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Abstract—Microservices Architectures (MSA) have found large
adoption in companies delivering online services, often in con-
junction with agile development practices. Microservices are
distributed, independent and polyglot entities – all features
favouring black-box testing. However, for real-scale MSA, a pure
black-box strategy may not be able to exercise the system to
properly cover the interactions involving internal microservices.

We propose a grey-box strategy (MACROHIVE) for automated
testing and monitoring of (internal) microservices interactions.
It uses combinatorial testing to generate valid and invalid tests
from microservices specification. Tests execution and monitoring
are automated by a service mesh infrastructure. MACROHIVE
runs the tests and traces the interactions among microservices,
to report about internal coverage and failing behaviour.

MACROHIVE is experimented on TrainTicket, an open-source
MSA benchmark. It performs comparably to state-of-the-art
techniques in terms of edge-level coverage, but exposes internal
failures undetected by black-box testing, gives detailed internal
coverage information, and requires fewer tests.

Keywords—Microservices; Grey-box Testing; Functional testing

I. INTRODUCTION

Microservice architectures (MSA) are a service-oriented
software architectural style where services are loosely coupled,
run in their own processes, and interact via lightweight mech-
anisms [1]. These characteristics allow for independent devel-
opment (by different teams, different programming languages)
and deployment. They are usually developed according to lean
or agile development practices like DevOps, enabling rapid
and frequent software releases (even many per day).

Testing is the common solution to assess the quality of an
MSA. In agile contexts, test automation and efficiency are of
paramount importance to get quick and continuous feedback
about quality. As MSA code is polyglot and distributed across
various repositories, black-box testing is usually deemed as
the most suitable approach [2]. Automatic techniques for
specification-based black-box testing of RESTful web-services
can be applied for MSA testing, as they can generate test
cases from documentation of their microservices interface [3]–
[5].1 This practice is adopted in black-box testing of service-
oriented architectures for fault detection [7], [8], as well as
to test against requirements while achieving some degree of
coverage [3], [9].

However, the characteristics of real-scale MSA can make
black-box testing fall short. When many microservices are
involved, with complex inter-dependencies, a black box view

1The most notable open format for specifying web services and
MSA Application Programming Interfaces (API) is OpenAPI/Swagger [6]
(https://www.openapis.org).

gives no information about the internal behaviour (both in
terms of achieved internal-microservices coverage and of their
failing behaviour). Black-box testing exercises functionalities
from an external perspective, with requests directed to edge
microservices. The output of an edge microservice is usually
dependent on the interaction with other internal microservices,
which can be edge for other functionalities, or inaccessible
from the outside. The absence of an internal perspective does
not allow a tester to distinguish if a failure observed on a
request to a microservice is due to the microservice being
faulty or to another, interacting, microservice that propagated
its failure to the one under test. Also, internal microservices
can be invoked by different edge microservices; if one of them
is faulty, several different failures can be observed at edge
level, in possibly different microservices. Testing without an
internal perspective considers these as independent failures.

This paper presents a grey-box specification-based strategy
for automatic tests generation and interactions monitoring.
The strategy is supported by a tool, MACROHIVE, deployed
as a collection of microservices according to a service mesh
pattern. This provides observability of internal interactions,
which is crucial for microservice testing [10]. Applied to the
TrainTicket benchmark [11], MACROHIVE turns out to perform
comparably to black-box state-of-the-art techniques in edge-
level coverage; it however: i) exposes a number of internal
failures undetected by black-box testing (distinguishing prop-
agated from masked failures), thus easing the identification of
faulty microservices and of failure propagation chains; ii) gives
details about internal dependencies, errors, and exceptions – of
great importance to practitioners [12]; iii) and requires a lower
number of tests. Moreover, being itself a (set of) microservices
deployed with the MSA, it does not need to run separate
testing sessions for each microservice to test.

In the following: Section II describes related work; Section
III describes the proposed grey-box strategy; Sections IV and
V present experimentation and results, respectively; Section VI
discusses threats to validity; Section VII concludes the paper.

II. RELATED WORK

Several studies present testing techniques conceived for
MSA [13]–[19]. Long et al. [16] present a technique for
fitness-guided resilience testing, with the goal of finding as
many bugs in the fault handling logic as possible in a set
amount of time. Heorhiadi et al. [13] investigate resilience
testing too, proposing the Gremlin framework for systemati-
cally testing the failure-handling capabilities of microservices,
by injecting faults into inter-service messages.
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De Camargo et al. [18] propose the FPTS framework for au-
tomated performance testing; it helps evaluating performance
delivered by individual microservices, through annotations to
be used within their source code to generate a specification,
needed for workload creation. Lei et al. [19] propose a method
for performance testing with the use of Kubemark.2

None of the above studies deals with functional testing.
Nonetheless, because of the prominent role of RESTful API in
MSA [20], several tools for black box testing of RESTful web
services are suitable for MSA testing too. Such tools usually
consider as objectives: maximization of API coverage (number
of executed methods), maximization of HTTP response codes
coverage, automatic fault detection.

Corradini et al. have empirically compared them [3]. All
tools aim to maximize the coverage of methods specified in the
APIs via data and operations dependencies. The comparison is
in terms of “robustness”, meant as ability to manage real-world
systems, and of coverage criteria as defined by Martin-Lopez
et al. [9]. The comparison highlights the following three main
tools: RestTestGen, RESTler and bBOXRT.

RestTestGen [21] is a stateful test generator, that infers data
dependencies with an operation dependency graph. It generates
nominal and faulty test cases. Input values are generated from
a dictionary, from examples in the specification, randomly, or
re-using past observed values.

RESTler [4] is a tool for stateful input generation via
fuzzing, aiming to find security issues. The authors focus on
inferring producer-consumer dependencies among the speci-
fied request types, and on analyzing dynamic feedback from
responses given by executed tests. Similarly to RestTestGen
input values are selected from a user-configurable dictionary,
or from previously observed values.

bBOXRT [22] is for robustness testing of REST services.
The authors designed a method for injecting faults in requests,
attempting to trigger erroneous behaviors. Specification-
compliant input values are randomly generated, and then mu-
tated to observe the system behavior under a faulty workload.

A state-of-the-art tool for automated testing of RESTful
Web Services is EvoMaster, proposed by A. Arcuri. Initially
conceived for white-box testing, EvoMaster has then been
extended to support black-box testing [20]. It performs random
testing, adding heuristics to maximize the HTTP response code
coverage. EvoMaster did not take part in the comparison, as
Corradini et al. stated that it was not available yet.

Martin-Lopez et al. [7] propose RESTest, a black-box tool
for automatic fault detection. They use an Inter-parameter De-
pendency Language (IDL). The results obtained depend on the
available information about dependencies; more information
improve results, but require testers to specify dependencies in
IDL - this is time-consuming, requires a deep knowledge of
the system under test, and reduces automation.

MSA testing can indeed borrow tools conceived for black
box testing of RESTful Web Services. This alleviates the

2Kubemark is a performance testing tool for running Kubernetes ex-
periments on simulated clusters (https://github.com/kubernetes/community/
blob/master/contributors/devel/sig-scalability/kubemark-guide.md).

burden of manual API testing in service-based systems, which
is a common practice in industry [20]. However, it also
poses challenges that we aim to address with this work.
First, applying the mentioned tools requires to run distinct
testing sessions for every edge microservice – a practice
that does not scale well with the number of microservices
[23]. Second, microservices’ interactions can result in complex
invocation chains involving internal services in a real scale
application; when these are insufficiently covered by a test
suite, failures may remain undetected. This may well happen
with all described black-box techniques, as they consider
coverage metrics only at edge level.

With respect to the above, our contribution is twofold:
• We propose a grey-box testing strategy specific for MSA,

which adopts a combinatorial testing generation tech-
nique, supported by an automated tool (MACROHIVE),
deployed itself as a collection of microservices and not
requiring to run separate testing sessions for each mi-
croservice; differently from existing tools, the proposed
strategy allows to compute coverage of internal microser-
vices, and it provides insights into the failing behaviour.

• We highlight the benefit of, and need for, a grey-box
strategy rather than a black-box one, by experimentally
comparing MACROHIVE with four of the above-mentioned
black-box tools. The results highlight the shortcomings of
black-box testing due to the impossibility of collecting
metrics for MSA internal services, which motivated the
proposed MACROHIVE tool.

III. GREY-BOX TESTING STRATEGY

A. Overview

The grey-box strategy for testing an MSA, aims to expose
and characterize failures3 and to provide internal coverage
information. It focuses on observability, which is important
when debugging a distributed system such as an MSA [24].
MSA are usually characterized by:

• edge microservices, exposing APIs to external users to
access the functionality offered by the systems;

• internal microservices, exposing APIs to other microser-
vices to implement complex business functions.

A microservice can be edge for some functions and internal
for others. Black-box testing may not be able to allow testers
to evaluate the test suite’s ability to cover internal interactions.
Moreover, they cannot spot when a microservice fails due its
own fault or due to the failure of an internal microservice.

MACROHIVE generates tests starting from the microservices’
API, and for every executed test observes the chain of requests
among internal microservices. It supports the proposed grey-
box testing strategy via automated test suite generation, then
execution and monitoring thanks to an infrastructure - designed
according to the service mesh pattern [25] - deployed with the
MSA under test.

3In the MSA literature, a failure is considered as a request yielding a 5xx
HTTP response code, indicating an error condition, an unhandled exception,
or in general the inability to serve the request [5], [7], [22].

641



At the end of a session, the following results concerning
edge and internal microservices are provided to the tester:

• the set of executed tests with the corresponding outcome;
• the path of requests of each test through the internal

microservices;
• a set of metrics at both edge and internal microservices

levels (e.g., number of failures, average response time);
• a set of metrics for each level of dependency, namely the

depth of a microservice in the requests chain.
With this information, the tester can discriminate different

kinds of failures involving internal microservices, such as
masked failures (corresponding to correct responses from edge
microservices, despite failures of internal microservices), and
propagated failures (incorrect responses of the edge microser-
vices due to failures of internal microservices).

B. MACROHIVE

MACROHIVE is conceived to automatically expose both edge
and internal failures, so that a tester does not need to manu-
ally inspect request paths. This functionality allows catching
internal failures, undetectable by black-box strategies. It also
allows identifying the true cause of edge-level failures, namely
if due to the edge itself or to internal microservices. Since the
testing process targets microservices of the same MSA, it is
possible to detect common cause failures (e.g., a single faulty
microservice that causes failures of other microservices).

Figure 1 shows the MACROHIVE infrastructure. It has three
main components: uTest, uSauron and uProxy (uP). The first
is responsible for test cases generation and execution. The
other components form a support inter-service communica-
tion infrastructure [25] to be deployed with the SUT. An
MSA is composed of many microservices with independent
deployments, often controlled by multi-container management
tools such as Docker Compose [26], [27]. MACROHIVE auto-
matically manipulates a docker-compose YAML file to add a
sidecar proxy to each microservice to test/monitor.

uTest
This service generates and executes a test suite. It adopts a
pairwise generation strategy that could help testers to detect

App-μS1 App-μS3

uSauron

uTest

App-μS2

App-μS5App-μS4

uP uP

uP

uP

uP

MacroHive

Infrastructure

MSA

Figure 1: The MacroHive infrastructure

TABLE I: Example of input space partitioning

Parameter Type Input Classes Category

p1
(required,
in path)

string

c1,1: in range valid
c1,2: specified example value(s) valid
c1,3: empty string invalid
c1,4: no string invalid

p2
(required,
in body)

integer

c2,1: positive value in range valid
c2,2: negative value in range valid
c2,3: alphanumeric string invalid
c2,4: no value invalid

p3
(optional,
in body)

boolean

c3,1: {true,false} valid
c3,2: no value valid
c3,3: empty string invalid
c3,4: alphanumeric string invalid

TABLE II: A sample test case specification

URI template http://exampleHost:8080/examplePath/{c1,2}
HTTP method POST
body template {“p2”:{c2,2},“p3”:{c3,1}}

HTTP status code 201, 400

multi-factor faults, which are a high percentage in software
systems [28]. Compared to other state of the art techniques, we
expect a combinatorial design to substantially reduce testing
cost, while providing good coverage and fault detection ability
[29]. uTest automatically retrieves the specification (in the
OpenAPI/Swagger format) of the edge microservices of the
MSA under test. The API are parsed to extract an Input Space
Model consisting of HTTP methods, URIs and body templates,
HTTP status codes and parameters’ details (type, bounds,
default value, etc.); equivalence classes [30] are defined for
each parameter and then categorized into valid and invalid.4

Table I shows an example of input space partitioning for a
request with three parameters. By selecting two equivalence
classes per parameter, test case specifications are produced
with a pairwise combinatorial strategy: a 2-way test suite is
generated, covering all pairs of parameter classes. Table II
shows a sample test case specification: a test case generated
from this specification shall have for p1 a value chosen from
class c1,2 (the example value); for p2 a value from class c2,2
(negative value in range), and for p3 the value true or false.

We call valid test cases those containing parameter values
all belonging to valid input classes; invalid test cases those
containing at least a parameter value belonging to an invalid
class. To generate a nominal test suite (composed of only valid
test cases), only valid classes per parameter are selected (when
available, examples valid and default values are preferred),
otherwise valid and invalid classes per parameter are chosen
to generate a mixed test suite (e.g., for robustness testing).

The generated tests are executed by sending HTTP requests.
MACROHIVE allows generating requests also in case of authen-
tication, by specifying credentials or tokens in the configu-
ration file. The test outcome is automatically determined by
evaluating the received HTTP status code.

4A class is valid if it contains only input parameter values which do
comply to the microservice specification, and invalid if it contains only values
that do not.
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uSauron and uProxy
These two components constitute a service mesh infrastructure
to trace service dependencies and log request-response couples
during a testing session. Although many monitoring tools are
available in the literature (e.g., Prometheus5, Jaeger6, etc.), we
preferred to build our infrastructure in favor of automation and
flexibility with minimum instrumentation.

uProxy (uP) is deployed alongside each microservice to
test/monitor, complying with the sidecar pattern [31], [32].
Each proxy performs two tasks:

• acting as a reverse proxy for the coupled microservice;
• sending to uSauron an information packet whenever it

collects a request-response couple.
Different threads run these tasks to minimize communi-
cation delay. The information packet is composed of: re-
quest/response URL, request/response body, HTTP response
code, response time, sender/receiver address.

uSauron is a microservice responsible for the collection of
information provided by proxies. In particular, it aims to log
proxies packets and compute fine-grained metrics (e.g., cov-
erage, dependencies) for each test. For this purpose, uSauron
runs a distributed algorithm during a testing session to link
collected information to executed tests.

Test execution algorithm
The tests execution algorithm run by MACROHIVE (Figure
2) is realized by uTest (the test executor), uSauron (the
collector), and uProxies (the probes). The example in Figure 2
shows a test involving microservices uS4 (edge) and uS2, uS3
(internal); it entails the following messages: a start recording
message (number 1) is sent by uTest to uSauron; it notifies the
intent to run test t and that every subsequent message received
by uSauron needs to be linked to t. Then, uTest actually
starts the test t, sending an HTTP request to the uP proxy
coupled with the edge microservice (message number 2). The
involved proxies intercept the request-response couples with
the edge microservice (2,7) and the internal interactions (3,6
and 4,5). For every intercepted request/response, the proxies
send information packets to uSauron (messages 7.1, 6.1, and
5.1), which links them to test t. When uTest receives the
response for t (message number 7), it sends a stop record
message to uSauron (message number 8). On receipt, uSauron
stops the packets recording and saves the collected records.

This algorithm is executed for every test in a testing session.
The way it is designed, the monitoring infrastructure can
capture any concurrent calls of internal microservices made
within the same test execution. At the end of a session,
uSauron outputs a set of statistics.

IV. EXPERIMENTATION

This section reports the experiments run to assess the
MACROHIVE’s strategy in terms of coverage, fault detection,
and cost. We check MACROHIVE’s performance against four
state-of-the-art black-box testing tools – namely, EvoMaster

5https://prometheus.io/
6https://www.jaegertracing.io/
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Figure 2: Example test execution sequence

[20], ResTestGen [21], bBOXRT [22], RESTler [4] - and
we investigate the pros and cons of the “grey-box” strategy
featured by MACROHIVE. The other mentioned tools (RESTest
[7], QuickRest [8], and the Eclipse plugin [33]) are either not
available or cannot be run.

For repeatability and reproducibility, we provide MACRO-
HIVE code for running the experiments7.

A. Experimental subject

The experimental subject is TrainTicket, a well-known open-
source MSA benchmark, composed of 41 microservices [11].
This MSA has been extensively used in previous research
and is considered representative of a real-world MSA [23],
[34]–[42]. It is worth noting that other usual benchmarks in
the related literature, such as Sock Shop8 (6 microservices),
Pet Clinic9 (3 microservices), FTGO10 (7 microservices),
PiggyMetrics11 (3 microservices), used in [3], [43]–[46], are
inadequate for testing MSAs: they are (small) collections of
microservices that do not interact to each other – in this sense,
they are not realistic MSA. For this reason, these subjects
are not suitable for the grey-box experiments. However, in
the online appendix7 we report the results of MACROHIVE

on a subset of these subjects (namely, FTGO and SockShop),
confirming its performance as a pure black-box technique.

B. Tests generation strategies

We define two tests generation strategies for MACROHIVE:
• MACROHIVE PV (pV): generates a 2-way test suite with

valid input classes;
• MACROHIVE P (p): generates a 2-way test suite with valid

and invalid input classes.
Mixed test suites are expected to provide better coverage
results since they run both valid and invalid tests. We aim to
compare the effectiveness of both strategies on edge and inter-
nal microservices. The comparison with RESTler, bBOXRT,

7https://github.com/uDEVOPS2020/MacroHive
8https://microservices-demo.github.io/
9https://github.com/spring-projects/spring-petclinic

10https://github.com/microservices-patterns/ftgo-application
11https://github.com/sqshq/piggymetrics
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TABLE III: Coverage metrics

Coverage metric Description

Status code
class

100% status code class coverage when it is able to trigger both correct and erroneous status codes. Conversely, if it
only triggers status codes belonging to the same class (either correct or erroneous), the reached coverage is 50%.
2XX class represents a correct execution and 4XX and 5XX classes represent an erroneous execution.

Status code
Ratio of the number of obtained status codes to the total number of status codes documented in the OpenAPI
specification, for each operation. 100% status code coverage if, for each operation, it is able to test all the status codes.

and RestTestGen is on tests with valid and invalid input;
EvoMaster generates tests only with valid input.

All tools are run 10 times each on any of the 34 externally
accessible services, out of the 41 microservices in TrainTicket.
Because EvoMaster runs tests with and without authentication
(a token is provided), each tool is run both ways for fairness of
comparison. Compared tools have been configured with theirs
default settings or, when available, with the configuration that
was shown to yield the best performance in the respective
papers. For instance, RESTler has been configured with the
BFS-cheap algorithm, which was the one that achieved best
results with low time budgets [4]. When available, the max-
imum time budget is set to 150 seconds, namely 10 times
the average time required by MACROHIVE to perform a testing
session (15 seconds). We use Burp Suite to collect black-box
tests input and output [47]. Then, we export the logs and feed
them in Restats [48], a tool to compute coverage metrics.

C. Research Questions

Three research questions are defined, to assess coverage,
fault detection ability and cost of the proposed strategy.

Coverage
An objective commonly pursued in specification-based testing
of service-based software is to maximize coverage. Corradini
et al. list eight coverage metrics [3]; we consider two of them,
which apply to coverage of internal microservices too, for
which we do not require availability of the API specification.
They are status code coverage (SC) and status code class
coverage (SCC) (Table III). While these coverage metrics are
useful when testing individual services, they provide insuffi-
cient information for inter-dependent (micro)services as in an
MSA. Indeed, coverage values observed with black-box testing
at edge level give no insight about internal MSA dynamics and
the internal failing microservice(s) within the MSA.

MACROHIVE grey-box strategy allows to compute the cov-
erage of paths internal to the MSA. Namely, it computes cov-
erage values at the various levels of dependency. For instance,
50% status code class coverage at a certain dependency level
in an MSA with two internal microservices A and B may be
achieved via coverage of A = 0% and B = 100% as well as
by A = B = 50%. The latter is preferable as interactions with
both microservices are covered.

To account for this, MACROHIVE measures the status code
class and dependencies coverage of the internal microservices.
For dependencies coverage, the number of all possible depen-
dencies of a microservice is inferred from execution traces by

running all the generated pairwise tests (4,600 tests) repeated
10 times, for a total of 46,000 test (to account for randomness
introduced by combinatorial testing) – an approach commonly
preferred for microservices, for which a static dependencies
inference strategy is not exhaustive [49]–[51].

Spotting scarcely-covered internal services highlight those
that need to be tested more from a unit testing perspective.
Also, it allows discriminating the balanced from unbalanced
internal coverage values under the same edge-level coverage.

We expect a combinatorial approach to increase internal
coverage since the different combinations of values of input
parameters should trigger different internal patterns.

RQ1: What is the coverage of MACROHIVE compared to
black-box testing?

Fault detection
An internal perspective of the MSA is expected to provide
useful insights into failing behaviours, by supporting fault
localization. A failure12 observed at edge-level can be de-
termined by a fault activated in any of the internal services
along the request propagation chain (we call it a propagated
failure) or by the edge service itself. Different failures can be
caused by a single faulty microservice (common-cause failure).
A pure black-box strategy ignores this distinction, making root
cause analysis - and debugging - harder. An even more subtle
situation occurs when a fault in a microservice is propagated
within the MSA and does not achieve the edge service, namely
the microservice failure is masked by the MSA (e.g., it could
be tolerated by some other service): in this case, there may
be a silent erroneous state within the MSA that escapes black
box testing (we call it a masked failure).

RQ2: What is the fault detection ability of MACROHIVE

compared to black-box testing?

Cost
The cost of MACROHIVE is due to the number of generated
test cases to run (like the black-box strategies) plus the
cost of monitoring due to the grey-box-level testing. The
combinatorial technique adopted by MACROHIVE is expected to
significantly decrease the number of generated test cases. The
monitoring infrastructure, on the other hand, adds additional
cost compared to other techniques.

RQ3: What is the cost incurred by MACROHIVE compared to
state-of-the-art black-box testing techniques?

12Without loss of generality, failures considered hereafter are as defined
in Section III, namely 5xx status codes.
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V. RESULTS

A. RQ1: Coverage

The four state-of-the-art techniques, MACROHIVE P, and
MACROHIVE PV are run to compute the SCC and SC coverage
reached by the respective test suites.

Therefore, we conducted a Friedman test, which is robust
to non-normality and heteroscedasticity, with the Iman and
Davenport extension on SCC and SC coverage values of each
microservice and each repetition with a level of significance
α = 0.05 [52]. The test detects if at least one factor’s level
significantly differs from another. With p-value < 2.2E-16 for
both SCC and SC values it rejects the null hypothesis that
average coverage values do not significantly differ.

Figures 3 and 4 show the post hoc pairwise comparison
results by the ranking resulting by the Nemenyi’s test critical
difference plot [53]. Techniques with no significant difference
are grouped together using a bold horizontal line – the greater
the distance between two algorithms, the smaller the p-value
for the null hypothesis of equal performance (the distance
being the average ranking). It shows that the techniques are
almost equivalent as for SCC coverage, except for RESTler,
which is ranked first. The second plot shows that RESTler,
MACROHIVE P, bBOXRT, and MACROHIVE PV are equally
good in terms of SC coverage since they are able to find a
higher number of different HTTP status codes compared to
EvoMaster and RestTestGen.

Figure 5a plots the Status Code Class coverage for each
edge microservice, while Figure 5b shows the average SCC
coverage among all edge microservices. The Figures show
that the performance of the various approaches is comparable.
Since SCC coverage considers only two classes, values lower
than 50% mean that the test is unable to cover a documented
status code (i.e., a status code described in the API) for one
or more methods of the microservice under test.

SCC values of MACROHIVE P and RESTler are always
greater than 50%, meaning that it is able to obtain at least one
documented status code for each method, on average for each
microservice. Among the MACROHIVE variants MACROHIVE P

shows the best performance with a slight difference.
Figure 6a and Figure 6b show the Status Code coverage per

microservice and the average SC per technique. As in the case
of SCC, the results are similar on the average. Values greater

1 2 3 4 5 6

EvoMaster

MacroHive_pV

RestTestGen

MacroHive_p

bBOXRT

RESTler

1 2 3 4 5 6

EvoMaster

MacroHive_pV

RestTestGen

MacroHive_p

bBOXRT

RESTler

Figure 3: RQ1: Critical Differences (CD) of SCC coverage

than 25% (SC) mean that the techniques are able to obtain at
least a quarter of the documented codes, since the Status Code
Class coverage can be 50% when 100 different status codes
are specified and just one of them is detected.

Although MACROHIVE does not consider any heuristic to im-
prove the coverage obtained in the testing session, the results
show that it is comparable to the state-of-the-art approaches
in terms of reached coverage.

The real advantage of MACROHIVE is the ability to measure
internal coverage. The following investigation aims to eval-
uate to what extent MACROHIVE is able to exercise internal
microservices through edge requests.

To investigate this aspect, let us define the dependency level
Lr of a request r made to an edge microservice M0 as the
length of the path of requests pr =< M0,M1, . . . ,MLr

>
made from M0 to the other microservices in the MSA. For
instance, a level-2 dependency means that M0 invoked a ser-
vice M1, which in turn invoked M2. In addition, we group the
edge-level microservices in different classes, based on the de-
pendency level. To this aim we ran T = 46, 000 tests executed
on all the edge-level microservices for inferring the potential
dependencies (Section IV-C). In detail, we ran Ti tests for the
i-th microservice, with T =

∑N
i=1 Ti. The execution traces of

the Ti tests directed to the i-th microservice can be seen as a
set of paths Pi = (p1, p2, . . . , pTi). From these, we have drawn
the maximum dependency level (LMax = max1≤r≤Ti

(Lr))
observed for that microservice, and assigned the microservice
to the class based on it, C = LMax.

For TrainTicket, the biggest dependency level of all edge
microservices is 5, resulting in 6 different classes, from 0
to 5. Specifically, it has 13 microservices belonging to class
0, meaning that they have no dependencies with internal mi-
croservices; 11 class-1 microservices; 5 class-2 microservices;
3 class-3 microservices; 1 class-4 and 1 class-5 microservices.

Figure 7 shows the SCC coverage achieved by the two
variants of MACROHIVE. The internal microservices API is
not always known when testing the edge microservice and
observing the internal chain of calls. For this reason, SCC
coverage for internal microservices is computed assuming that
different methods of the edge microservice invoke different
methods of the internal ones13. We see that MACROHIVE P

13SCC is preferred to SC because it does not need the API specification
of internal microservices.

2 3 4 5 6

EvoMaster

MacroHive_pV

RestTestGenMacroHive_p

bBOXRT

RESTler

2 3 4 5 6

EvoMaster

MacroHive_pV

RestTestGenMacroHive_p

bBOXRT

RESTler

Figure 4: RQ1: Critical Differences (CD) of SC coverage
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reaches the best values for the deepest dependency levels of
microservices of classes 1, 2, 4 and 5. Because of the lower
failure rate compared to MACROHIVE PV, this can suggest that
4xx codes rise up the coverage values. Indeed, invalid inputs
are more prone to cause such codes (e.g. 400 – bad request
HTTP code). This indicates that pairing invalid classes is the
best approach for maximizing status class coverage at deepest
MSA levels.

Figure 8 shows the dependencies coverage achieved. The
variants exhibit the same coverage; they are able, however, to
find different microservice dependencies.

B. RQ2: Fault detection

To answer RQ2, we run the four techniques and MACROHIVE

to execute the testing sessions as described in Section IV-B.
Figure 9 reports the Average Failure Rate (AFR), namely the

number of failures detected averaged over edge microservices
and repetitions. The Friedman test is run with a level of
significance α = 0.05. The test returns a p-value < 2.2E-16,
rejecting the null hypothesis that average failure rates values
do not significantly differ.

Figure 10 plots the Nemenyi’s test critical difference. While
bBOXRT and RESTler have (statistically) significantly lower
AFR, MACROHIVE variants show values similar to ResTestGen.
EvoMaster exhibits the best AFR, almost 0.175. The AFR
value greater than 0.15 (EvoMaster and MACROHIVE PV)
indicates that more than 15% of the generated tests expose
a failure. Both EvoMaster and MACROHIVE PV generate only
inputs compliant to the API, anyway achieving the highest
failure rate. This may indicate a poor specification or a better
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Figure 9: RQ2: Average failure rate
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Figure 10: RQ2: Critical Differences of algorithms failure rate

ability to exercise the code (with poor exception handling)
compared to invalid requests which can be handled by early
input validation (e.g., a malformed request).

Besides the failures exposed at edge level, MACROHIVE

spots internal failures, highlighting the internal failure propa-
gation chains, as well as possible masking effects.

Figure 11 shows the average number of internal failures
(again over all the microservices and repetitions) detected by
the variants of MACROHIVE, broken down by level. As shown,
MACROHIVE PV reaches slightly better results. We did not find
failures deeper than level-2.

Figure 12 shows the average number of internal failures
for classes 1 to 5 (class 0 is omitted, as there cannot be
internal failures). Except for the 3 microservices of class-3,
MACROHIVE PV is the variant performing best at detecting
internal failures. We see also that level 2 failures are mostly
in class-2 and class-5 microservices.
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Figure 11: RQ2: Edge and internal failures
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Figure 12: RQ2: Number of failures detected for edge and
internal microservices up to level 3

A deeper analysis allows to identify the microservice orig-
inating the failure propagation chain. Figure 13 shows two
situations spotted in TrainTicket thanks to MACROHIVE. Figure
13a shows a propagated failure: two failing internal ser-
vices, security-service and order-service, cause
the edge microservice preserve-service to fail. Figure
13b shows a masked failure: a test passed, despite a failure
occurred in the internal microservice order-service.

Failures in different microservices may be caused by a
common faulty service. An example is in Figure 14. Two
services (cancel and execute) fail by exhibiting similar
behaviour. Through the information provided by MACROHIVE,
a tester can infer that the primary cause is the method GET
/order/orderId of order-service. The grey-box approach
unveils such common-cause failure occurrences.

Table IV reports the average number of propagated and
masked failures among all microservices detected by the two
variants of MACROHIVE, together with the average number of
executed tests and failures observed at the edge. MACROHIVE P

exposes 328.7 propagated failures and 1 masked on average,
MACROHIVE PV 352 and 4. All exposed masked failures come
from the same microservice (cancel-service). These are
internal failures that would have not been detected by a
black-box strategy, as they do not reach the edge microser-
vice. These can silently corrupt the state of the MSA and
manifest unexpectedly in operation [54]–[56]. Clearly, some

order-service

security-service

preserve-service

(a) Propagated failure

order-service

cancel-service

(b) Masked failure

Figure 13: Examples of failing internal microservices

order-service

Method: GET

Url: /order/{orderId}

cancel-service

Method: GET

Url: /cancel/refound/{orderId}

execute-service

Method: GET

Url: /execute/collected/{orderId}

order-service

Method: GET

Url: /order/{orderId}

Figure 14: Example of common cause failure

of these failures might have been tolerated by the designed
fault tolerance mechanisms, others might be simply stopped
from propagating by the program control flow; in both cases,
engineers are interested in figuring out the reasons for the
microservice failure. Furthermore, propagated failures would
have been associated with edge microservices, while the true
cause would be an internal error.

TABLE IV: RQ2: Number of propagated and masked failures

Variant
Executed

tests
Edge

Failures
Propagated

failures
Masked
failures

MACROHIVE PV 4,460 756.7 352 4

MACROHIVE P 4,497.6 744 328.7 1

C. RQ3: Cost

RQ3 is about the cost of the proposed techniques. Figure 15
shows the average number of tests executed by each technique
for each microservice in the previous research questions. The
number of tests generated by MACROHIVE in each testing
session is at least one order of magnitude lower than the other
techniques. Furthermore, the very low variance of number
of tests generated by MACROHIVE depends on the stateless
generation methodology. In fact, MACROHIVE generates always
the same number of tests (for a certain microservice) with the
combinatorial strategy. Conversely, the other tools generate
a considerable amount of tests trying to explore parameter
dependencies, which are very hard to discover in complex
distributed systems such as MSA.

MACROHIVE relies on monitoring; its costs concern deploy-
ment and run-time overhead. As each microservice is supplied
with a sidecar, two containers are deployed per microservice.
This impacts the deployment process, as more containers must
be independently deployed, and linearly affects scalability.
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The monitoring overhead is related to the delay introduced
by proxies redirecting requests (responses) to (from) a mi-
croservice. This is a known issue, one of the main challenges
in building a service mesh [25]. The delay due to proxies
is the additional time incurred to forward a request or the
corresponding response. We measured this delay as 1±0.5 ms
(median and semi inter-quartile range over all microservices),
with the microservices response time equal to 7± 2.5 ms.

VI. THREATS TO VALIDITY

The main threats to validity and possible mitigation strate-
gies are as follows.

a) Construct validity: dependencies coverage and inter-
nal status code class coverage are computed on an estimation
of the ground truth. Indeed, it is built only with MACROHIVE,
then eventual dependencies that we are not able to explore are
not considered. Furthermore, we consider a failure propagated
when an edge failure presents at least an internal failure. This
may not always be the case, as we can have mixed chains
of propagated and masked failures. We are working on the
identification of these tricky cases too.

b) Internal validity: despite our efforts (including code
inspection by senior co-authors) to ensure that the MACROHIVE

prototype is free of defects, their presence cannot be excluded
and could partly corrupt the experimentation. Furthermore,
the sidecar proxies introduce a delay in the internal requests,
which could have determined some observed failures. Our
inspection of results did not identify any such case.

c) External validity: the use of the only TrainTicket
subject hinders generalization. The online appendix to this
study includes results on two further subjects; while these
additional results confirm MACROHIVE performance in a edge-
level perspective, by their nature (limited involvement of inter-
nal microservices) they could not be used for experiments with
an internal perspective. Finding realistic MSAs is a recognized
problem [11]; we will contribute to this by collaboration with
industry in the frame of ongoing projects.

VII. CONCLUSIONS

Grey-box testing of Microservice Architectures allows
testers to get information about internal microservices be-
haviour, in terms of coverage and failures. We presented a
grey-box testing strategy and the MACROHIVE infrastructure,
which automatically generate and execute test suites from the

API documentation of edge microservices, monitoring and
then analyzing interactions among internal microservices.

The case study shows that the proposed approach is very
effective in detecting different kinds of failures (edge failures,
internal failures, propagated failures, and masked failures), by
exploring internal dependencies, and providing useful infor-
mation about faulty microservices.

The cost of the technique is paid mostly in terms of over-
head, since it requires to deploy a proxy for each microservice
to monitor. This cost is traded off by a better understanding of
faulty behaviours of the internal microservices. As this kind of
tests can be executed in a staging environment, the overhead
does not impact the MSA in production.
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