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Abstract—One of the most critical ICT application domains
is healthcare, where a single failure can lead a patient into a
hazardous situation. Due to this, there’s a great necessity to
ensure that the developed solutions are safe and secure and
perform as expected. Smart-Health-4-All (SH4ALL) is a project
aiming at accelerating the research, development, commercial-
ization, and dissemination of trustworthy smart health solutions
in Portugal. One of the key components of the project is a web
platform that supports the generation of integration and system
tests for smart health solutions (comprising medical devices,
applications, etc.), following a software product line approach. At
the domain engineering level, the platform supports the creation
of feature models and related test patterns for families of smart
health products. At the product engineering level, the platform
supports the instantiation of test patterns and the generation of
corresponding test scripts ready for execution on specific products
under test. This paper presents the aforementioned test platform
and test process, and the discovery of test patterns.

Keywords—pattern-based testing; test patterns; smart health;
software product lines

I. INTRODUCTION

Health care is one of the domains with the most impact
on the population. Its objectives are to treat and promote the
health of the population and provide it with a higher quality of
life; this is possible to achieve through the means of medical
devices.

Medical devices improve society’s quality of life by aiding
in various aspects such as monitoring, disease prediction,
surgery assistance, and more [1]. In recent years, healthcare
has been adopting the Internet of Things (IoT); this adoption
has set the stage for an improved service for various patients
such as the elderly population and chronically diseased pa-
tients [2] [1]. With the aid of these interconnected devices,
which are constantly interchanging data with one another and
with multiple applications and services and perform actions
based on that information, it’s possible to create so-called
smart health solutions that provide better and more person-
alized services to the end users.

Medical device recalls have seen a substantial increase, in
many cases due to software faults; this may be an indicator
that testing is not being performed adequately [3]. Since these
devices directly impact the lives of the population, they need to
undergo a thorough certification procedure. For this purpose,
standards such as ISO 13485 require that the organization,
the entity that’s developing the device and aims to implement
this given standard, create quality management systems [4],
ISO/IEC 62304 require that manufacturers implement specific
procedures during development (based on a medical device
hazard class) before they are released to the market [5].

Implementing these certification procedures wrongly may lead
to the device never being released to the market.

Testing software requires a lot of effort from the developers
and testers, even more in healthcare, where there needs to be
an extremely low defect rate before release. This challenge
becomes harder in highly configurable and interconnected
systems such as IoT systems for health care and Ambient
Assisted Living (AAL).

From a business perspective, complying with regulatory
requirements and ensuring adequate testing of medical devices
and associated applications and services, may be particularly
challenging for Small and Medium Enterprises (SME), and
constitute a barrier to market entry.

It is in this context that the Smart-Health-4-All (SH4ALL)1

comes to rescue, aiming at accelerating the research, devel-
opment, commercialization, and dissemination of trustworthy
smart health solutions, comprising medical devices, applica-
tions, and services. The goal of this paper is to describe
one of the key components of the project: a web platform
that supports the generation of integration and system tests
for smart health solutions, following a Software Product Line
(SPL) approach. At the domain engineering level, the platform
supports the creation of feature models and related test patterns
for families of products. At the product engineering level, the
platform supports the instantiation of test patterns and the
generation of corresponding test scripts ready for execution
on specific products under test.

Hence, the main contributions of the work described in this
paper are:

• a pattern-based test process and support platform, de-
signed to facilitate the generation of integration and
system tests for families of products within a well-defined
domain, following a software product line approach to
promote reuse and consistency (platform engineering
level);

• examples of a feature model and a catalog of test patterns
developed for a family of products in the eHealth and
AAL domain (domain engineering level);

• examples demonstrating the instantiation of test patterns
and the generation of test cases ready for execution for
specific products under test (product engineering level).

This paper is divided into six sections: section II provides
an overview of the pattern-based test process and platform;
section III describes a feature model and a set of test patterns
that were defined for a subset of the smart health domain;

1https://www.smarthealth4all.com/en
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section IV shows how the test patterns can be instantiated and
test cases generated for specific products under test, based on
examples from the SH4ALL project; section V addresses the
evaluation of the test platform; section VI discusses related
work; finally, section VII draws some conclusions and points
out future work.

II. TEST PROCESS AND PLATFORM

This section presents an overview of the pattern-based test
process and platform.

A. Test process

The envisioned test process has the objective of reducing
the time to market by accelerating the final stages of product
development and testing, through the generation of test cases
out of selecting and instantiating features from a feature
model. This testing process takes inspiration from Software
Product Line Engineering (SPLE) [6].

The first distinctive characteristic of this test process is that
it makes use of feature models and links between features and
related test patterns to derive test cases. The second character-
istic is that it comprises two stages that are inspired in the ones
present in SPLE – domain and application engineering [6].
At the domain (or family) level, the actors work on defining
the feature model and finding test patterns. At the application
(or product) level, the actors select and instantiate features to
specify concrete products and generate their specific test cases.
An overview of the test process can be seen in Figure 1.

The process starts with a domain analysis, i.e., the analysis
of commonalities and variability within a family of products
and associated test needs. Based on that analysis, it is produced
a feature model and a set of related test patterns. The test
patterns are linked to features in the feature model, and
parameters of the test patterns are linked to attributes of
those features, which permits at a later stage the selection
and instantiation of features to characterize concrete products
and generate corresponding test cases.

Then, for the generation of test cases for specific products
under test, the user only has to characterize the product
under test in terms of a selection (subset) of features of the
feature model and the instantiation (assignment) of concrete
values for any attributes associated with the selected features
(product analysis activity, resulting in a product configuration
in Figure 1). Based on that information, applicable test patterns
are automatically selected and their parameters instantiated,
resulting in concrete test cases that may be exported as test
scripts in Gherkin2 following the Given-When-Then structure.

By segregating the process into two distinct stages, firstly
with an initial specification component which involves discov-
ering the patterns and defining the feature models; and lastly,
a later one which comprises feature selection and product
instantiation for test case generation by the platform, this
methodology aims to improve the overall speed to market.
At its core this process involves a prolonged initial stage of

2https://cucumber.io/docs/gherkin/

specification and a faster test testing phase, this latter one
theoretically is faster mainly due to the fact that the developers
and testers will already have the feature models and test
patterns defined and only need to instantiate new products of
their ecosystem.

B. Domain model

The domain model of Figure 2 represents the main informa-
tion entities involved in the test process previously described,
their relationships, and attributes. It also serves as a basis for
designing the data model of the repository of the test platform.

The entities are grouped into four packages, depicted
with distinct colors: FeatureModels, TestPatterns,
Products, and TestCases. Some of the characteristics
of features models were inspired by the schema present in
a paper by Shatnawi and Cunningham [7].

A feature model is defined by a set of Features, related by
parent/child relationships, starting from the root. An example
of a visual representation of a concrete feature model can be
consulted in Figure 7. Individual child features may be marked
as optional or mandatory (meaning that the child feature
must be selected when its parent is selected). The children
of a given feature may also be marked as alternative
(meaning that exactly one child has to be selected when the
parent is selected) or as an or (meaning that at least one child
has to be selected when the parent is selected). Features may
also be related with requires and excludes relationships
(meaning that the selection of the source feature implies or
impedes, respectively, the selection of the target feature).

In our approach, some features may in fact represent types
of product components (i.e., Sensor and Actuator in
Figure 7). Such features are specially marked in the feature
model (attribute isComponent). This information is relevant
when characterizing concrete product components, starting
with the selection of the component type in the feature model.

In our approach, features may also have attributes associ-
ated, important for test case generation. For example, a sensor
may have a logical identifier and a physical locator; a periodic
reading sensor may have a time period associated. In Figure
2, each Attribute is characterized by a name, data type,
and range (in the case of numeric attributes).

Features may have associated TestPatterns, in a many-
to-many relationship. Each test pattern is described by a
sequence of TestSteps, which may, in turn, have substeps,
in a recursive manner. Each step may be marked as manual or
automatic. Test patterns may be parameterized, i.e., test steps
may be described in a generic way by referencing parameters
of the test pattern. Later on, for concrete test case generation,
such parameters need to be instantiated.
Attributes are paired to Parameters in a many to

many relationship; this is due to the platform being conceived
as a tool that is able to define various feature models and
link those feature models, in a loosely coupled manner, to
patterns. This pairing permits the platform to only select test
patterns that are actually used by the features. In the end, once
the attributes are instantiated at the product level their values
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Figure 1. High-level test process (annotated UML activity diagram).

will be automatically assigned to the corresponding parameters
through this pairing, and generate test cases.

Whilst manual steps may be described in free text, automatic
test steps should be described in a restricted natural language,
following appropriate keywords and phrase templates that
can be understood by target test automation frameworks that
execute test scripts in Gherkin, such as Cucumber3. Test steps
are also characterized by a type, that will determine the section
(Given, When or Then) onto which it is mapped in Gherkin.
The currently supported step types are:

• Setup: a setup step is normally used to define what
parameters are going to be instantiated at the beginning
of the test case;

• Trigger: a trigger step can be used to indicate if a
sensor is going to be triggered;

• Read: a reading step is used to read a sensor or actuator
value;

• Validate_equals: validation step used to check for
equality or compliance;

• For_Each: this is a special control step to iterate over
a list passed as a parameter to the test pattern; in the
test generation process, it is expanded into a sequence of
steps;

• During: this is another control step, to repeat one or
more substeps for a configurable amount of time;

• Check: a manual validation step; it functions as a
checkbox for a tester action;

• Read_Timestamp: read a timestamp, to verify re-

3https://cucumber.io/

sponse times;
• Step: a generic (uninterpreted) step, usually manual.

In the final conversion of generated test cases into test
scripts in Gherkin, the step type determines the section (Given,
When, or Then), onto which the test step is mapped. For
example, Setup steps are typically present at the beginning of
the pattern, and are mapped onto the Given section in Gherkin
(with multiple steps connected by the And directive); steps that
stimulate or act upon the system under test (such as Trigger
and Read) usually come next, and are mapped onto the When
section in Gherkin; finally, validation steps are usually done
at the end and are mapped onto the Then section in Gherkin.

Concrete products under test or product components (class
ProductUnderTest in Figure 2) are characterized with
respect to the feature model by associating the product with
the applicable features, and by providing concrete values for
the attributes attached to those features.

Based on that characterization, the applicable test cases for
a product under test are automatically generated, by selecting
and instantiating (for concrete parameter values) the test
patterns associated with the selected product features. Each
TestCase comprises a sequence of ConcreteTestSteps,
instantiated (and flattened) from the test steps in the corre-
sponding test pattern. In this process, the hierarchical structure
of steps and substeps in a test pattern is flattened into a single
sequence; control test steps that use the For_Each keyword
are also expanded into a flat sequence of steps.
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Figure 2. Domain model (UML class diagram with default multiplicity 1).

C. Platform architecture

The test process previously described is supported by a
web-based test platform, following a client-server architecture
depicted in Figure 3.

Figure 3. Platform architecture (UML component diagram).

In the frontend, a ReactJS4 based web page communicates
with a RESTFul API developed in ExpressJS5 in the backend.

To reduce the development effort, two libraries were used:
the VisJS6 library, to draw feature models and build an

4https://reactjs.org
5https://expressjs.com
6https://visjs.org

interactive editor of feature models; the MaterialUI7, to take
advantage of its pre-built UI components, and avoid spending
time in manually marking down the CSS of the website.

Finally, to store the data, MongoDB8 with the Mongoose9

library were used to store the composite structures; this last
decision was made inspired by the work of Shatnawi and
Cunningham in [7].

D. Platform user interface

The test platform provides a User Interface (UI) that enables
users to perform the different activities of the test process,
plus some administrative tasks. The UI is divided into three
groups of pages, related to different entities of the domain
model: a group of pages for editing and visualizing feature
models; another group of pages for editing and visualizing
the test patterns; and another group of pages for characterizing
products under test and visualizing the generated test cases.
The navigation between these pages can be seen in Figure 4.

The page for creating or updating a test pattern is illustrated
in Figure 5. The user can enter the global properties of the
test pattern (top left), a list of parameters (bottom left, with
a name, data type, and description), and a hierarchical list

7https://mui.com
8https://www.mongodb.com
9https://mongoosejs.com
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Figure 4. Navigation diagram of the platform.

of steps (right). In the description of the test steps, the test
parameters are referenced with the # prefix.

Figure 5. Patterns page UI.

The page for creating or updating a feature model is
illustrated in Figure 6. For drawing the feature model, a canvas
is used in which features are represented as ellipsis and are
connected through straight lines. The user can interact with
the page to create or update child features and their attributes,
among other operations.

The page for characterizing a product under test is illustrated
in Figure 8. The product components are registered and
listed in the bottom left, and the features present in each
product component are selected from the feature model on

Figure 6. Feature model page UI.

the right. For each selected feature, the user has to instantiate
its attributes.

From the list of products under test, the user may request
the generation of applicable test cases for a product selected.
The test cases are presented in a list with an option to export
to Gherkin, as illustrated in Figure 9.

III. FEATURE MODEL AND TEST PATTERNS

This section describes an excerpt of the feature model
and test pattern catalog that were developed for the domain
of the SH4ALL project (eHealth and AAL products). The
development followed a bottom-up approach, starting from the
study of the functionalities and test needs of concrete products
from the SH4ALL project, which were iteratively abstracted
until a feature model and test patterns were obtained for the
underlying domain.

A. Feature model

The process to discover test patterns started with the analy-
sis of the family of products within the scope of the SH4ALL
project. These products were analyzed for their functionalities
and test needs, based on the products’ documentation, inter-
views with product manufacturers, and domain knowledge.
From the documentation, an analysis was made in order to find
their functionalities which were registered and attributed to
each product and further abstracted until features of a feature
model were found and joined together. For example, if we
had a periodic temperature sensor we would start with the
functionalities of periodic reading and temperature reading;
at the end of the process we would have ”Sensor”, ”Reading
Mode”, ”Periodic”, ”Measure Scale”, and ”Single” features.

An excerpt of the resulting feature model can be found in
Figure 7. It should be noted that the feature model presented
in this paper only conveys a few features relevant for demon-
strating the definition of related test patterns and the generation
of corresponding test cases. A complete feature model for the
domain under consideration can possibly have hundreds or
thousands of features.
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The feature model present in Figure 7 contains the features
required for building common IoT systems comprising a
set of sensors and actuators that communicate according to
relevant standards (such as Bluetooth and HL7 Fhir). Sensors
are characterized by a reading mode, which can be either
periodic or user-triggered, meaning that readings are produced
at regular time intervals or only upon user request, respectively.
Sensors are also characterized by the multiplicity of measures
produced at each reading (single or multiple). Actuators are
characterized by an actuation type, which, in our experiment,
can either be binary (with only two states) or linear (in which
the actuator’s state can go through a range of values).

B. Test patterns

After having the feature model created, the model and
its functionalities were further analyzed in order to discover
test cases. From this set of test cases, the ones that were
common to one or more products and/or are possible to be
applied outside the domain of eHealth were abstracted into
the test patterns and registered in the catalog below. The
pattern catalog was continuously iterated upon and it contains
entries for conformance and functional testing of the system’s
components.

The test patterns are documented following a template
suggested by Meszaros and Doble [8] but with slight mod-
ifications; each entry’s structure is as follows:

• Name: the pattern name which uniquely identifies it;
• Context: the context in which the pattern is to be applied;
• Problem: the problem that the pattern tries to help solve

in the context;
• Steps: the sequence of generic steps and sub-steps to

achieve the patterns objective; steps can be automatic
(marked with the 2 icon) or manual (marked with the
⩏ icon);

• Example: example of product components in which the
pattern could be applied.

The next subsections present some of the test patterns
defined:

1) Test binary actuator with triggered sensor
2) Test binary actuator with periodic sensor
3) Test linear actuator with triggered sensor
4) Test actuator conformance
5) Test triggered sensor conformance
6) Test periodic sensor conformance
These patterns belong to two different test categories: func-

tional and conformance testing. The first category comprises
patterns that involve testing the devices functionalities in an
integrated system, such as if an actuator goes to a certain
state when a sensor produces a specific reading. The second
category is related with testing the conformance of a single
device to a given communication standard (such as message
formats).

1) Test binary actuator with triggered sensor:

Context: In an IoT system sometimes we have an actuator that
only has two states and a sensor that only works as a switch

that toggles the states of the actuator.

Problem: We have to guarantee that the sensor and actuator
interact appropriately so that the system can fulfill its objec-
tives.

Solution:
1) Prepare system for testing

a) 2 Set up location of events for the sensor and the
actuator;

b) 2 Set up the necessary identifiers for the sensor
and the actuator;

c) Define the actuator expected states to be traversed;
d) Define the actuator start state;
e) 2 Set up the maximum actuator response time;

2) While the actuator state doesn’t return to the initial state
a) Trigger the sensor;
b) 2 Verify the trigger time of the sensor and store

it;
c) 2 Verify the actuator state;
d) 2 Verify the actuator’s response time and store it;
e) ⩏ Manually register that the actuator was acti-

vated;
3) Validate if the actuator only traversed valid states;
4) (if a duration was defined) Calculate the difference

between the sensor’s trigger time and actuator’s response
time and verify if it is within the actuator’s maximum
response time.

Example: This pattern could be applied to a pair of a ca-
pacitive sensor and a light bulb. In this case, the sensor is
a triggered sensor that simply is touched and turns the light
switch on or off.

2) Test binary actuator with periodic sensor:

Context: In an IoT system sometimes we have an actuator
that only have two states and a sensor that performs periodic
readings and those readings work as a switch that swaps the
states of the actuator.

Problem: We have to guarantee that the sensor and actuator
interact appropriately so that the system can fulfill its objec-
tives.

Solution:
1) Prepare system for testing

a) 2 Set up location of events for the sensor and the
actuator;

b) 2 Set up the necessary identifiers for the sensor
and the actuator;

c) Define the states and corresponding sensor read-
ings;

d) 2 Set up the test duration and reading periodicity;
2) During the test duration at each periodic reading:

a) Induce a new environment for the sensor;
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Figure 7. SH4ALL feature model (excerpt).

b) 2 Register sensor value and store it;
c) 2 Verify the actuator state and store it;
d) 2 Register the current time and store it;
e) ⩏ Manually register that the system is working as

expected;
3) Validate that if for all the sensor readings the actuator

was in a valid state;
Example: This pattern could be applied to a heater and a
temperature sensor. In this case, the heater is on when the
temperature is too low and off when the temperature is high.

3) Test linear actuator with triggered sensor:

Context: In an IoT system sometimes we have an actuator that
has a range of possible states and a sensor that is triggered by
a user and the value of those readings works as a switch to a
certain state of the actuator.

Problem: We have to guarantee that the sensor and actuator
interact appropriately so that the system can fulfill its objec-
tives.

Solution:
1) Prepare system for testing

a) 2 Set up location of events for the sensor and the
actuator;

b) 2 Set up the necessary identifiers for the sensor

and the actuator;
c) Define the linear actuator’s expected value;
d) Define the linear actuator’s start value;
e) 2 Set up the maximum actuator response time;

2) Trigger sensor;
3) 2 Verify the trigger time of the sensor and store it;
4) 2 Verify the actuator’s value;
5) 2 Verify the actuator’s response time and store it;
6) ⩏ Manually register that the actuator was activated;
7) Validate if the actuator was activated to the correct state

by a valid value;
8) (if a duration was defined) Calculate the difference

between the sensor’s trigger time and actuator’s response
time and verify if it is within the actuator’s maximum
response time.

Example: This pattern could be applied to a set of buttons
that control how much a window’s blinds are closed. In this
case, each button has a specific length of the blinds assigned.

4) Test actuator conformance:
Context: In an IoT system sometimes its components need
to conform to one or more interoperability standards so that
they can exchange messages with the system or with external
systems.

Problem: We have to guarantee that the actuator only accepts
and sends messages according to a certain message schema.
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Solution:
1) Prepare system for testing:

• 2 Set up location of events for the actuator;
• 2 Set up the necessary identifiers for the actuator;
• 2 Set up the expected actuator message format;

2) (if actuator cannot be activated manually) Set up sensor:
3) (if sensor set up) Trigger sensor;
4) (if sensor not set up) Activate the actuator;
5) Read actuator message;
6) Validate if the actuator message conforms to the ex-

pected actuator message format.
Example: This pattern could be applied to any kind of actuator
that has to comply with any given messaging standard that
defines a message schema.

5) Test triggered sensor conformance:

Context: In an IoT system sometimes its components need
to conform to one or more interoperability standards so that
they can exchange messages within the system or with external
systems.

Problem: We have to guarantee that the triggered sensor only
sends messages according to a certain message schema or
interoperability standard.

Solution:
1) Prepare system for testing:

• 2 Set up location of events for the sensor;
• 2 Set up the necessary identifiers for the sensor;
• 2 Set up the expected sensor message format;

2) Trigger the sensor;
3) Read the sensor’s message;
4) Validate if the sensor’s message conforms to the ex-

pected sensor message format.
Example: This pattern could be applied to any kind of
triggered sensor that has to comply with any given messaging
standard that defines a message schema.

6) Test periodic sensor conformance:

Context: In an IoT system sometimes its components need
to conform to one or more interoperability standards so that
they can exchange messages with the system or with external
systems.

Problem: We have to guarantee that the periodic sensor only
sends messages according to a certain message schema.

Solution:
1) Prepare system for testing:

• 2 Set up location of events for the sensor;
• 2 Set up the necessary identifiers for the sensor;
• 2 Set up the expected sensor message format;
• 2 Set up the test duration;
• 2 Set up the sensor reading periodicity;

2) During the test duration at each periodic reading:
a) Read the sensor message and store it;

3) Validate if all sensor messages conform to the expected
sensor message format.

Example: This pattern could be applied to any kind of periodic
sensor that has to comply with any given messaging standard
that defines a message schema.

IV. EXAMPLE OF TEST PATTERN INSTANTIATION

In this section, we present an example of instantiation of
a test pattern and derivation of corresponding test cases for a
concrete product under test.

The product under test is a lightbulb that is turned on or
off by the user by touching a capacitive sensor. Hence, it
comprises two devices (components): the capacitive sensor
(light switch) and the lightbulb (lamp). An applicable test
pattern is the first pattern described in section III “Test binary
actuator with triggered sensor”.

In terms of the feature model of Figure 7, these components
are classified as a “User Triggered Sensor” and a “Binary
Actuator”, respectively, with the following attribute values (for
the attributes defined in the feature model):

• Light Switch:
– SOURCE ID: “CAPACITIVE SENSOR XYZ”;

linked to “Sensor Identifier”
– DATA SOURCE URL:

“kafka://192.168.1.54:5000”; linked to “Sensor
Event Location”

– ACTION: “USER TOUCHED”; linked to “Sensor
Event”.

• Lamp:
– States to be traversed: “ON;OFF”; linked to “Ex-

pected traversed states”;
– DATA SOURCE URL:

“kafka://192.168.1.54:5000”; linked to “Actuator
Event Location”;

– SOURCE ID: “ACTUATOR Y”; linked to “Actua-
tor Identifier”;

– START STATE: “OFF”;
– ACTION: “STATE CHANGED to ”; linked to “Ac-

tuator Event”.
Above, we also indicate the name of the test parameter

linked to each attribute in our model.
We next illustrate the instantiation of the iterative step of

the test pattern, reproduced below.
1) While the actuator state doesn’t return to the initial state

a) Trigger the sensor;
b) 2 Verify the trigger time of the sensor and store

it;
c) 2 Verify the actuator state;
d) 2 Verify the actuator’s response time and store it;
e) ⩏ Manually register that the actuator was acti-

vated;
The outer step is an abstract iteration step, for iterating

over the expected traversed states (in this case, ON and OFF).
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During the loop, the inner actions will be repeated in each
iteration.

Step a) inside the loop is a manual or automatic test step
in which the real or simulated user triggers the sensor (in this
case, the capacitive sensor).

Step b) is an automatic test step. It makes use of the
parameters “Sensor Identifier”, “Sensor Event Location” and
“Sensor Event” to verify at what time the sensor has been
triggered.

Steps c) and d) are also automatic test steps. They make
use of the parameters “Actuator Identifier”, “Actuator Event
Location” and “Actuator Event” to verify the actuator state
and response time and store them for later comparison.

Using the attribute values indicated above for the capaci-
tive sensor and lightbulb, the above loop is instantiated and
expanded as follows:

• Trigger the sensor “CAPACITIVE SENSOR XYZ”;
• Read timestamp of the sensor at

“kafka://192.168.1.54:5000” into “Sensor Timestamps”;
• Read the value of the actuator at

“kafka://192.168.1.54:5000”, the event was “STATE
CHANGED to ON” into “Actuator Values”;

• Read timestamp of the sensor at
“kafka://192.168.1.54:5000” into “Actuator Timestamps”;

• Trigger the sensor “CAPACITIVE SENSOR XYZ”;
• Read timestamp of the sensor at

“kafka://192.168.1.54:5000” into “Sensor Timestamps”;
• Read the value of the actuator at

“kafka://192.168.1.54:5000”, the event was “STATE
CHANGED to OFF” into Actuator Values”;

• Read timestamp of the sensor at
“kafka://192.168.1.54:5000” into “Actuator Timestamps”.

With our platform, using the pattern in Figure 5 and
the model in Figure 6, a product derived from the feature
model was created and used to instantiate the pattern. The
product was characterized with the attribute values previously
mentioned. Taking the previous example of the iteration into
account, in Figure 9 it can be seen that the values for the
iteration [ON;OFF] present in Figure 8 were used to flatten
the loop into a series of Gherkin instructions, giving to the
user a test script almost ready for execution.

V. EVALUATION

To evaluate the developed platform and test patterns, two
validation strategies were used: the first strategy involved end-
to-end validation testing by the authors, with some products
from the SH4ALL project; the second strategy involved vali-
dating the platform with users through the means of a guide
and receiving feedback after.

The first validation was done using two products of the
SH4ALL project, namely the MyCareShoe and the Bedroom
Module and consisted in going through the entire process of:

• Creating the feature model;
• Defining attributes for the features in the feature model;
• Creating the test patterns;

Figure 8. Products page UI.

Figure 9. Test cases page UI.

• Linking attributes from the feature model to parameters
from the test patterns;

• Characterizing the products by selecting applicable fea-
tures and instantiating attribute values;

• Generating test cases.
At the end of this first validation process, two metrics were

collected: the number of test cases generated and test pattern
re-usability. The former is measured by counting the total
number of test cases generated, while the latter is measured by
viewing if the patterns are reused throughout both products.
For example if a pattern is reused in both products it means
it was reusable.

The end results were that the platform for the two products
generated a total of 16 test cases. The conformance testing
patterns ended up being reusable throughout both products due
to the fact that, in this experiment, both products had devices
requiring conformance testing. Regarding the functional test
patterns, for this sample of products, they ended up not being
as reusable; this is due to the fact that the products in the end
had different functionalities. Bellow, it can be viewed a subset
of the generated test cases.
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Example: Test Binary Actuator With triggered Sensor
[Led Lights,Capacitive Sensor]

given Sensor_Identifier is "CAPACITIVE_SENSOR_X"
and Sensor_EVENT is "Event: Trigger_SENSOR"
and Actuator_Identifier is "LED_LIGHTS_X"
and Actuator_EVENT is "Event: Actuator"
and Start_State is "ON"
and State_Changes is "OFF;ON"
when the user Trigger CAPACITIVE_SENSOR_X
and Read LED_LIGHTS_X into #Traversed_States
and the user Trigger CAPACITIVE_SENSOR_X
and Read LED_LIGHTS_X into #Traversed_States
then Validate #Traversed_States equal OFF;ON

Example: Test binary actuator with periodic reading
[Led Lights,Temperature Sensor]

given PSensor_Identifier is "Temperature Sensor"
and PSensor_Event is "Event: Temp"
and PActuator_Identifier is "LED_LIGHTS_X"
and PActuator_Event is "Event: Actuator"
and Duration is "65"
and Expected is "undefined"
and periodicty is 5
when the loop ends after 65 seconds
and I Will have Read Temperature Sensor into #

Metrics 13 times
and I Will have Read LED_LIGHTS_X into #Metrics 13

times
and I Will have Read Timestamp into #Metrics 13

times
then Validate #Expected equals #Metrics

Listing 1. Example of two text cases generated in the platform.

The second and last validation strategy involved validating
the platform with five different users, with a software engi-
neering background from academia and industry. The users
received a guide describing the steps that they had to follow in
order to generate test cases with the platform. This guide went
through the entire aforementioned process, but with only one
pattern and a single product. This experiment had the goals of
verifying if the platform was usable and to receive feedback.

In the end, the results of this experiment were that the users
averaged at around 1 hour and 36 minutes to complete the
entire guide, with most of the time being spent in creating
patterns and drawing the feature model. The users provided
feedback about the platform and suggested some improve-
ments in the UI. The users thought that the UI sometimes
wasn’t intuitive and suggested changing the location of some
elements, the types of some input fields, and the appearance
of some buttons. They also suggested displaying some more
contextual information.

VI. RELATED WORK

The work related to this paper can mainly be found in three
domains: Model-Based Testing (MBT), Software Product Line
Testing (SPLT), and Pattern-Based Testing (PBT) applied to
eHealth and IoT.

In the domain of MBT, test cases are generated from
models of various aspects of the system under test (SUT).
The generated test cases can be concrete test cases ready for
execution or abstract test cases that require further refinement.
MBT approaches applied to the eHealth domain include, for
example, the work by Lima and Faria [9], which focuses on

certification, Gannous et al. [10], which focuses on testing
system attributes, Yu et al. [11], and Bombarda et al. [12],
which make use of MBT tecnhiques to model the structure
of messages from standards and use those models to perform
conformance testing. The main difference with respect to our
work is that we generate concrete test cases from test patterns
related with recurrent test needs, whereas MBT approaches
generate test cases from behavioral models of the SUT. Test
generation from models suffers from the test case explosion
problem, which is avoided in our approach.

In the domain of SPLT, we have various approaches that
follow roughly the same SPLE process. First, are created
feature models and associated test generators; these generators
can either be models or descriptions in domain-specific lan-
guages (DSLs). Then, features and test generators are linked,
so that, when features are selected, concrete test cases are
generated for those selections. In this domain, we can mention
the works by Wang et al. [13], Bucaioni et al. [14], Lity et
al. [15], Gebizli and Sözer [16], and Weißleder and Lackner
[17]. Comparing those approaches to ours, the main difference
is that our generators aren’t models or DSLs but instead test
patterns, with the advantage already mentioned of avoiding the
test case explosion problem.

Finally, in the domain of pattern-based testing for IoT
systems, we found the works of Pontes et al. [18] [19] and
Cunha et al. [20]. In a first iteration, Pontes et al. developed a
framework for pattern-based testing called Izinto and cataloged
five initial test patterns for IoT. Later, Cunha et al. took Izinto
as a base and created a UI for that framework to simplify
testing for less technical users. Our work builds upon the
pattern catalog of Pontes et al. by contributing with six test
patterns to the literature. Our current work also followed
a similar approach to Pontes et al. and Cunha et al. by
constructing a pattern-based test platform that will aid in
testing IoT devices, with the main difference being that in
their work the test patterns are hard coded in the platform as
parameterized test methods written in an extension to JUnit,
whereas in our approach the test patterns are defined by a
domain expert in a textual language and are transformed to
test scripts in Gherkin to run on concrete products under test.

VII. CONCLUSIONS AND FUTURE WORK

This paper contributed with a novel pattern-based test
process and support platform, designed to facilitate the gener-
ation of integration and system tests for families of products,
following a software product line approach to promote reuse
and consistency.

In the proposed approach, a feature model and a set of
recurrent test patterns related to the features in the feature
model are initially defined by a domain specialist. Then, for
each product under test, the product specialist only has to
characterize the product under test with respect to the defined
feature model. Based on the product characterization and
the catalog of test patterns, concrete test cases are derived
automatically (by a selection and instantiation process from
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the test patterns) and exported as test scripts in Gherkin ready
for execution.

The approach was illustrated for a family of smart health
products, within the scope of the SH4ALL project. Six test
patterns were presented, three in the domain of functional
testing and the remaining in the domain of conformance
testing. Based on these test patterns, twelve test cases were
automatically generated for two products of the product family.

In future work, we plan to extend the catalog of test
patterns and validate the approach with further products of
the SH4ALL project.
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