, F. Sarro, and M. Harman, Cost Measures Matter for Mutation
Testing Study Validity. New York, NY, USA: Association for Computing
Machinery, 2020, p. 1127–1139.

[30] R. Gopinath, M. A. Alipour, I. Ahmed, C. Jensen, and A. Groce,
“On the limits of mutation reduction strategies,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
511–522.

[31] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang, “Pre-
dictive mutation testing,” IEEE Transactions on Software Engineering,
vol. 45, no. 9, pp. 898–918, 2019.

[32] D. Mao, L. Chen, and L. Zhang, “An extensive study on cross-project
predictive mutation testing,” in 2019 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), 2019, pp. 160–171.

[33] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, and
L. Zhang, “Predictive mutation testing,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ser. ISSTA
2016. New York, NY, USA: Association for Computing Machinery,
2016, p. 342–353.

[34] Z. Zhong, Y. Tian, and B. Ray, “Understanding local robustness of deep
neural networks under natural variations,” in Fundamental Approaches
to Software Engineering, E. Guerra and M. Stoelinga, Eds. Cham:
Springer International Publishing, 2021, pp. 313–337.

[35] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
303–314.

[36] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.
[37] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”

in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 785–794.

[38] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning
library testing via effective model generation,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2020. New York, NY, USA: Association for Computing Machinery,
2020, p. 788–799.

[39] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[40] Y. Sun, C. Guo, and Y. Li, “React: Out-of-distribution detection with
rectified activations,” in Advances in Neural Information Processing
Systems, 2021.

[41] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, no. 1, p. 60, Jul
2019.

[42] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in International Conference on Learning
Representations, 2018.

[43] Z. Zhao, G. Chen, J. Wang, Y. Yang, F. Song, and J. Sun, “Attack
as defense: Characterizing adversarial examples using robustness,” in
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 42–55.

[44] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, no. 3, p. 379–423, july 1948.

[45] ——, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, no. 4, p. 623–656, october 1948.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and Édouard
Duchesnay, “Scikit-learn: Machine learning in python,” Journal of
Machine Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011.

[47] J. Gehrke, Scalable Decision Tree Construction. New York, NY:
Springer New York, 2018, pp. 3275–3281.

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style, High-
Performance Deep Learning Library. Red Hook, NY, USA: Curran
Associates Inc., 2019.

[49] Z. Wei, “Implementation of EffiMAP,” 11 2022. [Online]. Available:
https://github.com/Wsine/effimap

[50] ParagonLight, “Implementation repository of icse’20 dissector,”
https://github.com/ParagonLight/dissector, 2021.

[51] sail repos, “Implementation repository of icse’21 prima,”
https://github.com/sail-repos/PRIMA, 2021.

[52] Wikipedia contributors, “Gaussian noise — Wikipedia, the free
encyclopedia,” 2022, [Online; accessed 6-May-2022]. [Online].
Available: https://en.wikipedia.org/w/index.php?title=Gaussian noise

[53] chenyaofo, “Pytorch cifar models,”
https://github.com/chenyaofo/pytorch-cifar-models, 2021.

[54] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[55] tjmoon0104, “Tiny-imagenet classifier using pytorch,”
https://github.com/tjmoon0104/Tiny-ImageNet-Classifier, 2018.

[56] Y. Le and X. S. Yang, “Tiny imagenet visual recognition challenge,”
2015.

[57] xichen, “Base pretrained models and datasets in pytorch,”
https://github.com/aaron-xichen/pytorch-playground, 2020.

[58] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[59] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

[60] Z. Wang, S. Wu, C. Liu, S. Wu, and K. Xiao, “The regression of
mnist dataset based on convolutional neural network,” in The Interna-
tional Conference on Advanced Machine Learning Technologies and
Applications (AMLTA2019), A. E. Hassanien, A. T. Azar, T. Gaber,
R. Bhatnagar, and M. F. Tolba, Eds. Cham: Springer International
Publishing, 2020, pp. 59–68.

[61] F. Wilcoxon, S. Katti, and R. A. Wilcox, Critical values and probability
levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test.
American Cyanamid Pearl River (NY), 1963, vol. 1.

[62] H. Abdi and L. J. Williams, “Tukey’s honestly significant difference
(hsd) test,” Encyclopedia of research design, vol. 3, no. 1, pp. 1–5,
2010.

[63] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under
a receiver operating characteristic (ROC) curve,” Radiology, vol. 143,
no. 1, pp. 29–36, Apr. 1982.

[64] T. Byun, V. Sharma, A. Vijayakumar, S. Rayadurgam, and D. Cofer,
“Input prioritization for testing neural networks,” in 2019 IEEE Inter-
national Conference On Artificial Intelligence Testing (AITest), 2019,
pp. 63–70.

[65] Z. Li, L. Zhang, J. Yan, J. Zhang, Z. Zhang, and T. H. Tse, “Peacepact:
Prioritizing examples to accelerate perturbation-based adversary gener-
ation for dnn classification testing,” in 2020 IEEE 20th International
Conference on Software Quality, Reliability and Security (QRS), 2020,
pp. 406–413.

[66] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz
testing based data augmentation to improve robustness of deep neural
networks,” in Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1147–1158.

[67] T. Zohdinasab, V. Riccio, A. Gambi, and P. Tonella, “Deephyperion:
Exploring the feature space of deep learning-based systems through
illumination search,” in Proceedings of the 30th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, ser. ISSTA 2021.
New York, NY, USA: Association for Computing Machinery, 2021, p.
79–90.

[68] P. Ji, Y. Feng, J. Liu, Z. Zhao, and B. Xu, “Automated testing for ma-
chine translation via constituency invariance,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2021, pp. 468–479.

[69] P. He, C. Meister, and Z. Su, “Testing machine translation via referential
transparency,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), 2021, pp. 410–422.

[70] Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, and L. Zhang,
“Automatic testing and improvement of machine translation,” in Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 974–985.

693

