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Abstract—With the wide application of the Raft consensus
algorithm in blockchain systems, its safety has attracted more
and more attention. However, although some researchers have
formally verified the safety of the Raft consensus algorithm
in most scenarios, there are still some safety problems with
Raft consensus algorithm in some special scenarios, and cause
problems now and then. For example, as a core part of the
Raft consensus algorithm, the Raft leader election algorithm
usually faces some safety problems in following scenarios: if the
network communication between some nodes is abnormal, the
leader node could be unstable or even cannot be elected, or the
log entry cannot be updated, etc. In this paper, we model check
the safety of the Raft leader election algorithm throughly using
Spin. We use Promela language to model the Raft leader election
algorithm and use Linear-time Temporal Logic (LTL) formulae
to characterize three safety properties including stability, liveness,
and uniqueness. The verification results show that the Raft leader
election algorithm does not hold stability and liveness when some
nodes are faulty and node log entries are inconsistent. For these
safety problems, we give the suggestions for improving safety by
analyzing counter examples.

Keywords—blockchain system; Raft consensus algorithm; model
checking; Promela; Spin

I. INTRODUCTION

As the underlying technology of Bitcoin, blockchain tech-
nology has immediately become the focus of research in
computer science since it was introduced in 2008 [1]. With the
increasing maturity of blockchain technology, finance, energy,
medical, and other fields have also been further developed.
As a decentralized and distributed system, blockchain uses
consensus algorithms to achieve data consistency and reach an
agreement on a proposal among scattered and parallel nodes.
In order to meet the application requirements of different
scenarios, many consensus algorithms have been proposed.

At present, according to whether the system allows Byzan-
tine nodes, consensus algorithms can be divided into CFT
(Crash Fault Tolerance) consensus and BFT (Byzantine Fault
Tolerance) consensus [2]. Among these consensus algorithms,
the Paxos algorithm has been recognized as the most classic
distributed consensus algorithm since it was proposed [3].
However, it is not only difficult to understand, but also difficult
to implement the Paxos algorithm in distributed systems. For
this purpose, the Raft consensus algorithm is proposed as an
algorithm that is as efficient as Paxos and easier to understand
and implement. At present, the Raft consensus algorithm is
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widely used in traditional distributed systems, consortium
blockchains, and private blockchains.

With the extensive application of the Raft consensus algo-
rithm in distributed systems, its safety research becomes more
and more urgent because the unsafety consensus algorithms
may lead to the abnormal operation or even crash of distributed
systems. Unfortunately, only a handful of studies have been
done on the safety of the Raft consensus algorithm. Ongaro
and Ousterhout analyzed the safety of the Raft consensus algo-
rithm and proved the Log Completeness Property with TLA
proof system while proposing the Raft consensus algorithm
[4]. Woos et al. have proven the Raft safety by theorem proving
its unique properties: state machine safety, election safety, log
matching, and leader integrity [5]. However, when studying
the safety of the Raft leader election algorithm, they only
considered the node crash, but not the network abnormality
between some nodes. They also did not analyze the stability
or liveness of the Raft leader election algorithm.

Based on the above insight, we use a formal method to
verify the safety of the Raft leader election algorithm. We use
Promela language to model the Raft leader election algorithm
and simulate different fault types, such as partial node crash,
the network anomaly between partial nodes, and network
partition. Then we describe the three safety properties of
stability, liveness, and uniqueness into formal language by LTL
formulae and verify them with the Spin tool. By analyzing the
counterexamples given by the Spin tool, the safety problems
that exist in the Raft leader election algorithm are found.
Finally, we analyze the existing safety problems and give the
suggestions for improving safety.

The main contributions of this paper are summarized as
follows:

1) When modeling the Raft leader election algorithm in
Promela language, we consider and analyze all kinds of node
faults tolerated by the Raft consensus algorithm, including less
than half of the nodes crash, the network anomaly between
some nodes, and network partition;

2) We study some typical safety properties of the Raft leader
election algorithm not only uniqueness, but also stability and
liveness. By analyzing the results of formal verification, we
find that the Raft leader election algorithm has the safety
problems of stability when the network between some nodes
is abnormal. When some nodes are faulty and the logs of
nodes are inconsistent due to the fault, the Raft leader election
algorithm will have the liveness problem.

The rest of this paper is organized as follows. In section
II, we introduce the preliminary knowledge of Raft consensus
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algorithm. In section III, we describe the model of the Raft
leader election algorithm based on Promela. In section IV, we
use LTL formulae to characterize the safety properties of the
Raft leader election algorithm. In section V, we use the Spin
tool to verify the model and analyze the verification results.
Next, we discuss related works in section VI. Finally, we make
a conclusion for our work in section VII.

II. BACKGROUND KNOWLEDGE
A. Raft Consensus Algorithm

The Raft consensus algorithm is a simplified algorithm
based on the Paxos algorithm, which enhances intelligibil-
ity and is comparable to Paxos in terms of performance,
reliability, and usability. Raft simplifies the states and splits
the problems on the basis of Paxos, breaking down the
previously complex logic into several sub-problems, which can
be summarized into the following aspects: leader election, log
replication, and safety.

1) Leader Election: In the Raft consensus algorithm, each
node is in one of three states at any given time: follower,
candidate, leader. Followers respond only to requests from the
leader and candidate, but do not send requests. Candidates are
formed by followers during the cluster election. If a candidate
obtains a majority of votes in the election, it becomes the
leader. The leader is elected by all nodes from the candidates
and is responsible for the status of the entire cluster and data
management. The states of the node and their transitions are
shown in Figure 1. Furthermore, Raft divides time into terms
of arbitrary length, which are numbered with consecutive
integers. Each term begins with an election, in which one or
more candidates try to become leaders.
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Figure 1. Node states and their transitions

2) Log Replication: Once a leader has been elected, it
begins servicing client requests. The client sends the request
for updating the log entry to the leader, and the leader sends
the messages to other followers after updating it locally. After
receiving the messages, the followers update the log entry after
determining that the new log entry does not conflict with the
local log entry and return the messages to the leader. After the
leader receives more than half of the log entry update messages
from followers, the leader formally writes the log entry to the
state machine and the log entry state becomes “committed”.
The leader then sends a message to notify followers and the
client respectively. Followers will write their logs to the local
state machine after receiving the messages, and the state of
their entries on followers will change to “committed”. At this
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point the log entry is actually in effect and cannot be rolled
back.

3) Safety: To make no irreversible errors or return incorrect
content to the client under any circumstances, Raft adds some
restrictions on leader election and log replication. Leadership
election restriction means that followers only vote for the
candidate whose log is more up-to-date than its own. A more
up-to-date log means that the last entry in the log has a
higher term, or the log is longer with the same term. Log
replication restriction means that the leader does not commit
log entries with previous terms, but instead commit log entries
with previous terms by committing log entries with the current
term.

B. Safety of the Raft Leader Election Algorithm

The safety of the consensus algorithms means that in the
process of reaching an agreement, the system reaches an
unsafe state due to the triggering of some conditions. In this
state, the system reports errors or even crashes, resulting in
abnormal system operation and major safety accidents.

In the Raft leader election algorithm, safety research also
needs to be focused on. For the leadership election, the main
safety concerns include:

1) Whether the leader node is stable. The state of the leader
node should remain stable while the leader node is in normal
communication with most nodes. Otherwise, frequent leader
changes will result in unstable log updates.

2) Whether a leader node will be elected over time. Nor-
mally, a system will elect a leader node to manage data over
time. If no leader node is ever elected, the logs cannot be
updated and the distributed system cannot function properly.

3) Whether the elected leader is unique in each term. If the
leader node is not unique, then there will be multiple leader
nodes to manage the system data at the same time, resulting
in follower nodes do not know which leader node to respond
to the log update request.

C. Formal Verification

The safety of consensus algorithms is often verified infor-
mally. When the algorithms become complex, the non-formal
safety verification is prone to error. Only when the algorithm
is formally validated can it gain sufficient credibility.

Formal verification is used in hardware and software sys-
tems to prove or deny the correctness of the expected algorithm
based on the system according to certain formal specifications
or properties by using mathematical formal methods [6].
Formal verification verifies the reliability of a program by
mathematical logic so that it can be proven that a system
does not have a defect or conforms to some properties. A
large number of industrial practices show that when developing
complex hardware and software systems, people spend more
effort on verifying the correctness of the system than on
building the system. At present, formal verification can be
divided into three categories: equivalence checking, theorem
proving, and model checking [6]-[8].



Model checking is the most widely used formal verification
method because of its full automation and fast verification
speed. In model checking, many auxiliary checking tools are
used, and Spin is one of the most popular model checking
tools. Using Promela as the input language, the Spin tool
can check the logical consistency of specifications in the
design of algorithms, and report the occurrence of deadlock,
invalid loops, undefined reception and incomplete markup in
the system.

III. FORMAL MODELING BASED ON PROMELA

Since Woos et al. have provided a complete and detailed
theorem proof on the safety of log replication in the Raft con-
sensus algorithm, this paper focuses on the formal modeling
and verification of the safety of leader election.

Through the description of Raft consensus algorithm in
Section II, we clearly know the process of the algorithm. To
facilitate formal modeling and verification, we first abstract
the Raft leader election algorithm and construct the mapping
relationship between the Raft leader election algorithm and
the Promela model, as shown in Figure 2.

Raft Leader Election

Algorithm Promela Model
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Figure 2. Mapping relationship between the Raft leader election algorithm
and Promela model

The Promela model consists of processes, message chan-
nels, and variables, which is equivalent to a finite transforma-
tion system. The mapping relationship from the Raft leader
election algorithm to the Promela model includes mapping
from state transition to message definition, from state transition
to process control inside process entities, message reception,

and so on. The detailed mapping relationship is described as
follows:

o Mapping from node to process declaration. In the
Promela model, there are two types of processes,
namely the normal process and the initial process, where
the initial process is similar to the main() function
in C language. Each node in the distributed system
corresponds to a normal process, and the operation of
each node is implemented through the execution of
statements in the process body.

o Mapping from state to variables. In the Raft leader
election algorithm, each node is in one of three states at
any given time: follower, candidate, and leader. These
three states are defined with corresponding enumeration
variables.

e« Mapping from RPCs to channel definition and
message type. Nodes in the Raft consensus algorithm
communicate using remote procedure calls (RPCs).
In the Promela model, processes communicate with
each other through message channels. The number of
messages that each channel can hold and the data type
of the messages need to be defined together with the
channel definition.

e Mapping from event to variables and message
sending/receiving. The state of the node is changed
by different events, such as node timeout, receiving
a message that the leader node has won, and so on.
Corresponding to the Promela model, event triggering is
simulated through changing the values of variables and
sending and receiving messages.

o Mapping from transition to process body. The pro-
cess body in the Promela model mainly includes three
parts: control flow, message sending/receiving and state
transition. Control flow corresponds to state transitions in
the Raft leader election algorithm, which are guided by
different control conditions. Message sending/receiving is
the communication part between processes, correspond-
ing to state activities and transition conditions, and related
to the above message type and channel definition. Each
process needs to use a specific channel to receive and
send messages. State transition is a jump after the mes-
sage is received or sent in the process, which corresponds
to the transfer in the Raft leader election algorithm. There
are different transfer conditions according to different
transitions. If the conditions are met, the next step will
be executed.

A. Preparing Work

The leader election process mainly includes four basic
types: participant, term, state of participant, and log on the
node. The participant and its state only need to be distinguish-
able, and the term and log can be compared.

Since there are no string variables in Promela language, and
to simplify the modeling process, we define the basic types
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directly with natural numbers to meet the actual requirements
of the Raft leader election algorithm.

Therefore, we use enumeration types to define the identity
of the participant and the corresponding state. Specific defini-
tions are as follows:

/%

mtype = {follower, candidate, leader};

mtype = {N1, N2, N3, N4, N5};

*/

Since the term and log are only used for comparison in the
leader election, we define them as int types in local variables.
Larger numbers of term and log indicate higher term and more
up-to-date log, respectively. The voting situation is defined by
bool type, indicating agree to vote and reject vote.

B. Message Abstraction

In the Promela model, all communication between processes
is achieved through channels, so it is important to abstract the
message. By analyzing leadership election, it is clear that the
process is divided into vote requests and response requests.

The voting request means that a follower turns into a
candidate after timing out and sends a voting request message
to other nodes. The voting request message contains the node
identity, the node state, the term that the node is currently in,
and the log on the node.

The response request is that the node responds to the vote
after receiving the vote request message. The response request
message includes the node identity, the node state, and consent
vote. In the Raft leader election algorithm, a node will refuse
to respond to a vote request if it receives a vote request from
a node whose term is lower or whose log is less up-to-date, or
if the node has already voted in the current term. However, in
order to prevent message overflow in the channel, we set the
model to respond to the voting request regardless of whether
we agree with the vote or not. When the node rejects a vote,
it will send a reject vote message.

Specific definitions of channels are as follows:

/*

chan RPC[10] = [10] of {mtype, mtype, int, int};

chan REPLY[10] = [10] of {mtype, mtype, bool};

*/

The RPC channel is the voting request channel. Each
RPC channel contains four message types, which respectively
represent the node identity, the node state, the term that the
node is currently in, and the log entry on the node. The REPLY
channel is a voting feedback channel. Each REPLY channel
contains three message types, which respectively represent the
node identity, the node state, and consent vote, and whether
to agree to vote.

In addition, if the node fails to receive messages from
the leader due to communication failure, it can still know
the current tenure through other nodes that can be contacted.
Therefore, we define an additional message channel to inform
the current term. When the node knows that the leader is
elected, it sends the current term to other nodes that can be
contacted, which is shown as follows.
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/*
chan term_now[20] = [10] of {int};
*/

C. Algorithm Modeling

In the previous work, the underlying types and message
mechanisms involved in the algorithm were abstracted and
defined in Promela language. Based on this, we will fully
model how nodes elect a leader in the Raft leader election
algorithm.

There is a randomized election timeout on each node. When
the node times out, it will start an election. But because
Promela does not provide any time features, the built-in
timeout function is just a modeling feature that provides a
way out of the suspended state. The suspended state does not
correspond to the real timer definition. Therefore, we model
the timeout as follows.

do
(time_out==0)
(time_out !=0)
od;

->optionl;
->option2;

Listing 1. The code for the timeout model

When time_out is 0, the node will initiate a voting request.
When time_out is not 0, the node will observe whether there
is a vote request message in the channel and count down until
the node initiates a vote request when time_out is 0.

During waiting for that timeout to elapse, the node will loop
through the channels associated with it to see if there is a vote
request message. If the node receives a vote request message, it
will evaluate the vote message accordingly, including whether
the term is higher than its own and log entry is more up-
to-date, and determines whether it has already voted. If one
condition is not satisfied, the node will refuse to vote. If the
node receives the message that one node is elected as the
leader during this period, it stops waiting for timeout to elapse
and informs other nodes of its term.

(time_out!=0)->

vote_if = 0;
atomic{
do
RPC[0] ?candidate, N2, term_current, index_current;
if
(term_current >= term&&index_current >= index
&&vote_1if == 0) ->
Reply[0]!follower,N1,1;
vote_if = 1;

:: else-> Reply[0]!follower,N1,0;
fi;
RPC[0] ?leader,N2,term, index ->
term_now([0]!term;
break;

11 empty (RPC[0])->break;

od;

}

time_out--;

Listing 2. Part of code that the node does not time out

In order to avoid the impact of the uncertainty of the relative
speed in the parallel process and reduce the complexity of the
whole process, we add the keyword “atomic” as a prefix to
the whole process, indicating that the statement sequence will



be executed as an indivisible whole. In addition, the Empty
function is used to check if there are any unreceived messages
in the channel, lest the node receive outdated messages due to
asynchronous communication. Part of the code is as shown in
Listing 2.

(time_out==0) —>

term++;
if
term > term_current ->
leaders = 0;
else ->skip;
fi;
vote=0;
RPC[0] !candidate, N1, term, index;
vote++;
atomic{
if
nempty (Reply[0])—>
do
HE Reply[0]?follower,N2 (1)
—>vote++;
Reply[0]?follower,N2(0)
->skip;

empty (Reply[0]) &&empty (RPC[0]) —>
if

vote>=3 ->

leaders ++;

isLeader = 1;

leader[0] = 1;
RPC[0]!leader,N1,term, index;
term_now[0] 'term;
break;

else -> time_out = 1; break;

fi;

Listing 3. Part of code that the node times out

When the node times out, it will increment the current term
by 1 and send a vote request message to each of the other
nodes separately. After traversing all REPLY channels, if the
number of votes received exceeds half of the number of the
nodes in the cluster, the node is elected as the leader and sends
the elected message to other nodes. If the number of votes is
less than half, it means the election is lost and the node restarts
the timeout. Part of the code is as shown in Listing 3.
do
:: term_now[0]?term_current;
if

term_current > term —->
term = term_current;
goto leader_election;
else -> skip;
fi;
od;
Listing 4. Part of the code that the nodes inform each other of the current
term

When a node wins the election, all nodes end the timeout,
and the node will inform the node that can be contacted of
the current term. So we add a loop to the model in which the
node restarts the election timeout if it learns from other nodes
that the current term is larger. Part of the code is as shown
in Listing 4, where leader_election is the label of the voting
process.

Through the above analysis, we ensure and believe in the

consistency between the formal modeling of leader election of
Raft and the reality of leader election of Raft.

IV. CHARACTERIZATION OF SAFETY PROPERTIES

In the Spin tool, the safety properties of the Raft leader
election algorithm are characterized using the LTL formulae.
For the Raft leader election algorithm, we mainly characterize
the following safety properties:

o Property 1 (Stability). When the leader communicates
with the most nodes normally, the leader state of the
node remains stable.

e Property 2 (Liveness). After a period of time, one
leader must be elected.

e Property 3 (Uniqueness) There is at most one leader
per term.

The above properties can be expressed with the help of
atomic predicates. In the Promela model, we describe the
properties by defining some variables.

/*

int leaders = 0; bool isLeader = 0; int connect[];

bool leader[];

*/

“leaders” indicates the number of leaders. “isLeader” indi-
cates whether there is a leader in the system. If a leader exists,
isLeader = 1. “connect[]” and “leader[]” indicate the number
of network connections of each node and whether the node is
elected as the leader.

For property 1, when “connect[i]” > 3 and “leader[i] ” = 1,
“leader[i]” will always be 1. For property 2, “isLeader” will
equal 1 eventually. For property 3, “leaders” always do not
exceed 1.

The above safety properties are translated into the LTL
formulae as follows:

o Property 1. (connect[i] > 3 && leader[i] ==

[|(leader[i] == 1).
o Property 2. <> (isLeader ==1).
o Property 3. [|(leaders < 1).

)— >

V. VERIFICATION
A. Experiment Settings

In this paper, we used Spin 6.4.9 Version to formally verify
the safety of the Raft leader election algorithm in Windows
10 system.

As described in the Raft paper by Ongaro and Ousterhout
[4], 5 nodes allow the system to tolerate 2 failures. But Ongaro
and Ousterhout did not provide a clear explanation for other
node faults, which means that a node may not crash, but it
can be disconnected from some nodes in the cluster. In this
paper, we set a total of three fault types: 1) Network anomaly:
one node cannot communicate with a certain node normally,
but can communicate with other nodes normally; 2) Network
partition: the whole cluster is divided into multiple groups, the
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nodes in each group can communicate normally, but no node
between groups can communicate normally; 3) Node crash:
the node cannot communicate with all nodes in the cluster.
In the Promela model, different nodes communicate through
channels, so we simulate the fault types of nodes by removing
the corresponding channels between nodes.

After modeling the Raft leader election algorithm in
Promela language and characterizing the safety properties in
LTL formulae, the Spin tool can be used for automated formal
verification. The verification results of the Spin tool will show
whether the model design is correct or meets the safety prop-
erties described. When the design contains errors or does not
meet safety properties, the Spin tool gives an error description.
With the run instructions of the Spin tool, error trajectory can
be generated to obtain the false counterexamples. The defects
or problems in the design can be analyzed according to the
false counterexamples.

B. Verification Result for Property 1

The Spin tool gives an error result when we set the node
fault to Figure 3. In the cluster, normal communication is
maintained between all nodes except N1 and N5. N1 cannot
send messages to N5 and cannot receive messages from NS5.
The corresponding verification result is shown in Figure 4.

N2

Figure 3. Fault settings when the system violates Property 1

The Spin tool gives the error trajectory, which we have
collated and simplified as shown in Table 1. N1 is the first
to time out, thus sending a vote request message to N2, N3,
and N4. Since N2, N3, and N4 are in the follower state and
do not vote for other nodes, they all agree to vote for N1
and send the messages. After receiving the message from N2,
N3, and N4, N1 is elected as the leader because the number
of votes reaches 4 (including its own), which is the majority
of the number of nodes in the cluster. After N1 informs N2,

N3, and N4 of the election, N2, N3, and N4 also inform the
nodes they can contact about the current term. However, due

(Spin Version 6.4.9 -- 17 December 2018)
Warning: Search not completed

Full statespace search for:

never claim +(1t_0)

assertion violations +

cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 72 byte, depth reached 359, errors: 1
213 states, stored
4 states, matched
217 transitions (= stored+matched)
162 atomic steps
hash conflicts: 0 (resolved)

Figure 4. Verfication result for Property 1 when the fault is set as in Figure
3

to communication fault between N5 and NI, N5 can only
learn the term from other nodes without knowing the message
that N1 has been elected the leader. When N5 times out, N5
increments the term and sends a vote request message to N2,
N3, and N4. Just like N1 is elected as the leader, N5 will be
elected as the leader by a majority of votes. Then N1 learns
from other nodes that the current term is larger than its own,
and is downgraded to the state of follower. However, since we
do not know that the leader exists in the cluster, N1 will restart
its election timeout and initiate a new vote request. Thus,
the leader switches between N1 and NS5 constantly, violating
property 1.

C. Verification Result for Property 2

The Spin tool gives an error result when we set the node
fault to Figure 5. In the cluster, normal communication is
maintained between all nodes except N1 and N5. N2 has a
communication fault with N4 and N5, and N4 and N5 also
have a communication fault with each other. In addition, the
log entries on N2 and N3 are less up-to-date than those on
other nodes, which are highlighted in red. The corresponding
verification result is shown in Figure 6.

The Spin tool gives the error trajectory, which we have
collated and simplified as shown in Table 2. N1 times out but
because it crashes, it does not send a vote request message to
other nodes and will not receive a reply message from other
nodes. N2 times out and sends a voting request message to N3.
After receiving the message, N3 returns a message agreeing
to vote to N2. However, due to the communication fault, N2
can only get the votes of N3 and herself, which is less than
half of the number of the nodes in the cluster, so N2 cannot
be elected as the leader. When N3 times out, it sends a vote
request message to N2, N4, and N5. But since its log entry
is less up-to-date than the log entry on N4 and NS5, N3 will
only get N2’s vote, and N4 and N5 will refuse to vote for it.
Similar to N2, when N4 and N5 time out, they can only get
N3 and their own votes, so they cannot be elected as leaders
due to insufficient votes. In summary, none of the nodes in the
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Figure 5. Fault settings when the system violates Property 2

(Spin Version 6.4.9 -- 17 December 2018)
Warning: Search not completed

Full statespace search for:

never claim + (Itl_0)

assertion violations +

cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 548 byte, depth reached 78, errors: |
1406 states, stored
619 states, matched
2025 transitions (= stored+matched)
156 atomic steps
hash conflicts: 0 (resolved)

Figure 6. Verification result for Property 2 when the fault is set as in Figure
5

current cluster will be elected as the leader, violating property
2.

D. Verification Result for Property 3

By setting the above three fault types, the Spin tool gives
no error results when verifying Property 3. This indicates that
in the case of any node faults, there will be no more than one
leader node in each term in the Raft leader election algorithm,
which is also consistent with the conclusion of the other two

papers [4], [5].
E. Discussion

Based on the above verification results, we find that even if
only two nodes have network anomalies, the Raft leader elec-
tion algorithm will not hold stability, that is, the leader node
will constantly switch between the two nodes with network
anomalies. Through further analysis, it is found that once this
type of fault exists in the cluster, the frequent switching of

the leader node will continue unless the other node times out
before the faulty node and starts the election. Alternatively,
the leader node can complete the log entry update before
the election is initiated by other candidate nodes. Then the
other follower nodes will not vote for the new candidate node
because the log entry on the candidate node is less up-to-date
than that on other follower nodes.

In addition, when the nodes in the cluster are faulty and
the log entry updates on the nodes are inconsistent due to the
faults, the Raft leader election algorithm will not hold liveness,
that is, the leader node cannot be elected over time. Through
analysis, we find that there must be such a node in the system,
it can maintain normal communication with more than half of
the nodes in the cluster, and the log entry on this node is the
most up-to-date.

In conclusion, to ensure the safety of the Raft leader election
algorithm, we make the following suggestions.

1) In case of network communication faults in the cluster,
there must be a node to maintain normal communica-
tion with all nodes in the cluster, to ensure the stable
operation of the system.

2) In order to ensure that the cluster can elect a leader,
there must be a node in the cluster with the most up-
to-date logs and normal connection with most nodes, to
ensure the normal operation of the system.

Unfortunately, in a distributed system, each node can only
observe information relevant to itself, that is, each node cannot
determine the network condition inside the other nodes. In
the blockchain system, because of the decentralized setting,
no one can know the health of all the nodes in the current
system. Therefore, when node faults affect the safety of the
Raft consensus algorithm, we can only hope that the nodes
can recover from the faults as early as possible.

VI. RELATED WORK

In this section, we review the works on model checking
the distributed consensus algorithms for safety, as well as the
safety and security research of the Raft consensus algorithm.

A. Model Checking the Distributed Consensus Algorithms for
Safety

In order to solve the problem that the large state space
makes model checking infeasible, Tsuchiya and Schiper re-
duced the verification problem to a small model checking
problem involving only a single stage of the algorithm execu-
tion, thus achieving consistency and termination verification
of the Last-voting algorithm [9]. Noguchi restricted the use of
model checking to a single round of the algorithm, solving the
problem of infinite state space by using a finite-state model
that is very close to the behavior of any single round. In case
studies, they verified the Mostefaoui-Raynal algorithm and
the Chandra-Toueg algorithm using this approach [10]. Based
on the above research, we simplify the Raft leader election
algorithm by simulating the whole process of the algorithm as
a voting process between nodes to avoid the problem of state
space explosion.
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B. Safety Research of the Raft Consensus Algorithm

In order to improve the understandability of Paxos, On-
garo and Ousterhout proposed Raft consensus algorithm and
analyzed the safety of the algorithm [4]. They also mechani-
cally proved Log Completeness Property with the TLA proof
system. However, this proof relies on invariants that have
not been mechanically checked. Woos et al. proposed the
first formal verification for state machine safety of the Raft
consensus algorithm [5]. However, they did not conduct a
detailed analysis of node fault types, nor did they study the
stability and liveness of the Raft leader election algorithm. Yu
et al. increased the leadership transfer function to the Raft
consensus algorithm to prevent cluster unavailability due to
leader shutdown or removal, and verified its correctness using
TLC Model Checker [11]. However, in terms of the Raft
consensus algorithm, they only analyzed that the re-election of
the leader may lead to cluster unavailability, but do not prove
it from a formal perspective.

C. Security Research of the Raft Consensus Algorithm

In addition, many researchers have modified the Raft con-
sensus algorithm to improve its safety and security. Hammer
et al. found that bursty DDoS attacks and intermittent overload
in network demands can trigger confusion when the Raft
consensus algorithm is implemented in SDN controllers [12].
Then they proposed BabbleResistantRaft, an algorithm that
can keep them safe, active, and stable in the face of these types
of attacks and network conditions. Zhou and Ying proposed an
improved Byzantine fault-tolerant algorithm based on the Raft
consensus algorithm, which can resist the threat of Byzantine
nodes by introducing the concept of node trust values [13].
Wang et al. proposed an improved Raft consensus algorithm
called “hhRaft” to cope with the high real-time and high adver-
sarial blockchain environment [14]. The algorithm optimizes
the Raft consensus process by introducing a new Monitor role
to improve Byzantine fault resistance. These studies improved
the mechanisms of the Raft consensus algorithm to improve its
ability to resist attacks. However, all these studies evaluated the
security of the Raft consensus algorithm from a quantitative
perspective, and did not prove it through formal methods,
resulting in a lack of credibility in the results.

VII. CONCLUSION

Throughout the modeling and verification process, we for-
mally verify the stability, liveness, and uniqueness of the
Raft leader election algorithm using Promela language in
the Spin tool. With the verification results, we find that the
Raft leader election algorithm does not hold stability and
liveness when some nodes are faulty and node log entries
are inconsistent. Through this study, we establish and firmly
believe that progress can be made using formal methods in
the distributed domain.

In real distributed system, node failure often occurs at any
time and suddenly. A node may be unable to send messages
due to a network anomaly after receiving messages from
other nodes. Or a node cannot receive the messages from

other nodes after sending the messages. In the future, we
can further optimize the model of the Raft leader election
algorithm so that the model can dynamically simulate node
faults. At the same time, because the Raft consensus algorithm
has many variants, including the Tangaroa algorithm [15] and
the ScalableBFT algorithm [16] that can tolerate Byzantine
nodes, we will further study these algorithm variants, and
make an overall modeling and verification of the whole Raft
consensus algorithm family, to enhance the confidence of the
algorithms in practical application.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[2] Q. Xia, W. Dou, K. Guo, G. Liang, C. Zuo, and F. Zhang, “Survey
on blockchain consensus protocol,” Journal of Software, vol. 32, no. 2,
pp. 277-299, 2021.

[3] L. Leslie, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, no. 2, pp. 133-169, 1998.

[4] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (Usenix ATC
14), pp. 305-319, USENIX, 2014.

[5] D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and
T. Anderson, “Planning for change in a formal verification of the
raft consensus protocol,” in Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs, pp. 154-165, ACM, 2016.

[6] O. Hasan and S. Tahar, “Formal verification methods,” in Encyclopedia
of Information Science and Technology, Third Edition, pp. 7162-7170,
IGI Global, 2015.

[71 W. Zhenzhen, “Survey of model checking,” Computer Science, vol. 40,
no. Z6, pp. 1-14, 2013.

[8] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” Communications of the ACM, vol. 5, no. 7, pp. 394—
397, 1962.

[9] T. Tsuchiya and A. Schiper, “Verification of consensus algorithms using

satisfiability solving,” Distributed Computing, vol. 23, no. 5, pp. 341-

358, 2011.

T. Noguchi, T. Tsuchiya, and T. Kikuno, “Safety verification of asyn-

chronous consensus algorithms with model checking,” in 2012 IEEE

18th Pacific Rim International Symposium on Dependable Computing,

pp. 80-88, IEEE, 2012.

G. Yu, L. Hua, L. Yuanping, L. Bowei, W. Xianrong, and R. Hongwei,

“Using tla+ to specify leader election of raft algorithm with considera-

tion of leadership transfer in multiple controllers,” in 2019 IEEE 19th

International Conference on Software Quality, Reliability and Security

Companion (QRS-C), pp. 219-226, IEEE, 2019.

R. Hanmer, S. Liu, L. Jagadeesan, and M. R. Rahman, “Death by

babble: Security and fault tolerance of distributed consensus in high-

availability softwarized networks,” in 2019 IEEE Conference on Network

Softwarization (NetSoft), pp. 266-270, IEEE, 2019.

S. Zhou and B. Ying, “Vg-raft: An improved byzantine fault tolerant

algorithm based on raft algorithm,” in 2021 IEEE 2Ist International

Conference on Communication Technology (ICCT), pp. 882-886, IEEE,

2021.

Y. Wang, S. Li, L. Xu, and L. Xu, “Improved raft consensus algorithm

in high real-time and highly adversarial environment,” in International

Conference on Web Information Systems and Applications, pp. 718-726,

Springer, 2021.

C. Copeland and H. Zhong, “Tangaroa: a byzantine fault tolerant raft.”

https://www.scs.stanford.edu/14auGces244b/labs/projects/copeland_zhong.

pdf, 2016.

W. Martino, “The first scalable, high performance private blockchain.”

http://kadena.io/docs/Kadena-ConsensusWhitePaper-Aug2016.pdf,

2016.

[10]

(11]

[12]

[13]

[14]

[15]

(16]

409



