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Abstract—Software quality models aggregate metrics to indi-
cate quality. Most metrics reflect counts derived from events
or attributes that cannot directly be associated with quality.
Worse, what constitutes a desirable value for a metric may vary
across contexts. We demonstrate an approach to transforming
arbitrary metrics into absolute quality scores by leveraging
metrics captured from similar contexts. In contrast to metrics,
scores represent freestanding quality properties that are also
comparable. We provide a web-based tool for obtaining contex-
tualized scores for metrics as obtained from one’s software. Our
results indicate that significant differences among various metrics
and contexts exist. The suggested approach works with arbitrary
contexts. Given sufficient contextual information, it allows for
answering the question of whether a metric value is good/bad or
common/extreme.

Keywords—Software quality; Metrics; Scores; Software Do-
mains;

I. INTRODUCTION

Metrics values are rarely of great utility to analysts and
decision-makers, often because there are no apparent connec-
tions between what can be measured and the defined quality
goals [1], [2]. Therefore, software quality models define an
aggregation scheme for the underlying metrics. Together with
other information, they can then be used to indicate quality [3].
This is required because most metrics do not indicate what an
absolute desirable value might be. Even acceptable values may
vary depending on the context. For example, in the context of
computer games, functions with long bodies (Method Lines
of Code; MLOC) might be acceptable, while they are less
so in the context of unit test cases. Analysts often find
themselves confronted with whether or not their metrics’ val-
ues are good/bad, acceptable/alarming, or common/extreme.
It turns out that defining an ideal value is difficult. Others
have attempted to derive ideal values, e.g., from experience
or surveys [4], benchmarks [5], or by just setting practical
values [6]. We suggest that learning from sufficiently many
metrics values observed in the relevant context(s) can be
exploited to answer the question of what an ideal value is. By
the same means, one can also gain a uniform understanding
of how far off the actual values are.

We suggest transforming metrics into scores, generalizing
and contextualizing [7]. A score always has a range of [0, 1]
and linear behavior, that is, a change of 0.1 always corresponds
to an improvement or deterioration of 0.1, whether it is from,
e.g., 0.1 to 0.2 or 0.8 to 0.9. This is not the case for metrics.
We present a way to define uniformly distributed scores,
considering that each metric value is not equally likely. For
example, achieving lower and lower values for complexity

metrics becomes exponentially more difficult. Moreover, we
define the scores in a context-dependent way, considering that
the same metric value is not equally likely in two different
domains. For example, it might be more difficult to achieve
lower values for complexity metrics in gaming than in testing.

For the empirical validation, we facilitate the “Qualitas.class
corpus” of software metrics [8], [9] and a web application
created for this work1. The corpus holds 23 types of pre-
computed metrics for a total of 111 systems which are
spread across eleven different domains. We study how metrics
values are distributed among all the various contexts. The
operationalization of a metric as a score lies in context-specific
gathering of usual values (or deviations from ideal values).
An appropriate context includes the most relevant or similar
systems, such as computer games, middleware, or databases.
Alternatively, it may also refer to, for example, earlier or
derivative versions of the same system. If no previous context
exists, a good starting point is perhaps to analyze open-source
software in the desired domain. In this work, we equate the
corpus’ different domains with different contexts. The gathered
values are used to approximate a probability distribution which
allows for assessing how rare or common a value is. The
cumulative distribution is then used to assign a score.

A. Notions

Metric. A measurement based on a well-defined standard,
method, or calculation is called a metric. Metrics are often de-
rived from counting certain software properties or occurrences
of events [10]. For instance, afferent and efferent couplings
(CA, CE) are the numbers of classes in other packages that
depend upon classes within a package and that the classes in a
package depend upon, respectively. Metrics can also be ratios.
For instance, instability (RMI) is defined as CE ÷ (CE + CA).
In this work, we use metrics, their names, and abbreviations
as defined in [8] and [11].

Metrics can be described as random variables M, i.e.,
as a numerical description of the measurement outcome as
a statistical experiment. The probability distribution for a
metric describes how the probabilities are distributed over its
values. For counting metrics (discrete random variables), the
probability distribution is defined by a probability function,
mapping each metric value x to a probability. For real-valued
metrics (continuous random variables), ratios are conveniently
modeled as such. The probability distribution is defined by a
probability density function. Its integral over any interval of

1Metrics As Scores, a web application. https://metrics-as-scores.ml/.
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metric values provides the probability that the variable will
take on a value within that interval. We denote the probability
(density) function of M by fM and drop the subscript if the
metric is evident or does not matter.

Distance. Assume there exists an ideal value i for M. Then
for each metric value x ∈ M, a function Di(x)= |x− i |
denotes the distance of x from the ideal i. Distances too
can be described as random variables D, i.e., as a numerical
description of the outcome of measurement and distance
calculation as a statistical experiment. For example, McCabe’s
Cyclomatic Complexity (VG; [12]) has the lowest-possible and
most-desirable value of i=1. The domain of the correspond-
ing random variable DVG

1 = {R+ ∪ 0}, i.e., the distances for
VG assume only values ≥ 0. Other distance functions D are
possible, as well. However, in this paper, distances are used
to order values of a random variable from good (small) to bad
(large).

Score. Given an ordered random variable X , e.g., a met-
ric M, or a distance D, its cumulative distribution func-
tion (CDF) is FX :R→ [0, 1], with FX (x)=

∫ x

−∞ fX (x) dx.
The associated score function (sometimes also called “sur-
vival function”) is the complementary CDF (CCDF), that
is, SX (x)= 1−FX (x). Scores are therefore high for good
values, e.g., low distances to the ideal, and low for bad values,
e.g., high distances to the ideal.

B. Organization of the Paper

The remainder of this paper is structured as follows. In
Section II, we give some background information on the
problem, which should clarify our motivation for this work to
the reader. The research design, i.e., the methodology used to
conduct the studies, is then presented in Section III. Section IV
is dedicated to the application “Metrics As Scores”, which
accompanies this paper. Results and discussions are found in
Sections V and VI, respectively. Some threats to the validity
of our study are examined in Section VII. The most relevant
and related work is summarized and briefly discussed in
Section VIII, before the paper is concluded with prospects
for potential and already ongoing future work in Section IX.

II. BACKGROUND

Most metrics are not directly useful for quality assessment
since they individually only have a weak relation to the quality,
i.e., they cannot be linked to quality properties directly [13],
[2]. Therefore, some quality-related applications resort to
using metrics as, e.g., fault indicators [14], [15] or as indicators
for reliability and complexity [11]. This is partly because com-
paring and aggregating metrics in a mathematically sound way
is difficult due to their different scales and distributions [16].

We argue that the limited use of metrics is also caused
by the issue of what constitutes a good or a bad metric
value. To mitigate this issue, the aforementioned quality-
related applications often require fitting some regression or
classification model. Others attempt to answer this question
by setting thresholds. While some have an empirical approach,

e.g., [17], [5], others search for practical values. For example,
Hewlett Packard used to enforce a maximum value of 16 for
complexity (VG), a value beyond which any modules needed
to be re-designed [6].

However, none of these approaches paid great attention
to the statistical differences of metrics in different software
domains, especially their context-dependent distributions and
ideal values, which is the main motivation of our work.

The originality of our work lies in suggesting non-
parametric ways to derive domain-specific ideal values (if none
is explicitly available) and transforming metrics into uniform
scores that can be used for mathematically sound aggregation.
Scores, unlike metrics, can easily be compared and aggregated.

Consider the metrics LCOM [11], assessing (lack of)
method cohesion, and SIX [8] (specialization index), assessing
the ratio of added, overridden, and inherited methods. For both,
lower values are better and the lowest possible value is 0. Let’s
assume that both metrics are equally important (weighted)
for our notion of quality. A change of − 0.3 in either of
the two metrics from one software version to another can
be interpreted qualitatively as an improvement. However, as
their scales and distributions may differ, as we will show even
for different domains, we cannot compare this improvement,
let away suggest the development team focus on cohesion or
inheritance hierarchy refactoring.

We can, however, compare a change of +0.3 in either score
because a unit change is considered equally good between
these two and across all other scores. This also implies that not
only can we answer the question “is my metric value good?”,
but also whether the software as a whole with all its scores is
good. Furthermore, if we can compare scores, we can compare
(same) aggregations thereof, meaning we can compare the total
scores of two software applications. All of this allows for
guiding software development toward some goal. If we had
for every metric a corresponding score, the score can become
a fitness function and be used to guide a search for optimal or
near-optimal individuals in a search space of possible solutions
much more directly [18].

A. Research Questions

Our work is supported by extensive empirical validation
using the Qualitas.class corpus [8]. We pose four research
questions to address the significance of using scores instead
of metrics and the differences among metrics and domains in
the corpus.

Research Question 1. Are any of the metrics in the
Qualitas.class corpus distributed uniformly?
Research Question 2. Are there significant statistical
differences for each metric across all domains?
Research Question 3. Is each domain in its entirety (i.e.,
considering all metrics) distinguishable from the other
domains?
Research Question 4. What are good/bad or com-
mon/extreme scores for each domain of the Qualitas.class
corpus?
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III. RESEARCH DESIGN

The methodology used in this paper was designed to study
the potential differences across the various contexts of a
dataset. In this work, the data are metrics, and the context
is given by the various domains of the software systems of
the Qualitas.class corpus. For details about the corpus itself,
such as the metrics or domains, please refer to [8], [9], [11],
[19], [12]. Mind that we use the metrics’ abbreviations as used
in [8]. The research design applies to other kinds of data, too,
as the primary goal is to explore and understand the statisti-
cally significant differences in the data across contexts. This
is based on the hypothesis that the same data (here metrics)
value might be average or extreme in different contexts (here,
software domains).

A. Calculating a Distance

Recall that the mapping that produces a distance does not
need to be constant (see Section I-A). Let Di : X → R be
the distance from an ideal value i ∈ X . We recommend Di to
meet the requirements of a statistical distance. These are:

• Non-negativity: Any distance is greater than or equal to
zero, that is, Di(x)≥ 0 ∀x ∈ X . Especially, for the ideal
value i, Di(i)= 0.

• Identity of indiscernibles: The distance for two values
x1, x2 from an ideal value i is identical if x1 =x2, that
is, Di(x1)=Di(x2).

• Symmetry (commutativity): Di(x)=Dx(i) (the distance
between origin and destination is the same when inter-
changed).

• Triangle inequality: The sum of intermediate dis-
tances is greater than or equal to the largest distance:
Di(x2)≤Di(x1)+Dx1

(x2).
The previously suggested transformation using the absolute
value, that is, Di(x) = |x− i |, fulfills the above requirements.
Again, other distance definitions fulfilling them are eligible,
too.

B. Metrics With and Without Ideal Values

Most software-related metrics do not define what might be
an (un-)desirable value. That means (a distribution derived
from) observed values cannot be transformed into (a distri-
bution of) distances, as no suitable ideal exists. Relating to
the Qualitas.class corpus, we argue that such an ideal value
can be derived (learned, approximated) from the metrics values
for a domain. Given a distribution of observed domain values
of some metric, we identify and provide a rationale for the
following transformations leading to an approximation of an
ideal.

1) Infimum and Supremum: Assuming the sample infimum,
which is the lowest observed value, as ideal, i.e., i= inf X ,
then Di(X ) does not reorder the random variable values but
only translates its domain such that it starts with 0. This
transform is still useful when an absolute ideal value is not
available. Still, artifacts with lower metric values are of greater

utility. Using the infimum attaches the notion of lower is better
to a metric.

Likewise, using the sample supremum, which is the largest
observed value, as ideal, i.e., i= supX , has the same effect
of translating the variable’s domain. In addition, the order of
distances is reversed, which is equal to the notion of higher
is better for metrics’ values.

2) The Median: The median is defined as the value that
splits a probability distribution into a lower and higher half.
Equally many values are to be found in either half. Using
the (sample) median as an ideal value is useful in contexts
where we want to check outlier metric values. Then the notion
attached by the median is how far the metric lies in the
direction of either extreme. Picking the median as the ideal
value is reasonable when high scores reflect proximity to
a value that is not considered extreme in either half and,
therefore, fits in with previously observed values.

3) The Expectation: The expectation E [X ] of a Ran-
dom Variable X with probability density function fX
is the weighted average of X , with fX (x) serving
as the weight of each realization x∈X . For dis-
crete X , E [X ] =

∑n
i=1 xi fX (xi). For continuous X ,

E [X ] =
∫∞
−∞ x fX (x) dx. E [X ] can be approximated for

samples of X . Similar to the median, using the expectation
as the ideal value is a good choice when metrics values close
to the expectation are considered favorable.

4) The Mode: The mode of a random variable is the most
frequently occurring value, i.e., the value with the highest
probability (density). For a probability density fX , the mode
x̂ is defined as x̂= argmaxx∈X fX (x). Therefore, the mode
of a probability distribution is a reasonable choice for an
ideal value for transforming a metric into a distance. It yields
low distances for metric values close to the most-frequently
occurring value.

All of the above transformations have in common that they
are non-parametric, i.e., the ideal value can be derived using
descriptive statistics of (samples of) the distributions, regard-
less of the true distribution of the data. The interested reader
is directed at introductory texts, such as [20]. It is certainly
possible to use any other arbitrary user-preferred ideal value
as long as it is supported by sufficient rationale. While a user-
preferred ideal value may not express the best practice for a
metric in software engineering, it might still represent a useful
value in the user’s context that helps to avoid producing an
abnormal method, class, or package [17].

However, it is important to note that the shown trans-
formations are sensitive to the context since they operate
on the distributions of values that might differ for different
contexts. Practically, they are also sensitive to the number of
observations (sample sizes) for each context as they depend
on empirical distributions.

Example. Let us assume a quality model based on metrics
that do not have an absolute ideal value. Suppose we want
to add a component to an existing software system. Without
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having an explicit notion of ideal quality, a desirable property
of the to-be-added component is that it should fit into the
existing system (which we assume has reasonable quality).
For example, we would expect the new component to have
methods with a certain coupling and complexity so that it can
interact properly with the existing components. Suppose the
corresponding metrics are significantly different from those
of the existing components. In that case, we have likely
introduced a component with lower quality, e.g., low main-
tainability (because the new component is too coupled and too
complex). In other words, using the suggested transformations,
such as median, expectation, or mode, allows us to find a
typical value that best represents the existing code. Using the
value of this statistic to transform observed new metric values
into distances allows us to create a score for each metric
interpretable as a quality that is valid for the property captured
by that metric (coupling, size, complexity). Furthermore, the
scores can be aggregated to an overall quality value that
indicates how far off the new component is from the existing
system. This approach continues to work for metrics that have
an actual ideal value. For example, while the ideal value for
VG [8] is 1, for an average meaningful software component,
this value is hardly achievable. Instead, we might assume a
more realistic value of 3.12 and score the distances from
that (this value is the expectation for VG in the Qualitas.class
corpus for the domain “Games”).

C. Why Using Scores?

The most significant difference between a metric and its
score is that the latter is by definition uniformly distributed.
Scores are required for aggregation whenever a metric or the
distance from ideal are not uniformly distributed. While we
have a strong assumption that the metrics in the Qualitas.class
corpus are not uniformly distributed, we will find empirical
evidence for this to be true (otherwise a simple normaliza-
tion would be sufficient). For that, we suggest performing a
statistical test for uniformity. In particular, we will conduct a
one-sample Kolmogorov–Smirnov Test (KS), where we check
each metric from each domain against a possible uniform
distribution.

D. Differences Between Metric Distributions in Contexts

When operationalizing a metric as a score in a certain
context, the question of whether the context matters needs to
be answered. The answer can be given from two perspectives:
Are the contexts distinguishable from each other and/or are
the metrics different conditional on the context? For the
Qualitas.class corpus where the domain gives the context that
each software system is associated with, we need to estimate
whether statistically significant differences exist. We suggest
a test suite containing three tests in particular.

1) Analysis Of Variance (ANOVA): This test analyzes the
differences among means [21]. The procedure is to check,
for each metric, if its mean is significantly different in each
context. The null hypothesis of this test is that there are no

significant differences. This test yields a p-value and an F-
statistic. The latter is the mean square of each independent
variable divided by the mean square of the residuals. Large F-
statistics indicate that the variation among contexts is likely.
The p-value then indicates how likely it is for the F-statistic
to have occurred, given the null hypothesis is true.

2) Two-sample Kolmogorov–Smirnov Test (KS2): This test
is non-parametric and tests whether two samples stem from
the same probability distribution [22]. KS2 does not check
for a certain type of probability distribution since it uses the
samples’ empirical CDFs. Its test statistic is the maximum
vertical distance between the two CDFs. For two samples x, y,
the statistic is calculated as Dx,y = supt |FX (t)−FY(t) |.
The null hypothesis is that the samples’ CDFs are identical,
that is, FX =FY . This test is used to compare one metric
between two contexts.

A potential alternative to KS2 is Welch’s t-test which is
used to test whether two samples have equal means [23]. As
a variant of Student’s t-test, it should be preferred over it,
since it tolerates unequal variances and sample sizes (which
is almost always the case with our data). It should be noted
that both tests assume that the samples’ means are normally
distributed. For a large number of sample means, this follows
from the central limit theorem. However, since we only have
comparatively few samples, it cannot be guaranteed that the
assumption holds. Therefore, we only use the KS2 test in this
work.

3) Tukey’s Honest Significance Test (TukeyHSD): This test
is used to gain insights into the results of an ANOVA test.
While the former only allows obtaining the amount of corrobo-
ration for the null hypothesis, TukeyHSD performs all pairwise
comparisons [24]. For example, by choosing a specific metric
and domain in the Qualitas.class corpus, we obtain a list of
other domains that are significantly statistically different. The
null hypothesis of this test is the same as for the ANOVA test.

IV. APPLICATION: METRICS AS SCORES

This work is accompanied by an interactive open-source
application called Metrics As Scores (MAS). It is partially
shown in Figure 1. Currently, it loads the Qualitas.class
corpus by default. The goal is for the application to support
additional datasets in the future. Its purpose is to enable the
user to inspect, in great detail, the corpus’ metrics’ conditional
distributions, and to check what score, cumulative probability,
or relative likelihood a metric’s value corresponds to. For that,
it currently supports various types of PDFs, CDFs, and CCDFs
(which are used to determine scores). It is also interesting
to visually inspect the distributions and to find, for instance,
where large accumulations of certain values for some metric
are. A total of five transforms are available for each metric
in each domain. These are E[X] (expectation), median (50th
percentile), mode (most likely value), infimum, and supremum
(minimum and maximum observed value). These transforms
cover the most common ideal values derived from descriptive
non-parametric statistics. It is not yet possible to choose
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Figure 1. Main plot area of the application “Metrics As Scores”. Using the Qualitas.class corpus, metrics values of own applications can be scored against
the corpus’ domains. Shown are the CCDFs (scores) of the fitted parametric distributions for the metric TLOC transformed using the infimum (per domain).
Available online: https://metrics-as-scores.ml/.

your ideal value because all of the distributions were pre-
computed and are held in memory to guarantee a tractable
user experience.

The application’s main interactive element is the plot of
distributions. It allows the user to zoom, pan, enable/disable
domains, and manually hover the graphs to obtain precise x/y-
values. While not shown here, the application also features
an interactive table and additional controls. Per domain, the
table shows the used transformation value (if used), the user’s
entered metric’s distance from the ideal value (if a transform
was applied), the score, cumulative probability, or relative
likelihood of the user’s (transformed) value, and the name and
KS test’s D-statistic of the parametric distribution that fitted
the data best (if the type of selected distribution is parametric).
There are three drop-down controls for selecting the metric
type, distribution, and transformation. An additional button
makes sure the shown plot occupies all available space. An
input field for the user to check if their metric value exists.
An additional checkbox automatically transforms that value
into a distance using the current domain’s transformation (if
any). Lastly, the application contains an extensive help section
and visual aids for displaying user values and the cutting-off
of smoothed distributions beyond actual observed values. The
application is written in Python and made available on GitHub.

A. Estimating Probability Density

While the data in the Qualitas.class corpus is extensive,
many metrics’ values are repetitive or exhibit low variance.
This is often due to the nature of the metrics since they
are merely counts of, e.g., attributes or events and, therefore,
discrete. Numerically, we can treat any metric as a continuous
random variable, even if it is discrete. Continuous probability

distributions will naturally increase the entropy of discrete
metrics with only a few unique values. Also, it allows us
to observe the likelihood of values between two discrete
values. Therefore, we offer more than one kind of probability
distribution.

1) Empirical: Obtaining the empirical CDF (ECDF) is
straightforward and accurately represents the observed data.
For obtaining exact scores, the ECDF should always be
preferred. However, it may exhibit large jumps. The PDF
of any finite random sample is a discrete probability mass
function (PMF) that assigns a fractional probability to each
value, depending on how often it appears. For variables with
many unique samples, this is not feasible. One remedy for this
situation is the usage of histograms and binning. Histograms,
however, are misleading2 and have many shortcomings, such
as a strong dependence on the number of bins (resolution),
binning of otherwise relevant values, strong dependence on the
variable’s infimum and supremum, and the resulting difficulty
of comparing distributions. Because of these, the application
does not offer PMFs for discrete metrics.

2) Kernel Density Estimation (KDE): In density estima-
tion, a smooth kernel is fit to the empirical data. The most
common kernel used is the Gaussian kernel. KDE is a non-
parametric method to estimate a continuous PDF and works
with discrete and continuous data. Using KDE over histograms
is highly recommended, as it adequately eliminates most of
its shortcomings. Since we are more interested in cumulative
distributions for the application, we obtain a CDF by inverse
sampling from a KDE-fitted PDF and then obtain the ECDF

2See, for example, https://aakinshin.net/posts/misleading-histograms/.
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of that sample. That is, given the estimated PDF fKDE, the
CDF is defined as FKDE(x)=

∫ x

−∞ fKDE(x) dx. Typically,
we take a sample x̂ from F−1

KDE that is much larger than the
sample x that was used for estimating the PDF using KDE to
ensure smoothness of the resulting ECDF, i.e., x̂≫x.

3) Parametric: Fitting a parametric probability distribution
combines most of the advantages of the other approaches.
Finding the parameters, such as scale or location, allows us to
use a closed-form expression for both PDF/PMF and CDF.
However, most metrics in the Qualitas.class corpus follow
extreme value distributions and/or are heavily skewed, such
that no such distribution can be fit using a common p-
value threshold. The goodness-of-fit was determined using a
Kolmogorov–Smirnov test [22]. If more than one distribution
was eligible, the one with the lowest D-statistic was used. The
few metrics for which a parametric probability distribution
could be found are included.

V. RESULTS

In this section, we demonstrate results that relate to the
posed research questions. Each subsection corresponds to one
of the research questions. For a qualitative discussion of these
results, refer to the next Section (VI).

A. Uniformity Tests For Metrics

For the first research question, we attempt to find out
whether or not the metrics of the Qualitas.class corpus are
uniformly distributed. We perform the one-sample KS test for
each of the 23 metrics in each of the 12 domains (including
a virtual domain that merges all metrics’ values). In total, we
perform 23× 12=276 tests. Figure 2 shows some metrics’
complementary cumulative distribution (CCDF) in a certain
domain, together with what would have been the correspond-
ing CCDF of a uniform distribution. This allows us to expose
the (non-)uniformity. In 273 cases, the uniformity test reports
no statistically significant corroboration for an actual uniform
distribution. The three remaining cases are almost certainly
outliers. The estimate is based on a mere three data points
in the sample in two cases. In the third case, only thirteen
data points result in a p-value of ≈ 0.0505. Therefore, the test
suggests the sample is uniform. The D-statistic in all cases is
greater than 1

3 , which suggests poor goodness of fit.

B. Significant Differences Among Metrics Across Domains

For the second research question, we apply two statistical
tests in particular. For each of the 23 metrics, an ANOVA
test is performed. It indicates whether the metrics’ means
vary significantly across domains. To better understand these
differences, we also conduct the KS2 test. For each metric,
we take all its recorded values from one domain and compare
them to all of its values from another domain. We add a
virtual domain for both tests in which we merge the values
of all domains and effectively disregard the domain attribute.
The ANOVA test also indicates whether metrics’ values are
different in a specific domain when compared to all recorded
values. The KS2 test requires pairwise comparisons. We

TABLE I
RESULTS OF THE ANOVA TESTS AS CONDUCTED PER METRIC.

Metric p-value F-statistic
CA 5.68e−15 8.4089
CE 8.46e−33 16.4429
DIT 0 418.9608
LCOM 3.249e−137 61.2257
MLOC 0 146.4968
NBD 0 1146.7435
NOC 4.36e−49 23.6001
NOF 4.74e−49 23.5012
NOI 3.56e−50 24.0754
NOM 1.226e−160 71.1691
NOP 9.75e−10 6.0359
NORM 3.611e−154 68.4245
NSC 8.36e−9 5.4768
NSF 9.58e−30 15.0548
NSM 2.91e−26 13.5088
PAR 0 1171.1105
RMA 1.65e−65 30.7523
RMD 2.57e−35 17.5561
RMI 8.35e−77 35.6537
SIX 8.57e−91 41.4512
TLOC 1.14e−8 5.4974
VG 0 340.9044
WMC 5.284e−109 49.2226

compare each metric and domain to this metric in all other
domains. Since we have eleven domains plus one virtual
domain (n=12), the number of pairwise comparisons per
metric is calculated as n× (n− 1)÷ 2=66. In other words,
each metric can significantly stick out anywhere between zero
and 66 times.

1) Results ANOVA: The results of the ANOVA tests are
shown in Table I. It appears that in not a single case, we find
sufficient corroboration in the form of a p-value ≥ 0.05; most
p-values are almost zero. As expected, those which are zero
exhibit large values for the F-statistic. So, we cannot accept
the null hypothesis that metrics have equal means across all
domains. Since we included the virtual domain that contains
all metrics’ values across all domains, this result also means
that the domain from which metrics values are gathered is
important.

2) Results KS2: The results of the KS2 tests are illustrated
in Figure 3. For each metric, it shows the number of times the
metric was not distributed statistically significantly different
in other domains. Seven metrics (DIT, MLOC, NBD, NOF,
NOM, VG, and WMC) have a count of zero. Those metrics are
therefore always different, across all 66 pairwise comparisons.
The average of how often a metric was similar is ≈ 9.43
times. The metrics PAR, SIX, NSF, NORM, LCOM, RMD,
CA, and RMI are rarely similar with a frequency in the range
[1, 11]. The metrics NSC, NSM, RMA, NOC, CE, and NOI are
moderately often similar with a frequency between [14, 21].
The metrics NOP (29) and TLOC (34) on the other hand are
frequently similar.
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Figure 2. Four randomly chosen ECCDFs from the Qualitas.class corpus (276 possibilities). The lighter gray line indicates what would have been the analog
uniform CCDF, were the corresponding metric distributed uniformly. Mind the different scales on the x-axis.
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Figure 3. The frequency with which metrics were considered to come from the same distribution out of 66 pairwise comparisons across domains using the
KS2 test. The metrics DIT, MLOC, NBD, NOF, NOM, VG, and WMC are always considered significantly statistically different across domains.

C. Discrimination Of Domains

For the third question, we analyze how much the different
domains distinguish themselves from each other. We apply
the TukeyHSD test and perform pairwise comparisons, i.e., we
compare each domain to each other domain. We then count the
number of metrics that are statistically significantly different.
Since we include the virtual domain that merges all values,
we end up with twelve domains. Therefore, we can maximally
obtain 23× 11=253 different metrics for a single domain.

1) Results TukeyHSD: On average, a total of 136.5
(53.95%) metrics were different across all domains (with a
range of [115, 198]). The domain with the combined least
differences was “Testing,” and the domain with the most
differences was “Programming Language” (Figure 4). These
results are highly aggregated, so we also provide a more
detailed view of the differences in Table II. In it, for each
domain, we show the corresponding other domain(s) that has
(have) the least and most metric differences (out of possible
23). In other words, this table shows, for each domain, the

most similar and most dissimilar other domain(s). The range
of values is [5, 21]. For example, the domains “Databases”
and “Diagrams; Visualizations” are least distinguishable from
the domain “Testing”, while they are quite distinct from the
domain “Programming Language”. We observe that in eight
out of eleven cases, “Programming Language” is the most
dissimilar domain from any other domain in comparison.

D. Good/Bad Or Common/Extreme Values

For the last question, we extract some interesting values
from the Qualitas.class corpus after transforming the metrics
to scores. All eleven (+1 common) domains and all 23 metrics
would break the mold of this paper. Therefore, we decide to
show quantiles of scores of the metrics VG, TLOC, NOP, and
CA. Only the metric VG has a minimum possible value of =1,
which is also the most desirable value. The three other metrics
require a user-preferred ideal value for transformation into a
score. Instead of picking these, we derive them from each
domain using non-parametric statistics. We use the expectation
(E[X]), median, and mode. The scores then reflect the distance
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TABLE II
THE MOST SIMILAR AND DISSIMILAR DOMAIN FOR EACH DOMAIN IN TERMS OF HOW MANY METRICS WERE FOUND TO BE DIFFERENT IN THE MUTUAL

OTHER DOMAIN (OUT OF POSSIBLE 23). VALUES BELOW THE 25TH- OR ABOVE THE 75TH PERCENTILE ARE IN BOLD SCRIPT.

Domain Lowest Lowest Other Domains Highest Highest Other Domains
[All combined] 9 3D; Graphics; Media 19 Progr. Language
3D; Graphics; Media 7 Tool 17 Progr. Language
Databases 6 Testing 20 Progr. Language
Diagrams; Visualiz. 5 Testing 19 Progr. Language
Games 9 3D; Graphics; Media 14 SDK
IDE 10 SDK 18 Middleware
Middleware 8 Testing 21 Progr. Language
Parsers; Generators 9 Databases 16 Progr. Language
Progr. Language 12 Games 21 Middleware
SDK 9 Diagrams; Visualiz. 18 Progr. Language
Testing 5 Diagrams; Visualiz. 20 Progr. Language
Tool 7 3D; Graphics; Media 18 Middleware
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Figure 4. Number of metrics that are different per domain, by comparing
each domain to all other domains. The maximum number of differences is
253.

from these statistically chosen ideal values. While this could
be interpreted as a quality, it can give at least a notion of what
is a common or extreme value for a certain metric and domain.

The quantiles in Table III and Table IV were chosen de-
liberately to examine the scores’ behavior for extreme metrics
values. Since scores have a standard uniform distribution, their
quantiles are linearly anti-proportional. For metrics, however,

going from one percentile to the next (e.g., from 10% to
20%) will not result in the same change as going from 20%
to 30%. The results for the first research question showed
that practically none of the corpus’ metrics has a uniform
distribution. Therefore, we cannot rely on a linear behavior
for going from one percentile to the next. For example, we
often observe large jumps in metrics values between a score of
0.95/0.99 and 1. Therefore, the results in both tables show the
non-linear behavior of metrics’ values (which is a direct result
of their underlying non-uniform distributions). For instance,
the expectation for TLOC is ≈ 2.5e4 and to achieve a score of
1, a distance of 35 (or fewer) lines of code is required in the
virtual domain that combines all metrics’ values. However,
to achieve a score of 0.99, a distance of less than or equal
to ≈ 1, 630 is required. This means that the tolerance for
distances is quite large for TLOC, which makes sense since
we observe values in the hundreds of thousands. Another
example is that of VG and the difference among domains “3D;
Graphics; Media” and “Tool”. Lower complexities are much
more normal in the former domain. We can achieve a score of
0.5 by reaching a complexity of less than or equal to ≈ 1.667.
In the latter domain, however, a score of 0.5 corresponds to a
complexity of no more than ≈ 2.707 (+1.04 in complexity).

VI. DISCUSSION

The goal of this work was to gather empirical evidence for
the fact that software metrics should better be operationalized,
i.e., normalized and contextualized in a certain domain, to
answer the question “is my metric value good?”. For that, we
first suggest observing sufficiently many values of a metric
and then transforming it into a score. The normalizing trans-
formation, however, needs to be justified. This justification
was given by the results of the first research question. We
find that all but three metrics are not uniformly distributed
and therefore warrant said transformation. The three metrics
that follow a uniform distribution are all justifiably outliers.
Also, the transformation to a score does not hurt, even if the
metric already follows a uniform distribution. In that case,
the rectification goes without effect. Recall that we cannot
compare any two metrics if their distributions are not exactly
the same. Even if two metrics’ distributions are the same, they
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TABLE III
THE REQUIRED MAXIMUM DISTANCE FROM THE IDEAL VALUE TO ACHIEVE A SCORE LESS THAN OR EQUAL TO x FOR THE METRICS VG AND TLOC.

WHILE THE FORMER HAS AN IMPLICIT IDEAL VALUE, THE LATTER IS TRANSFORMED USING THE DOMAIN’S EXPECTATION.

VG (transformed using implicit constant ideal value=1) TLOC (transformed using explicit ideal value=E[X])
Domain / Score 0 0.1 0.25 0.5 0.75 0.875 0.95 1 0 0.1 0.25 0.5 0.75 0.875 0.99 1 E[X]

[All combined] 1159 5.726 3.037 1.474 0.638 0.303 0.118 0 2.46e6 3.04e4 3.04e4 2.2e4 1.74e4 1.2e4 1630 35 2.456e4

3D; Graphics; Media 191 5.972 2.346 0.667 0.187 0.083 0.031 0 1.47e5 7.32e4 4.3e4 3.56e4 2.44e4 1.62e4 8438 7678 3.756e4

Databases 338 4.740 1.858 0.759 0.335 0.160 0.062 0 5.45e5 3.29e5 1.1e5 1.07e5 1.02e5 8.36e4 1.37e4 1.27e4 1.082e5

Diagrams; Visualiz. 284 4.282 1.793 0.691 0.313 0.151 0.059 0 1.66e5 1.1e5 7.19e4 4.77e4 2.9e4 1.92e4 8425 7310 6.747e4

Games 366 8.050 3.169 1.267 0.562 0.269 0.105 0 1.49e5 1.35e5 1.2e5 9.89e4 6.57e4 3.73e4 1.75e4 1.59e4 1.223e5

IDE 877 6.125 3.216 1.606 0.693 0.328 0.128 0 2.33e6 3.06e4 1.84e4 1.49e4 1.15e4 8361 1390 148 1.781e4

Middleware 390 4.226 1.765 0.785 0.337 0.159 0.062 0 3.13e5 5.83e4 3.43e4 2.78e4 1.74e4 9054 2059 1183 3.305e4

Parsers; Generators 280 5.647 2.222 0.937 0.419 0.201 0.079 0 1.57e5 9.84e4 2.87e4 2.72e4 2.45e4 1.88e4 1260 751 2.764e4

Progr. Language 280 6.110 3.051 1.529 0.660 0.313 0.122 0 7.24e5 6.53e5 2.54e5 2.01e5 1.48e5 1.07e5 1.15e4 5250 2.387e5

SDK 618 4.349 2.543 0.996 0.433 0.206 0.080 0 2.04e5 1.41e4 1.01e4 8113 5556 3524 747 236 1.04e4

Testing 338 4.496 1.883 0.772 0.354 0.172 0.068 0 8.2e4 6.63e4 3.48e4 2.88e4 2.21e4 1.5e4 1734 130 3.279e4

Tool 822 5.716 3.110 1.707 0.683 0.325 0.126 0 3.61e5 8.27e4 6e4 4.9e4 3.54e4 2.25e4 4925 3348 5.927e4

TABLE IV
THE REQUIRED MAXIMUM DISTANCE FROM THE MEDIAN (NOP) / MODE (CA) TO ACHIEVE A SCORE LESS THAN OR EQUAL TO x FOR THE METRICS

NOP AND CA, WHICH BOTH HAVE NO IMPLICIT IDEAL VALUE. TRANSFORMATION IS APPLIED USING EACH DOMAIN’S MEDIAN/MODE.

NOP (transformed using explicit ideal value from Median) CA (transformed using explicit ideal value from Mode)
Domain / Score 0 0.1 0.25 0.5 0.75 0.875 0.99 1 50% 0 0.1 0.25 0.5 0.75 0.875 0.95 1 mode

[All combined] 1416 27 9.72 7.26 4.77 3.08 0.70 0.38 9.38 6519 57 21 11 5.31 2.73 1.29 0.36 3.64
3D; Graphics; Media 67 49 19 15 9.30 5.04 1.01 0.57 18 308 56 13 4.85 2.79 1.70 0.85 0.05 4.05
Databases 812 407 90 53 44 38 27 26 53 1271 43 8.90 4.02 2.40 1.55 0.90 0.37 3.37
Diagrams; Visualiz. 376 80 52 32 18 12 5.28 4.68 50 994 38 7.68 3.64 2.27 1.49 0.90 0.39 3.39
Games 10 9.15 7.85 5.96 3.86 2.69 1.59 1.49 42 1264 51 17 11 7.45 5.14 2.78 0.13 11
IDE 492 8.14 5.92 3.55 2.02 1.17 0.18 0.08 4.92 3911 53 29 12 6.21 3.24 1.49 0.33 6.33
Middleware 603 95 29 20 11 6.29 1.36 0.82 27 841 27 6.31 2.52 1.46 0.97 0.67 0.47 1.53
Parsers; Generators 133 76 10 9.28 8.45 6.15 2.56 2.33 10 621 36 6.00 2.93 1.74 1.16 0.75 0.38 2.38
Progr. Language 364 348 73 63 50 37 26 25 70 2023 93 20 9.85 5.95 3.70 1.85 0.07 10
SDK 195 16 6.22 4.55 2.95 1.91 0.33 0.07 6.93 1199 60 9.52 5.35 3.12 2.07 1.22 0.42 4.42
Testing 146 117 37 27 17 9.63 2.25 1.42 35 353 33 6.94 2.60 1.56 1.02 0.60 0.24 2.24
Tool 362 87 36 24 13 6.94 0.94 0.34 31 1692 44 10 4.87 2.88 1.89 1.13 0.48 4.52

need to be uniform, as otherwise, we run into the next problem
of non-linear scaling, hence the statistical tests conducted
for research question one for a) same distribution and b)
uniformity. The most important facet is perhaps comparability,
not only across different metrics but also for the same metric
across contexts. We find that without the transformation into
scores, none of the original metrics possesses the trait of
comparability.

The contextualizing transformation, too, needs to be justi-
fied. The results of the second research question show that
every single metric is different in all of the domains found
in the Qualitas.class corpus. The most interesting result is
the one obtained using the KS2 test. We find that the seven
metrics DIT, MLOC, NBD, NOF, NOM, VG, and WMC are
never similar in pairwise domain comparisons. This implies
that in software quality models, these metrics must be used
with great caution and attention to the context they were
obtained from. To a certain degree, this is also true for
all of the remaining 16 metrics. This is because none of
them was similar across all pairwise domain comparisons.
When operationalizing a metric, the analyst wants to know
whether or not its context matters. For example, even if we
observe differences across contexts, they might still not matter.
However, these differences are significant in the case of the
Qualitas.class corpus.

In research question three, we examine the same problem
from the perspective of each domain. We compare each
domain to all other domains and aggregate the results. On

average, each context is different by 53.95% (with a range
of [45.45%, 78.26%]). This means that there are no subtle
differences. The result of that analysis is that domains are
not interchangeable. For example, having observed metrics
in the domain “IDE” will yield misleading or even invalid
results when operationalizing those metrics as scores and
using these for software from the domain “Middleware”. The
domain “Programming Language” is significantly different
from all other domains and often distinguishes itself from
others. Table II shows the most (dis-)similar domain for
each other domain. However, the amount of different metrics
between any two domains is not lower than five (21.74%
difference). Still, it goes as high as 21 (91.3% difference).
Even the lowest numbers of differences will likely produce
invalid scores, especially if the few metrics that are different
are in the set of those seven that the KS2 test from research
question two always found to have statistically significantly
different distributions.

The point of research question four was to substantiate and
demonstrate some of the differences caused by the significant
differences among metrics and domains. We have previously
claimed that, given sufficient contextual information, the ques-
tion of whether a metric value is good/bad or common/extreme
can be answered. The results obtained for the last research
question make ample use of the metrics as captured across
various contexts in the Qualitas.class corpus. We present re-
sults that substantiate our earlier claim by unveiling significant
differences for the same metrics across these contexts (see
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Tables III and IV). The most significant difference between
a metric and its score is that the latter has linear behavior.
That is, an improvement from, e.g., 0.2 to 0.5 is considered
equally good as an improvement from 0.6 to 0.9. Practically
none of the metrics in the Qualitas.class corpus is distributed
uniformly (see results of research question one). That means,
for example, given a metric with observed range [0, 100], that
the cumulative probability for any range of the same length
(e.g., 10≤x≤ 20 or 75≤x≤ 85) will differ. This justifies and
substantiates the necessity of the process of transforming a
metric into a score, as otherwise, we cannot compare metrics
or make statements about the goodness (quality) a change of
a metric value actually corresponds to. The empirical results
for research question four then give some direct indication as
to the differences between metrics values and corresponding
scores. To draw on the given example, we might assume that
a metric change from 30 to 20 is equally good as the change
from 20 to 10 when in reality it becomes exponentially more
difficult to obtain lower and lower values. Only a score has
the ability to “rectify” this behavior and return a value that
reflects the actual improvement on a linear scale.

VII. THREATS TO VALIDITY

The internal validity of our work is given and ensured
by the research design. We have carefully discussed, and
selected/dismissed different (un-)suitable statistical tests that
allow us to detect significant differences among the data. In
some cases, we have applied more than one test to detect (in-
)significant results. We have attempted to exhaust the available
combinations by trying all possible constellations and pairwise
comparisons. This ensures the robustness of the obtained
results and leaves only very little to chance.

The external validity of the suggested approach of trans-
forming metrics into scores has yet to be demonstrated using
other datasets. It is fair to say that this work aimed to define
a methodology for examining datasets containing multiple
features (here: domains) that are conditioned on two or more
contexts (here: domains). Therefore, there are no generalizable
results per se for which we would require to ensure external
validity.

VIII. RELATED WORK

Many issues with metrics appear to stem from trying
to associate them with quality properties directly [13], [2].
However, most metrics do not have meaning, especially when
they are mere counts. Issues also arise in cases where such a
meaning is attached, which is the case for some complexity
metrics [25]. This happens for various reasons. One of them
is the absence of a metric’s clear definition. Other reasons
include, for example, inconsistent behavior among metrics-
extracting applications [26]. To still obtain quality from met-
rics, quality models that use some form of aggregation are
used. Those then act essentially as regression models for
quality [27]. Because of the difficulty of directly associating
metrics with software quality, many resorts to using common
metrics and quality models to predict faults (e.g., [14], [15]).

Using random variables and their associated probability
distributions have been exploited previously for matters of
software quality. For example, software reusability and reli-
ability models, such as the Goel-Okumoto model [28], are fit
to fault-frequency metrics. Other use probability distributions,
such as the Weibull distribution, directly to model the (ex-
pected) timely accumulation of software defects [29]. These
models are probability distributions that are then leveraged in
predictive scenarios. More recently, attempts to derive quality
from joint probability distributions were made [16]. That
work, however, focused on aggregation and did not attempt to
transform metrics to scores using some ideal-value function.

Previous studies concerning finding or deriving threshold
values for metrics are most relevant to our work. Thresholds
are used as decision rules for categorizing metrics’ values
(e.g., good/bad or high/low). Similar work analyzing several
systems and domains empirically to find thresholds was done
by [30]. They conclude that no significant differences among
domains exist (while contrary to our results, the software
systems and domains used were different from those used
in this work). Later work uses the Qualitas.class corpus as
well [17], disregarding its domains based on the previous
study’s findings. Both these studies derive (un-)common values
from the metrics’ distribution (if possible). While the former
study assigns metrics values to one of three categories man-
ually after inspecting the data, the latter study does so by
defining percentiles manually after visual appeal. Other studies
define threshold values empirically [5]. One study to use the
context of metrics was [31]. There, the operationalization of
metrics lies in empirically finding a threshold value suitable
to distinguish between error and no error. A similar approach
had been developed earlier in [4]. That work summarizes
other work which suggests different thresholds for various
metrics based on, e.g., surveys or experience (i.e., no statistical
approaches). In any of these cases, however, those thresholds
are not used to convert a metric into a distance and then into
a score.

IX. FUTURE WORK

The advantage of the scores presented in this paper is
that they are comparable in an apples-to-apples manner. This
allows for a number of operationalizations. For example, we
could obtain the metrics values and associated scores of a new
system. Then, we would aggregate these scores and rank the
new system according to which domain scores the highest.
This ranking can be exploited for the system identification
task, that is, to what domain the tested system belongs most
likely. This could answer the question, “is my system really
what it pretends to be?”. It could also be used as a quality
goal: When developing a new system for a certain domain,
one might want to end up with a system that scores high in
the target domain and lower in other domains. Since scores
are freestanding quality properties, the aggregation of scores
can also be used as a quality model. Our results showed
that the context given by the domain in the Qualitas.class
corpus matters. Therefore, we have already begun to rank each
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system within the corpus’ domains to determine whether it is
associated with the most suitable domain. Some early results
show that this is not always the case.

The approach presented in this paper is meant to work
with arbitrary but similarly structured datasets. We plan to
test the approach and the application using other datasets
that are not necessarily related to software. Supposedly, it
should work with any dataset that contains features distributed
conditionally.
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