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Abstract—Machine learning techniques are promising for mal-
ware classification, but there is a neglected problem of label bias
in the annotation process which decreases the performance in
practice. To understand the label bias problems and existing
solutions, we conduct an empirical study based on two Portable
Executable (PE) malware sample datasets (i.e., open-sourced
BODMAS with 52,793 samples and a new collected MAIN dataset
of 153,811 samples), and 67 anti-virus engines in VirusTotal. We
first show the two ways of label bias problems, including chaotic
naming rules and annotation inconsistency. Then we present the
effects of two solutions (i.e., electing one reputable AV engine
and aggregating multiple labels based on majority voting) and
find they face the problems of feature preference and engine
independence. Finally, we propose some recommendations for
improvements and get a 7.79% increase in the F1 score (i.e.,
from 84.83% to 92.62%). The dataset will be open-source for
further study.

Keywords—Malware Classification; machine learning; annota-
tion bias

I. INTRODUCTION

Malware remains a severe threat to cyber security. To detect
malware better, machine learning-based (ML-based) malware
detection techniques are proposed and have achieved good
results [1, 2]. Malware classification is an important task of
malware detection, and ML-based solutions are also proposed
and developing quickly [3]. Compared to the binary-detection
task which only reports if the sample is malicious or benign,
the classification task provides the malware family information
which helps researchers understand attack logic, track malware
authors and deploy targeted defenses [4–7].

In ML-based malware classification solutions, researchers
usually extract static and dynamic features to construct feature
vectors, annotate feature vectors with family names to build
training data, and train a supervised model. Then, the trained
model is used to classify which family a malware sample be-
longs to. Compared to traditional solutions with static program
analysis or dynamic monitor [8, 9], ML-based solutions can
process massive malicious samples in a short time and handle
unknown malware samples.

Unfortunately, when applying ML-based malware classi-
fication in practice, the performance of the trained models
decreases significantly. Ge et al. [10] conduct an empirical
study of the impact of datasets on ML-based Android malware
detection and summarize three dataset factors (i.e., class

imbalance, quality and timelines). But we find it more complex
to deal with malware classification and a neglected reason is
the label bias problems in the annotation process.

In fact, label bias is a general problem for ML techniques.
In common machine learning tasks (e.g., images or text),
training data is annotated by employing workers [11], but
researchers find it hard to guarantee the label quality without
experts [12–14]. Similarly, in the malware analysis domain,
anti-virus (AV) engines play the role of workers to annotate
malware samples. Samples are usually submitted to VirusTotal
(VT) [15], an integrated analysis platform connected to more
than 70 AV engines, to obtain scan results including malware
family information. However, although the AV engines could
be treated as the expert annotators, the label bias problems
also exist and further harm the model performance.

Specifically, we find label bias in ML-based malware clas-
sification mainly represent in two ways, i.e., chaotic naming
rules and annotation inconsistency. First, although some or-
ganizations (e.g., the Computer Antivirus Research Organiza-
tion) have proposed some naming conventions [16, 17], AV
engines adopt chaotic naming rules. For example, a sample1

is named as Gen:Variant:Razy.564123 by BitDefender, where
Razy is a unique detection technique in BitDefender and
564123 is part of the sample hash. The chaotic names make
class information hard to understand by humans and may
bring too fine-grained specific classes to train classification
models [6]. Annotation inconsistency is that different AV
engines may give different opinions on the same sample based
on their own detection techniques. For example, Microsoft
considers two samples as variants and annotates them both
as Worm:Win32/Mira!rfn, while Kaspersky names these two
samples as different families (i.e., Trojan.Win32.Agent.nezvfi2

and Trojan.Win32.Agent.icgh3).
To deal with the label bias problems, researchers have

proposed several methods, including selecting one reputable
AV engines [7, 18, 19], or aggregating multiple labels based
on majority voting [20–22]. However, these methods mainly
deal with the textual tokens of the family names, and don’t

1SHA-1: 3ed31058d03631bebe90b15f8dd4d1add154bbbf
2SHA-1: f5e585d6fabed01100d8270f9cd8a3809abaebbb
3SHA-1: 1c478f71c5e02d7d4b71b107d32a81ae199a2b21
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take a deep study of the annotation process based on the
knowledge of malware researchers. According to our studies,
the method of selecting one reputable AV engine faces the
feature preference problem that makes it difficult to get an
effective classification model, and the aggregation method
ignores the independence of AV engines which decreases the
model performance.

So, we are motivated to conduct an empirical study for label
bias in ML-based malware classification. It is worth noting
that the label bias problems we propose in this paper do not
exactly equal the noise problems, because all the AV engines
are experts and there are no ”wrong” labels. Thus, our goal is
not to ”correct” the labels, but find a better way to leverage the
labels to improve the performance of the models. Compared
to Ge’s work [10], we focus on label bias which is different
from the dataset bias. Pendlebury et al. [23] point out the
experimental biases in spatial bias and temporal bias when
evaluating ML-based malware detection. In addition to a fairer
evaluation, we expect to leverage the existing labels to improve
the models’ performance in this paper. Zhu et al. [24] measure
the label dynamics of online AV engines and study the scan
result changes along with the timeline, and we care more about
the results of different AV engines.

Specifically, in the empirical study of this paper, we set the
following research questions (RQs).

• RQ1: What are the label bias problems in ML-based
malware classification?

• RQ2: Do existing methods solve the label bias problems?
• RQ3: Can we improve the label bias problems better?
To answer the RQs, we perform a series of experiments on

real-world malware samples to study the label bias problems
systematically. Specifically, we mainly utilize the effectiveness
of the trained model (i.e., F1 score) as a comprehensive
evaluation metric. In addition, since the effectiveness of the
models depends on the machine learning algorithm and the
training data constructed from labels and features, we choose
a representative algorithm used in recent related works (i.e.,
DNN [2]) as the fixed training algorithm and focus on the
study of labels. Overall, we utilize the public dataset BOD-
MAS [6], and construct a newer and larger dataset with a secu-
rity company (i.e., QI-ANXIN Technology Group Inc. [25]).
All labels for the dataset are obtained from the VT-provided
API and cleaned.

For RQ1, We first show the two presentation ways of
label bias problems (i.e., chaotic naming rules and annotation
inconsistency). We find that AV engines may name malware
samples mainly based on four categories (i.e., traditional
organization, attack techniques, detection methods and develop
kits), and different AV engines may give the names based on
different metrics that brings the inconsistency for the same
samples. For RQ2, we present the effects of two solutions (i.e.,
electing one reputable AV engines and aggregating multiple
labels based on majority voting). We find that the models’
performance vary a lot with different label source of reputable
AV engines because of the feature preference problem, and
the label aggregation method is not as good as expectation

because of ignoring the independence of engines. For RQ3,
we propose a feature preference table of different AV engines
and recommend user to select engines based on the extracted
features. And we recommend users to eliminate consumer
engines while aggregating labels. The results show that we can
get a 7.79% increase in terms of F1 score (i.e., from 84.83%
to 92.62%).

In summary, this paper makes three key contributions:
• We conduct an empirical study to understand the la-

bel bias problems of machine learning based malware
classification (i.e., chaotic naming rules and annotation
inconsistency) and two existing methods to deal with
label bias problems (i.e., electing reputable engines and
aggregating labels based on majority voting) based on
two datasets (i.e., BODMAS and MAIN dataset).

• We find that existing methods ignore the feature pref-
erence problem and the engine independence problem.
We propose our mitigation methods for the label bias
problems and get a better performance results.

• We will open-source a new dataset of 153,811 PE mal-
ware samples with static features and dynamic API calls
sequence to help future related research.

II. BACKGROUND & RELATED WORK

In this section, we start by introducing machine learning
based malware classification. Then, we summarize the label
bias problems and clarify our focus in this paper.

A. ML-based malware classification

Usually, the malware classification tasks are modeled as a
supervised learning process [26–28]. Compared to the malware
binary-detection (i.e., benign or malicious) [1, 2, 29, 30], the
malware samples are not only annotated with malicious tags
but also with family names in malware classification tasks.

Figure 1 shows the training and evaluating workflow of ML-
based malware classification. In the training phase, researchers
first extract and construct feature vectors from malware sam-
ples through malware analysis methods, format the training
data by annotating the feature vectors, and use the training data
(i.e., annotated feature vectors) to obtain a trained malware
classifier. In the evaluating stage, the unknown samples are
also processed to feature vectors and fed to the trained model.
Then, the model classifies whether the samples are malicious
and which families they belong to. As introduced above with
Figure 1, the effectiveness of ML-based malware classification
depends on the machine learning algorithm and the training
data with labels.

1) Algorithm: Most researchers have been working on im-
proving the algorithms, from the traditional machine learning
to deep learning. Specifically, traditional machine learning
algorithms (e.g., SVM [31]) can be used for both malware de-
tection [32, 33] and classification [34, 35], but they encounter
the bottleneck of domain expertise and the raised demand for
handling massive malware. Deep learning is gaining popularity
due to its supremacy in terms of accuracy when trained with
huge amount of data, less requirement of domain expertise,
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Figure 1: Workflow of ML-based malware classification.

and the detection ability to handle the newly unknown mal-
ware. The representative deep learning algorithms, e.g., Deep
Neural Network (DNN) and Convolutional Neural Network
(CNN), are utilized in recent ML-based malware classification
works [2, 4, 26, 36–38]. For example, MalConv [26] leverages
the CNN-based algorithm to train a malware classifier by
eating the raw bytes of program binaries, which avoids brittle
features and over-focusing on PE structure information.

2) Feature Vector: In order to adapt to machine learning
algorithms and decrease the overhead of training, original
data (i.e., program binaries) are usually transformed to feature
vectors [3]. The features contain static features extracted with
static analysis (e.g. IDA Pro[39]) and dynamic features catched
from the program execution in a sandbox (e.g. Cuckoo sand-
box [40]). The difference between the two types of features is
whether the analyzed malware is executed or not. Specifically,
we detail the two types of features as following.

Static features. (1) Bytes and characters are the obvious
features of programs [2, 26, 41]. Specifically, the entropy of
bytes can model the content of files generally, and the printable
characters show more unique information of specific malware
families, such as the strings of file path, network domain
and IP address. (2) Structure information and the semantics
information of PE file headers and metadata can be used as
features [2], such as section numbers, timestamps, and import
functions. (3) Disassembled op-codes or instructions are also
used in some works [42–44]. Static features are rich and
powerful, but own inherent flaws of precision. Also, when the
code is packed or obfuscated, the static analysis fails to obtain
any available information.

Dynamic features. (1) API call sequence [45, 46] is a
common dynamic feature to capture malicious behaviors no
matter the malware is obfuscated. (2) Memory usages or
changes of computer status are used in some works [47, 48]
to determine whether the program is malicious or benign.
Although dynamic features can catch more details including
the true intentions of malware, it is a costly method for both
extracting and using. At the same time, there is a strong
premise that the malware can run in the sandbox and the
behaviors are adequately triggered [8, 49].

3) Label: Manually craft analysis with expertise knowledge
is the best way to collect convincing labels [31, 50], but the
cost of analyzing massive samples is unaffordable. To trade
off the overhead, researchers usually utilize AV engines and
platforms to get the labels. The most popular platform is
VirusTotal (VT) [15] which integrates over 70 AV engines
and covers most of the mainstream detection engines. After
submitting a sample to VT, all engines in VT analyze the
sample and output their reports with rich information including
malicious tags and family names. VT also provides APIs to
download and process the reports in batches, that makes it
practical for annotating malware datasets automatically.

B. label bias problems

The ground-truth label is essential to supervised learning but
hard to get. In common machine learning tasks (e.g., image
or text processing), researchers propose several methods to
create trustworthy labels, e.g., to aggregate labels from crowd-
sourcing platforms [11, 51], or build systematic projects (e.g.,
Amazon SageMaker [52]) to assure the quality of annota-
tion [53, 54]. However, the annotation process still faces label
bias problems. For example, human observers are more likely
to perceive women’s faces as happier than men’s faces even
when their smiles have the same intensity [55].

Similarly, ML-based malware classification also faces label
bias problems, although the AV engines could be seen as
experts. It is not exactly the same as the label noise problem
as there are no ”wrong” malware family names. The label bias
problems in this paper are mainly caused by the subjectivity of
annotation, such as AV engines’ own naming rules or analysis
techniques. It presents as the disagreement of family names for
the samples from different AV engines, and harms the models’
performance as the noisy labels.

Currently, researchers propose two main methods to han-
dle label bias problems including selecting reputable annota-
tors [7, 18, 19, 56] and label aggregation based on majority
voting [2, 6, 20, 21, 57]. For example, Kurt et al. [19]
take Kaspersky and AVG as reputable AV engines to detect
and annotate malware samples. AVCLASS [20] simplifies
the VT results of each engine, truncates useless information,
filters generic tokens, counts the simplified labels, and finally
gives the family name of a sample with the maximum count
simplified label. Unfortunately, according to our empirical
study, the two methods still have some limitations.

Focus of this paper. In this paper, we are trying to
empirically study the label bias problems and existing methods
for handling them. There are some related works for data bias
problems. Compared to the metrics of statistical analysis pro-
posed by Mohaisen et al. [58], we perform the empirical study
by training models based on the bias labels and comparing
the models’ performance. Pendlebury et al. [23] point out the
experimental biases in spatial bias and temporal bias when
evaluating ML-based malware detection. Besides performing
a fairer evaluation, we expect to leverage the existing labels to
improve the models’ performance in this paper. Zhu et al. [24]
measure the label dynamics of online AV engines and study
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TABLE I: Malware datasets. Binaries: whether have original executable files.
Family: whether have family information derive from VirusTotal, meanwhile
BODMAS has its own family attribute.

Dataset # of samples Collected period Family Binaries

BODMAS 30,852 8/29/2019 - 9/30/2020 ✓ ✓
MAIN 153,811 1/1/2021 - 1/31/2021 ✓ ✓

* BODMAS has its own family results.
MAIN’s family information comes from VT.

the scan result changes along with the timeline, and we care
more about the results of different AV engines. A recent work
proposed by Ge et al. studies the selection bias problem in
datasets [10], but we focus on the label bias problems in the
annotation process. In fact, according to our experiments, the
performance of the trained models with the same samples but
with different labels varies significantly. In addition, we mainly
study the windows Portable Executable (PE) format malware
which plays a critical role in APT attacks, while others mainly
study the Android malware as the dataset is more convenient.

III. METHODOLOGY

A. Dataset

1) Data Collection: We collect two datasets of various
malware samples for the empirical study as shown in Table I.

BODMAS dataset. BODMAS [6] is a dataset containing
52,793 PE samples which is published recently. The samples
are all malicious with the family information (total of 581
family labels). The labels come from VT but processed
with the custom scripts of BODMAS which is similar to
AVCLASS [20] but pluses expertise knowledge. In order to
meet the request of our experiments, we reduce the BODMAS
dataset to 30,852 samples with 79 families after cleaning.
Cleaning details are introduced in Subsection III-A3.

MAIN dataset. We collected a large amount of PE malware
samples in the wild by working with a cyber security Inc. (i.e.,
QI-ANXIN Technology Group Inc.). Specifically, we collect
the samples submitted and analyzed in VirusTotal in 31 days
during January 2021. After filtering the unsuitable samples, we
establish a PE malware dataset containing 153,811 malicious
samples. For each sample, we acquire the analysis reports of
67 AV engines4 from VT.

Ethical considerations. BODMAS is an open-source mal-
ware dataset, and we collected the MAIN dataset from a
cybersecurity company based on the ethical policy. All ex-
periments were done in-house. In addition, all samples have
been submitted to VT by others already, and details about
each malware are public (e.g. HashID, Creation Time, Last
Analysis Time, etc.). If this paper is accepted, we will share the
MAIN dataset after desensitization, including feature vectors,
dynamic behavior trace and original binary programs.

4We excludes the AV engines which are only based on ML methods
according to VT’s introduction , such as Cylance [59] and MAX [60], as they
only show the probabilities of maliciousness instead of family information.

TABLE II: Label source. The reputable engines work on both MAIN and
BODMAS dataset, but the label aggregation based majority voting only work
on BODMAS dataset. BODMAS has its own implementation.

Method Label Source

Reputable engines AVG, Avria, Kaspersky, Symantec
BitDefender, F-Secure, Microsoft

Majority Voting AVCLASS, BODMAS

2) Data Annotation: We annotate samples based on the
scan results from 67 AV engines in VT. Additionally, we
take two existing solutions for label bias problems for the
empirical study, i.e., selecting reputable AV engines and label
aggregation based on majority voting.

Selection of reputable AV engine. According to the related
report [61] and papers [6, 20, 24], we select 7 of the 67
AV engines as the reputable label sources. We take labels
from 7 reputable AV engines as single ground-truth label sets
respectively. Some AV engines have much more citations in
academic research [24], such as Kaspersky, Symantec, etc. The
other AV engines are often intergrated by certain consumer AV
engines as a third-party engine. For example, F-Secure have
the same family information with Avria, where Avria plays a
role of supplier [61].

Aggregation based on majority voting. We process and
obtain the labels from two implementations of label aggre-
gation based on majority voting, i.e., AVCLASS [20] and
BODMAS [6]. AVCLASS is the representative work of ag-
gregation based majority voting which is used in several
works [62, 63]. It takes VT reports as original label source,
truncates redundant information from each engine’s full labels,
replaces aliases, and votes to select the majority of labels
as ground-truth labels. Although BODMAS takes the similar
way to obtain BODMAS5 labels as AVCLASS, it owns in-
house scripts assisted by expertise analysis. The similarity of
algorithms makes them agree on some results, but BODMAS
provides more accurate labels as it claimed in the paper [6].

3) Data Cleaning: Both of the MAIN and BODMAS
datasets are unbalanced that some families have very few
samples, perhaps as few as one or two. It is difficult to train a
multi-classification model on such a highly imbalance dataset.
Thus, we clean all the minority families under the following
rules to reduce the stress of the training model.

First, each sample must have been annotated by all the
label sources respectively. For the MAIN dataset, each sample
should be labeled by reputable AV engines. For the BODMAS
dataset, each sample should not only be analyzed by the 7 AV
engines, but also processed by the methods of AVCLASS and
BODMAS. Second, each family of any independent label set
must contain more than 5 samples. Then, the two dataset are
respectively divided into training set, test set and validating
set in a ratio of 3:1:1, that requests the families have enough
samples for the 4-fold cross-validation experiments [64]. Fi-

5To distinguish between datasets, methods, and label sets, we use AV-
CLASS and BODMAS for dataset and method, italics AVCLASS and BOD-
MAS for label sets.
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nally, we settle down the scales of the two dataset that there
are 153,811 samples in the MAIN dataset, and 30,852 samples
in the BODMAS dataset.

There is an exception situation to be noticed that AVCLASS
generates 1,406 singleton labels on the BODMAS dataset
which should have been filtered by the above cleaning process,
as the other 8 label sources share a common list of samples.
But, to keep enough samples for learning classifiers, we do not
filter these discrete samples which only belong to AVCLASS.
In fact, this exception helps us get more observations and we
will discuss them in Subsection IV-C and V-B.

B. Evaluation Method Selection

We choose the DNN algorithm to train the malware multi-
classification models, which is verified by several works [1, 2,
6]. The model is made up of 5 layers, and the first 4 layers
are divided into 2 groups. Each group contains a 1024-node
layer, followed by a dropout layer as 0.5. Then, the model
takes a sigmoid function as the last hidden layer to output
the classification results. Specifically, we set the learning rate
as 0.001, and training epoch as 100. In order to alleviate the
deviation caused by the train and test data contingency, we
eliminate the latent influence by obtaining the average value
of performance metrics through the 4-fold cross validation.

C. Feature Extraction

We extract both static and dynamic features from malware
samples to construct feature vectors as training examples for
the machine learning algorithm.

Static Feature. We follow the method proposed by Saxe et
al. [2] to extract four groups of static features, including byte
entropy (B for short), printable strings (S), import function
(I), and PE metadata (M). The static features construct a
vector of 1024 dimensions, and the details are shown in AP-
PENDIX A-A. For convenience, we call the complete features
of the four groups as the INVINCEA features (including B,
S, I and M) according to the authors’ organization.

Dynamic Feature. In order to obtain the samples’ dynamic
behavior features, we leverage sandbox-based malware analy-
sis to execute the PE samples and record the traces to extract
features, similar to [4]. Specifically, referring to work [65], we
collect the dynamic behavior of the sample during the first two
minutes of execution, i.e., the appropriate execution time. And
we construct a 1024-dimensional feature vector with the top
1024 3-gram sub-sequence in the whole API sequence based
on the information gain of each 3-gram sub-sequence, similar
to [66]. The details are shown in APPENDIX A-B.

D. Evaluation Metrics

As the dataset is unbalanced, it’s not fair to use accuracy for
performance evaluation that the model may focus on detecting
the majority classes and ignore the minor classes, but the
accuracy metric still keeps a high score. Due to the accuracy
paradox, we choose F1 score as the primary metric to evaluate
the effectiveness of trained models, which is the harmonic
mean of the Precision and Recall, as shown with Equation 1.

Figure 2: Different name rules on BODMAS dataset.

TABLE III: Four categories of label naming conventions.

Category Examples

Tradition cosmicduke
Att Tech Sormattack, Vtflooder, Zbot
Detec Meth Razy, Zusy
Dev Kit Delphi, Delf
Others unknown, malware

The higher F1 score means the better performance of the
model.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

TP

TP +
1

2
(FP + FN)

(1)

IV. EMPIRICAL STUDY

In this section, we present the details of the empirical study
to answer the three research questions introduced in Section
Introduction. For each RQ, we introduce the experiment
method first, then present the results and analysis.

A. RQ1: What are the label bias problems in ML-based
malware classification?

1) Chaotic naming rules: The directed manifestation of
label bias is the casual malware family names. Although
there are some naming conventions [16, 17], AV engines
give chaotic names. We study this problem based on the
BODMAS dataset as it provides the ready-made family names.
We split the raw labels to the sequence of consecutive non-
alphanumeric characters by the tokenization module of AV-
CLASS. Then we check the tokens manually for their name
categories according to the paper [67].

Results and analysis. As shown in Figure 2, there are
mainly four categories of label naming convention, including
traditional organization, attack techniques, detection methods
and develop kits. We also list the examples of four categories
in Table III. According to our analysis, 84% of the labels
are named by attack technique (e.g., vtflooder and FakeAV),
4% by detection method (e.g., Agent), 3% by development
kit (e.g., Delf and autoit), and 1% stem from the traditional
organization (e.g., CosmicDuke, belonging to MiniDuke APT).
There are some generic or random labels that we classify as
others, such as ”unknown” and ”win32”.

For example, a malware sample is named as
Gen:Variant.Razy.476334 and the name includes the
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TABLE IV: Data to generalization validation on different MAIN and BOD-
MAS. The shared family have common family labels on both two dataset. #
of sub dataset: shows the number of samples belongs to the corresponding
shared family.

Label
Source

# of family label # of shared
family

# of sub dataset

BODMAS MAIN subset-B subset-M

AVG 74 60 13 3233 93123
Avria 63 55 12 3259 100339

BitDefender 191 114 9 268 9381
F-Secure 64 55 12 3259 100341

Kaspersky 77 50 9 2215 80295
Microsoft 105 80 14 1503 68348
Symantec 40 30 13 3307 140033

Figure 3: Ratio of malware variants in subset of MAIN dataset. Microsoft is
the baseline. The blue bar is the ratio of variation in specified dataset.

tokens of Rzay and 476334. Razy represents a unique
detection technique of BitDefender, while 476334 is a
random number for marking malware variants. When
we adopt Razy as the label, the label granularity is too
coarse as all the variants are considered as a cluster. In
the opposite, if the name comes from the traditional family
information directly, such as PonyStealer of a malware sample
Gen:Heur.PonyStealer.qq0@CGd9nvki, taking the characters
qq0@CGd9nvki is too specific.

2) annotation inconsistency: The annotation inconsistency
is mainly related to the expertise level, i.e., presents as the
detection ability or the preference for different features in
malware analysis tasks. If an AV engine cannot detect one
of the features or prefer one of them, it will give a different
family name from other AV engines. As there is no baseline
for this problem, we select one of the reputable AV engines to
study the consistency of other AV engines. We find the shared
examples based on the results of one engine and check if
other engines keep the same labels for the variant in a family.
The experiment is based on two datasets, i.e., BODMAS and
MAIN dataset, and the details of shared samples show in
Table IV.

Specifically, there is a sample Abodmas in BODMAS, the
baseline label is Microsoft (M ) and the comparison engine
is Symantec (S). Thus, the label for Abodmas is M -Abodmas

based on Microsoft and the label S-Abodmas stems from
Symantec. For a sample Bmain is the variant of Abodmas,
if we assume M -Abodmas is the same as M -Bmain based on
the baseline tool Microsoft, S-Abodmas should be the same as
S-Bmain. Otherwise, this indicates that one of the AV engines

TABLE V: F1 scores of classifiers trained on BODMAS dataset. Feature is
INVINCEA, and labels are from 7 reputable AV engines.

Label Source F1 Label Source F1

AVG 0.7112 F-Secure 0.9073
Avira 0.9152 Kaspersky 0.8820

BitDefender 0.7162 Microsoft 0.7587
Symantec 0.9541 – –

AVCLASS 0.8483 BODMAS 0.7190

has changed its detection strategy and caused the annotation
to be inconsistent.

Results and analysis. We select the Microsoft engine as
the baseline label source and show the inconsistency ratios
of other reputable AV engines in Fig. 3. BitDefender shows
no more than 3%, but the other engines have variation ratios
of more than 20%. As Symantec has an inconsistency ratio
exceeding 52%, we take a further study and find it utilize a
hybrid detection method of the fusion of traditional techniques
and the ML-based method. As a result, it names some samples
as the name combinations as ”ML.Attribute.HighConfidence”,
and the left token may change after tokenization, leading to a
surge in the inconsistency ratio.

B. RQ2: Do existing methods solve the label bias problems?

1) Effect of existing methods: To select a reputable AV
engine, we follow the experimental design in Section III to
train the models based on different label sources, respectively
and get seven classification models, as shown in Table V. And
we follow the details in the papers [6, 20] to process the label
sources and train another two classification models marked by
the methods, i.e., AVCLASS and BODMAS in Table V. We
conduct all the experiments on the BODMAS dataset.

Results and analysis. According to the F1 scores of
different classification models, we find that the models’ per-
formances vary a lot when adopting different results of AV
engines, from 0.9541 (i.e., Symantec) to 0.7112 (i.e., AVG).
It means that not all reputable engines are suitable for training
malware classification models, and it is hard for users to
select reputable annotators. We also find that some results
of single AV engines are better than the performance of the
improvement methods (i.e., 0.8483 of AVCLASS and 0.7190
of BODMAS). It shows that the label aggregation solution
cannot beat all reputation engines for better classification
performance. Therefore, we take further studies on the two
improvement methods.

2) Further study for selecting reputable engines: We ob-
serve that the engines may prefer some features and name
the samples based on more consideration for the preferred
features. To verify our observation of feature preferences, we
conduct an experiment like the ablation study. Specifically, we
first test the situation of dropping one type of feature, and then
test the effect of only taking the dropped feature. Thus, for
static features, we have nine groups of feature combinations,
i.e., SIM, BIM, BSM, BSI, B, S, I, M and the complete
INVINCEA as shown in Table VI. We also compare the
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TABLE VI: Annotation Bias: F1 scores of multi-classifiers trained Main dataset.

Label Source INVINCEA SIM BIM BSM BSI Bytes Strings ImpFunc Metadata API

AVG 0.9367 0.8785 0.9430↑ 0.9373↑ 0.9276 0.9135 0.6951 0.6037 0.7173 0.7745
Avira 0.8468 0.7734 0.8341 0.8392 0.8354 0.8228 0.5911 0.7017 0.6920 0.6748

BitDefender 0.7153 0.6737 0.7075 0.6931 0.6978 0.6853 0.4853 0.5389 0.5422 0.5476
F-Secure 0.8267 0.8184 0.8439↑ 0.8280↑ 0.8389↑ 0.8267 0.5873 0.6935 0.7090 0.6758

Kaspersky 0.8318 0.8273 0.8319↑ 0.8224 0.8076 0.7667 0.6069 0.7388 0.7694 0.7093
Microsoft 0.9530 0.9496 0.9537↑ 0.9418 0.8747 0.8761 0.6246 0.7464 0.9114 0.8506
Symantec 0.9109 0.9136↑ 0.9108 0.9049 0.8938 0.8529 0.3658 0.6652 0.8926 0.8349

* B: bytes feature, S: printable strings feature, I: PE import function feature, M: PE metadata feature, API: dynamic API call sequence. INVINCEA
is equal to BSIM. ↑: represents an improvement in performance compared to the baseline (i.e., INVINCEA).

static feature with the dynamic feature (i.e., the API sequence
feature).

We construct feature vectors based on different groups of
features and annotate the feature vectors with the labels from
each AV engine to construct training examples, respectively.
Finally, we train the models based on different training exam-
ples in the MAIN dataset, and the effectiveness of the trained
models presents the preference of different engines.

Results and analysis. The performance results of trained
models based on different features are presented in Table VI.
From each row of Table VI, we can see the F1 score changes
of dropping a feature and only taking the dropped feature to
train a model, according to the baseline of the INVINCEA
features.

Taking the first row as an example, the F1 score of the
trained model is 0.9367 based on the training examples
constructed by the INVEINCEA features and the AVG labels.
When dropping the string feature (i.e., the training examples
are feature vectors containing BIM features, also annotated by
AVG), the F1 score increases from 0.9367 to 0.9430, which
means the string feature has a negative contribution to the
model’s effectiveness. The model trained only with the string
feature performs more poorly (0.6951) than the models with
bytes (0.9135) or metadata (0.7173), which confirms the string
feature is not an effective feature when taking AVG labels. The
same situation happens on the import function feature, while
the byte and metadata features present the opposite situation.
Especially, just taking the byte feature could get a comparable
result to the INVINCEA features. Additionally, the API feature
performs worse than the complete static features but better
than some separately.

Combining the results of all the test AV engines in each
row, we can see that the F1 scores decrease when dropping
one feature or taking only one feature. But dropping the string
feature will not bring much influence, and even increases the
model’s effectiveness sometimes. In conclusion, AV engines
are biased toward different features, and various AV engines
have different detecting abilities for specific features.

3) Further study for label aggregation based on majority
voting: We observe that, during the training process of se-
lecting reputable AV engines as ground truth labels, some AV
engines get close F1 scores, and their training logs are pretty
similar (e.g., Avira and F-Secure). It may indicate the existence
of homologous AV engines. To verify our observation, we use

a vector v⃗ to represent the distribution of each family label
in a label source and adopt the cosine similarity algorithm to
measure the similarity of different engines based on their label
results.

Specifically, the dimension of v⃗ is the sum of all engines’
label types, and the value of each dimension is the number of
samples belonging to the specified family label. The v⃗ can be
represented as Eq. (2), where ni and nj represent the numbers
of samples belonging to ith and jth family label in a specified
label source.

v⃗ =
[
· · · , ni, · · · , nj , · · ·

]
(2)

Thus, for a dataset, if we measure the label similarity of two
engines A and B, v⃗a and v⃗b can be mapped by label distribution
from A and B, and the similarity of A and B will be represented
by Eq. (3).

Cos Sim(A, B) = cos(v⃗a, v⃗b) =
v⃗a · v⃗b

∥v⃗a∥∥ v⃗b∥
(3)

The Cos Sim is much closer to 1, and the engines are much
closer to homologous. To find all homologous relationships,
we research the similarity of each pair among the 67 AV
engines in VT based on the MAIN dataset.

Result and Analysis. We present the results of the inde-
pendence experiment in Fig. 4, and find that homologous label
sets exist in high-reputation AV engines, presenting as the
consumer-supplier relationships. While a report [61] provides
some pairings between consumer and third-party (supplier)
engines, we found more consumer-supplier relationships. Al-
though the labels of consumer-supplier engines appear to
be normalized and consistent, the ”false” normalization may
cause researchers to blindly trust consumer engines as the
ground truth, which engines are not suitable for the label
aggregation method.

Specifically, there are 67 AV engines in our experiments
on the MAIN dataset. We calculate the similarity of each
pair of engines, according to Eq. (3), and get a matrix of
size 67 by 67. We transform the matrix to the axisymmetric
heat map shown in Fig. 4. Ideally, if each pair of engines are
independent, the heat map should show a dark blue diagonal
line containing only individual points, no region of points.
However, we discover seven regions of correlated engines and
many independent engines.

First, the engines in the red dotted box at the upper right
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Figure 4: Heatmap of the similarities of AV engines based on MAIN dataset.
The AV Engine names on x axis has been shown in APPENDIX B.

TABLE VII: List of supplier engines and consumer engines. Consumer
engines incorporate supplier engines to detect malware.

Supplier Engine Cosumer Engine

Avast AVG

Avira F-Secure

BitDefender Ad-ware, ALYac, Arcabit*, G Data*,
MicroWorld-eScan, Emsisoft,
VIPRE†, Quick Heal†, Tencent†

Kaspersky ZoneAlarm

K7GW K7AntiVirus
* integrate more than one detecting engine.
† consumer engines defined by AV Comparatives[61].

corner of Fig. 4 are inoperative engines, such as Symantec
Mobile Insight which specializes in Android and cannot detect
PE-format programs. Second, engines in the solid red box
annotate lots of samples as benign, resulting in the presentation
as a cluster. For example, TrendMicro gives over 40% benign
labels to the samples, and Alibaba annotates more than 83.5%
samples as benign. Finally, the other five groups at the lower
left corner are homologous engines after manual verification,
also listed in Table VII. It is noted that Arcabit and G Data
integrate not only one type of engine. That’s why they look
lighter blue than the other engines in the BitDefender region
in Fig. 4.

To explore the details of the consumer-supplier relation-
ship, we design some metrics to evaluate the quantification
relationship and take the BitDefender group in Table VII
as an example. As shown in Table VIII, we measure the
eight AV engines with the baseline of BitDefender, and use
Kaspersky for comparison. CL and BL represent labels from
the consumer engine and BitDefender, respectively. Thus,
CL∩BL

CL and CL∩BL
BL represent the proportion of shared labels in

the consumer engine and BitDefender label sets. CS means

TABLE VIII: Metrics of consumer engines integrating BitDefender as third-
party engines.

AV engines CL∩BL
CL

CL∩BL
BL

CS∩BS
BS

Cos Sim

BitDefender 100.00% 100.00% 100.00% 1.000000
Ad-Aware 88.28% 99.12% 99.44% 0.999646
ALYac 67.26% 99.12% 91.93% 0.966256
Arcabit 14.40% 15.79% 32.61% 0.556163
eScan 91.94% 100.00% 99.96% 0.999999
Emsisoft 82.71% 96.49% 96.23% 0.995013
G Data 19.17% 85.09% 57.57% 0.425818
Kaspersky 0.00% 0.00% 0.00% 0.000000

CL: label set from the specified current consumer engine. BL: label
set from BitDefender. CS: samples belong to CL. BS: samples
belongs to BL. Cos Sim: cosine similarity between consumer
engine and BitDefender.

TABLE IX: The preference of different AV engines

AVG Avira BitD F-S Kas Micro Sym

B 1 1 1 1 2 2 2
S 4 5 5 5 5 5 5
I 5 2 4 3 3 4 4

M 3 3 3 2 1 1 1
A 2 4 2 4 4 3 3

the samples belongs to CL, and BS represents the samples
belongs to BL. Thus, CS∩BS

BS represents the proportion of
samples, belonging to each consumer engine’s shared labels
in the MAIN dataset.

As the Table VIII shows, all the 6 consumer engines
integrate BitDefender results with the Cos Sim value from
0.4258 to 0.9999, and cover samples in the MAIN dataset
from 32.61% to 99.96% respectively. Meanwhile, all results
of Kaspersky are 0 because BitDefender and Kaspersky are
orthogonal on the label set.

C. RQ3: Can we improve the label bias problems better?

1) Recommendation for selecting reputable engines: Ac-
cording to our observation that AV engines have feature
preference problems, we have the following recommendation
for selecting reputable engines. To make the preferences of AV
engines clear, we rank the results by taking each single feature
and show the order in Table IX. For example, the results
of AVG are presented as bytes, API, metadata, strings and
import function in order from good to bad. When performing
ML-based malware classification, users should select reputable
engines based on the features they extract, thus the trained
models could get better performance.

From the data of Table IX, we can also see the annotation
inconsistency problem and have some suggestions. If the
ranking orders are similar, we can treat the annotation criteria
as consistent. For example, supposing a malware family has
unique characters in metadata and import function, an AV
engine that prefers the metadata feature might give a different
family name from the one that picks the import function
feature. Thus, in addition, users could consider the concrete
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TABLE X: The influence of consumer engines to AVCLASS method. The
minority family represents which family have no more than 5 samples. F1
score means the scores from multi-classifiers trained on INVINCEA features.

BODMAS Dataset AVCLASS AVCLASS*

original

# of labels 1491 2554
# of samples 30852 30852

# of minority family 3 12
# of discrete samples 1406 2466

reduced
# of labels 82 76

# of samples 29429 28345
F1 score 0.8483 0.9262

F1 scores of classifiers shown in Table VI, which presents the
engine’s detection ability for this feature.

For example, although Microsoft takes the API feature in
third place, it gets the highest F1 score when taking only the
API feature, as marked with a bold number in Table IX. If
a malware sample has advanced countermeasure techniques
against the static analysis, the other AV engines may extract
less information and annotate it with general names. Still,
Microsoft will give more details and an informative family
name based on its dynamic analysis ability.

2) Recommendation for label aggregation: For label ag-
gregation in malware classification tasks, we need to pay
attention to the pitfalls of the consumer engine, which may
create the illusion of majority for the label aggregation method,
according to our observation. We also perform a study on the
improvement of eliminating the consumer engine. Specifically,
we streamline the engine list of each sample’s VT report before
AVCLASS generates labels based on the results of Table VII.
After the elimination, a new label set called AVCLASS* is
generated based on the remaining 54 AV engines. We train
a new multi-classifier by combining INVINCEA features and
AVCLASS*.

Our intuitive idea is that a set of AVCLASS labels generated
without preprocessing cannot be trusted. Due to the consumer
AV engines, we speculate that the AVCLASS label set may
be the duplicated counting results. To measure the influence
of consumer engines, we streamline the engine list of each
sample’s VT report before AVCLASS generates a label by
eliminating all latent consumer engines, as shown in Table VII.
After the elimination, a new label set called AVCLASS* is
generated based on the remaining 54 AV engines. We train a
new multi-classifier by combining INVINCEA features and
AVCLASS*. The experiment details are shown in Table X.
Compared with classifiers trained by AVCLASS (84.83%), the
classifiers based on AVCLASS* have a higher F1 score of
92.62% with a 7.79% increase.

Further study shows that the cost is to discard much more
discrete samples. AVCLASS* has 2,466 singleton labels and
12 minority families, which are 1.75 and 4 times AVCLASS.
The extra 1,060 discrete samples and 8 minority families are
generated by removing the consumer engines, which indicates
that they are double-count and not real label aggregation
results in AVCLASS. The disappeared family labels contain

Zusy, Delphi, etc. AVCLASS can still be a better choice if we
consent to such costs.

We must state that our motivation for excluding these
samples is not to disregard minorities. On the contrary, we
think they are essential, and it is just that such minorities do
not help us train the model and draw conclusions. At the same
time, we believe that when the number of these discrete and
minority family samples reaches a specific size, it is possible
to use them as training data.

V. DISCUSSION

A. Threats to Validity

Our experiment results show the label bias in malware
classification and the limitations of existing two methods
for label bias problems. However, there are some threats to
validity.

The first threat of validity is related to the dataset. We used
two datasets to perform the empirical study of label bias,
i.e., an open source dataset (i.e., BODMAS) and a newly-
collect dataset (i.e., MAIN). As the scale of the datasets could
affect the generalization of our conclusions, we collect more
than 153k real-world malware samples in the MAIN dataset.
Both datasets appear to be unbalanced, and we have to clean
the datasets to make the trained models work properly and
facilitate outcome measurement. Here, we only reduce the size
of the dataset by filtering out the extreme minority of samples
and trying to ensure that the data distribution of the imbalanced
dataset is consistent with the cybersecurity malicious sample
distribution. Therefore, we believe that these two datasets can
help us understand the label bias well.

Another threat of validity is related to the model training.
The extracted features and selected models could affect the
answers to the RQs. For this threat, we extract 5 types of
features according to the paper [2] and the details are presented
in the APPENDIX. We also choose the DNN algorithm to train
the classification models as it is verified by several works [1,
2, 6]. We perform all experiments using 4-fold cross-validation
and give averages to mitigate unexpected errors in the results.
The case studies are performed and verified by the security
experts in the cooperative security company.

B. Discussion and Future Work

According to the results of Table V, labels from reputable
AV engines beat the label aggregation. However, a single
reputable label source inevitably might have a relatively high
rate of false positives, which makes researchers favor label
aggregation. But for label aggregation, although we propose
to eliminate the consumer AV engines, we have to pay the
price of discarding some discrete samples. At the same time,
these may be correctly classified in reputable AV engines.
It does not interfere with binary identification, but it does
affect multi-classification. Therefore, researchers need to make
decisions based on their mission objectives, and we convince
that minority families do matter in practice. Considering the
need to classify minority families, we will pay more attention
to them in our future work, such as few-shot learning [68, 69].
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At the same time, features are also important, and it’s not
realistic to analyze each sample manually due to our limited
ability to analyze samples. Even through automated means,
it is not easy to obtain complete features, such as opcodes,
instructions, etc., especially when the dataset is in a large
scale. It will be better if much more datasets with diverse
feature types are shared with the cyber security community,
and we will maintain the malware dataset of MAIN open-
source including static and dynamic features. We believe that
vendors should share and maintain a common naming rule to
facilitate research work because this mutual understanding can
reduce unnecessary costs.

Although we offer some effective advice that seems soft,
our main idea is to provide an inside view of label bias. We
will make more practical solutions based on these suggestions
in the future.

VI. CONCLUSION

In this paper, we conduct an empirical study of the label
bias problems in machine learning based malware classifi-
cation and existing solutions for the problems. We collect
the MAIN dataset including 153,811 malware samples, and
leverage a open-source dataset BODMAS for experiments.
We present the existence of label bias problems including
the chaotic naming rules and annotation inconsistency. And
we find the limitations of existing solutions, i.e., selecting
reputable AV engines faces the feature preference problem,
and label aggregation based on majority voting ignores the
independence problem. Then, we recommend users to select
reputable engines according to the extracted features and
eliminate consumer engines when aggregating labels. The
results of improvements show that we get a performance
increase.
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APPENDIX A
FEATURE EXTRACTION

A. Static Feature Extraction

We follow the work[2] to extract the static features, includ-
ing bytes entropy, printable strings, PE import function, and
PE metadata. The static feature is a 1024-dimension vector,
each type of feature has 256 dimensions.

Bytes Entropy. For each binary sample, compute the en-
tropy H(X) with a 1024-length sliding window at a step size
of 256, and pair with the value of each byte within the window
into a list. The H(X) can be represented as Eq. (4), where

Figure 5: Distribution of dynamic API sequence length on MAIN dataset.
Each blue bar represents the number of samples with specified API sequence
length. The red curve represents the percentage of the MAIN dataset that
contains samples of up to a specified length.

P (xi) is the probability of the byte xi to appear in the current
window.

H(X) =

n∑
i=1

P (xi)I(xi) = −
n∑

i=1

P (xi) log2 P (xi) (4)

Then, map the pairing list into a two-dimensional histogram,
which will be divided into 16× 16 bins. Finally, concatenate
the each row of histogram to a 256-dimensional vector.

Printable Strings. Extract the printable strings which length
is no less than 6, and hash the printable strings into the range
[0, 16). Then, take the log base 1.25 of each string’s length,
and pair the log of length and hash value into a list. Finally,
map the strings pairing list into a histogram and concatenate
the 256-dimensional vector as Bytes Entropy does.

PE Import Function and Metadata. Initialize two 256-
dimensional vectors with all-zero. Utilize the ’pefile’ (a python
parsing library) to extract the DLL name and import funtions,
and pair each import function with its DLL. Meantime,
extract PE structure field information from the binary, such
as NumberOfSections, TimeDateStamp, etc.. Then, hash the
two groups of information into the 256-dimensional vectors,
respectively.

B. Dynamic Feature Extraction

We first serialize every three consecutive APIs for preserv-
ing behavioral semantics as a 3-gram feature, for a dynamic
behavior sequence with a length of L. Thus, we get a sequence
of 3-gram features, which length is L− 2. Second, according
to the different label sources, we count the frequency of each
3-gram feature to calculate its information gain [66] in the
dataset, respectively. Then, we get a ranking of 3-gram feature
based on different label sources. Finally, for different label
sources, we select different 1024-dimensional feature vectors
to represent the samples of the whole dataset, whose 3-gram
features information gain value is the top 1024 largest in
the dataset according to the corresponding label source. We
think the 1024 is enough as we take a further study of the
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samples’ execution traces of APIs and the results are presents
as Figure 5.

APPENDIX B
ANTI-VRIUS ENGINE LIST

The AV engines appearing in Fig. 4, from left to
right, are McAfee-GW-Edition, VBA32, Symantec, ESET-
NOD32, APEX, Sophos, Arcabit, GData, Emsisoft, Bit-
Defender, ALYac, Ad-Aware, MicroWorld-eScan, Avira,
F-Secure, Kaspersky, ZoneAlarm, K7AntiVirus, K7GW,
AVG, Avast, Cyren, DrWeb, Antiy-AVL, Rising, Ikarus,
Microsoft, ClamAV, Fortinet, Comodo, NANO-Antivirus,
Qihoo-360, Panda, Malwarebytes, Bkav, McAfee, AhnLab-
V3, TotalDefense, VIPRE, Jiangmin, Yandex, Tencent,
TrendMicro-HouseCall, TrendMicro, ViRobot, Zillya, Baidu,
TACHYON, Alibaba, AegisLab, SUPERAntiSpyware, Zoner,
CMC, Kingsoft, CAT-QuickHeal, Gridinsoft, MaxSecure,
Babable, Avast-Mobile, SymantecMobileInsight, Malware-
bytes3, CyrenCloud, SophosML, Kaspersky21, TheHacker, F-
Prot, FireEye.
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