
An Ontological Analysis of Safety-Critical Software and Its Anomalies

Hezhen Liu1,∗, Zhi Jin2,3, Zheng Zheng4, Chengqiang Huang1, and Xun Zhang1
1Reliability Technology Lab, Huawei Technologies Co., Ltd., Shenzhen 518129, China

2Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing, 100871, China
3Institute of Software, School of Computer Science, Peking University, Beijing, 100871, China

4School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
{liuhezhen2, huangchengqiang, zhangxun}@huawei.com, zhijin@pku.edu.cn, zhengz@buaa.edu.cn

*corresponding author

Abstract—The progressively dominant role of software in
safety-critical systems raise concerns about the software de-
pendability. There are limited mature practices and guides
for assessing software dependability and analyzing system-level
hazards triggered by software anomalies. A problem is that faults,
errors, and failures that represent software anomalies, albeit with
different natures, are usually used indistinctly to predict software
dependability, leading to unsolid results. The lack of such con-
sensual conceptualization also leads to poor interoperability be-
tween supporting tools, and, consequently, difficulties in anomaly
management and software maintenance. Anomaly analysis and
management is more tough for safety-critical software due to its
higher complexity and the safety-critical nature. The complex
context of safety-critical software causes difficulties in determin-
ing the evolution/propagation path of software anomalies and
the impact on system safety. To capture the nature of safety-
critical software and support an understanding of mechanisms
of software anomalies and associated hazards, we propose three
reference ontologies: Safety-critical Software Ontology, Software
Fault Ontology and Software-failure-induced Hazard Ontology,
which are built based on international standards, guides, and rel-
evant conceptual models. We also discuss the relationships among
them. That will facilitate a better understanding of the software
anomaly mechanisms and the design of intervening/mitigation
solutions. We demonstrate how these ontologies can help analyze
software problems of real-world safety-critical systems.

Keywords—safety-critical software, dependability

I. INTRODUCTION

Software is constantly growing with size and complexity
and even dominant in modern safety-critical systems such as
cars, power plants, medical devices, and flight control systems
[1]. In some scenarios, software is safety- and mission-critical,
and its errors may propagate and surface as dangerous behav-
iors of the system, resulting in loss of life and property and
damage to the environment. The essential role of safety-critical
software motivates a large amount of efforts into the assess-
ment and improvement of its dependability.

As a type of artifact, software inevitably contains imper-
fections, flaws, or limits, which might cause failed operation
or unexpected behaviors. The complex and abstract nature of
software makes it often difficult to find the root causes when
symptoms (i.e., failures or service terminations) occur. Some
standards and guides [2]–[4] emphasize that it is important to
manage various software anomalies (defects, faults, errors and
failures etc.) in a structured manner; a well-established clas-
sification scheme can be used for various purposes including

failure causal analysis and software process improvement (e.g.,
avoid defect insertion and/or support early defect detection).

However, many standards and reference models use dif-
ferent vocabularies to characterize these phenomena [4]–[6],
resulting in inconsistent understandings of these concepts and
ambiguous uses, causing many issues. For example, the soft-
ware reliability growth model [7], [8], an usual methodology
of software reliability assessment and prediction, is used based
on the failure data. But misuses of defect/fault (i.e., flaws/risk
causes) rather than failure data can lead to unreliable predic-
tions [9]. The lack of consensual conceptualization also leads
to interoperability issues between supporting tools in practice,
resulting in poor usages of reference standards/models and
difficulties in software maintenance [10].

Anomaly management becomes more tough for
safety-critical software due to its higher complexity and
the safety-critical nature. As suggested in [11], safety is not
a property of the software itself but a combination of the
software design and the environment where the software is
located; safety is specific to the application, environment,
and system. Software does nothing unsafe while could be
unsafe only in the context of a safety-related system. NASA’s
software safety standard [12] provides more specific criteria
to classify safety-critical software, such as the potential to
cause a system hazard/condition/event or provide control or
mitigation for a system hazards/condition/event.

From this viewpoint, we can infer that the safety-critical
nature of software is determined by the assigned safety-related
requirements and the corresponding functionality. To handle
functionality related to system safety, software needs to in-
corporate operations of electrical/electronic and/or mechanical
equipment such as sensors, controllers, and actuators. Safety-
critical software is treated as an implementation element at
a relatively low level of abstraction in a hierarchical safety-
critical system, and its anomalies may propagate to the upper
levels and finally trigger a dangerous condition (hazard) of
the system. The hazard, together with a set of environmental
conditions, may lead to an accident [11], [13]. To determine
the impacts of unintended software behaviors from the safety
perspective, a conceptual model is required to characterize
artifacts related to safety-critical software and the complex
context in which it exists and operates.

In this paper, we aim to address the issues mentioned

311

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS57517.2022.00040

above by an ontological analysis. An ontological analysis can
produce a set of formal descriptions (i.e., reference ontologies
and associated operational versions) of domain knowledge.
A reference ontology is a solution-dependent specification
(i.e., conceptual model) with the purpose of providing a
clear and precise description of domain entities that can be
shared and reused across different communities; once con-
sensual conceptualization is established, operational (machine-
readable) versions of a reference ontology can be created
[14], [15]. This study will focus on the development of
reference ontologies related to safety-critical software and
its anomalies. Our analysis will bring about three reference
ontologies as main contributions – the Safety-critical Software
Ontology (SCSO), the Software Fault Ontology (SFO), and the
Software-failure-induced Hazard Ontology (SFIHO):
(1) SCSO captures the nature of safety-critical software from

a requirements engineering perspective, which depicts
how safety-critical software and other artifacts are or-
ganized at different levels of abstraction to achieve the
top-level goals/requirements (including safety goals) of
the system.

(2) SFO clarifies the different natures of fault, error, and fail-
ure, and explains the mechanisms by which the software
fault activates and evolves into the system failure.

(3) SFIHO captures the entities (concepts and relations)
that form a causal chain from a software failure to a
hazard/accident.

(4) The combination of the three ontologies provides a con-
ceptual framework for formalizing and managing haz-
ard/accident experience.

These ontologies will be developed following the processes
defined in the Systematic Approach for Building Ontolo-
gies (SABiO) [15]. To elicit consensual information, relevant
standards, guides and literatures in the domain of systems
and software engineering are analyzed. Particularly, these
ontologies will be built based on a set of reference ontologies
[10], [13], [16], by extending their concepts and relations while
incorporating new entities. Furthermore, they will be grounded
on the Unified Foundational Ontology (UFO) [17]–[20] to
obtain real-world semantics.

The rest of the paper is organized as follows. Section II
introduces the relevant ontology foundations and the SABiO
method. Section III presents SCSO; Section IV presents SFO;
Section V presents SFIHO. In Section VI, we evaluate the pro-
posed ontologies through verification and validation processes.
Finally, Section VII summarizes this work and presents some
future prospects.

II. BACKGROUND KNOWLEDGE

A. The Unified Foundational Ontology

A foundational ontology defines very common concepts
across all domains, and it can support semantic interoperability
to the domain-specific ontologies built upon it, by providing
a common starting point for the formulation definition [21].
In this study, we adopt UFO as the foundation ontology,

considering that it can provide a complete set of concepts that
cover all the aspects of the three proposed ontologies. Besides,
all the reused reference ontologies (see sections below) are
grounded on UFO, and thus they can be reused directly without
a reconstruction. A set of UFO concepts that are germane for
the purpose of this study, including Event, Situation, Disposi-
tion, Object, Function Universal and Function, will be used.
Detailed descriptions of these concepts have been presented in
the literatures [10], [17]–[20]. Considering the limited space,
we do not attempt to duplicate these descriptions here.

B. The Software Ontology

There are rich researches trying to clarify the natures
of software and other similar entities like program, code,
copy and algorithm [22]–[26]. [25] suggests that software
(synonymous with program) is different from code since code
may change while software maintains its identity; this study
proposes that the identity criteria of software is derived from
the artifactual nature. [26] later extends this discussion and
adopts the notion of artifact proposed by [27], which treats
artifacts as the results of intentional processes, and the identity
of an artifact is connected to its proper function that it is
(intentionally) designed to perform. [26] proposes an ontology
– Ontology of Software Artifacts (OSA), which is built upon
[28]’s requirements engineering model as follows: Require-
ment is defined as expected effects of a software system in
an environment that surrounds a machine where the software
system operates. A Requirement can be translated into part
of a Specification, based on a set of domain assumptions. In
contrast, a Specification describes the desired behaviors at the
interface between the machine and the environment or that
inside the machine. According to the requirements at different
levels and the corresponding intended functions, OSA makes
a distinction between four kinds of artifacts (i.e., software
product, software system, program and code).

The Software Ontology (SwO) proposed in [16] is built
based on OSA, and it extends part of the Software Artifact
sub-ontology of the Software Process Ontology (SPO) [29]. It
is grounded on UFO. This ontology also presents Software Sys-
tem, Program, Code, and the corresponding System Require-
ments Specification and Program Requirements Specification
(see Figure 1). To explain how software is executed, SwO in-
troduces the concept Loaded Program Copy, as materialization
of Program. Loaded Program Copy is a subtype of Disposition
that is manifested by a kind of Event [18], i.e., the execution
of the Loaded Program Copy by a Controller. The Loaded
Program Copy is constituted by software Functions that are
instances of Software Function Universals described by the
Program Requirements Specification. Thus, a Program runs
as a Program Copy Execution, which produces correct results
in conformance with the Program Requirements Specification
if implementing the same set of Software Function Universals
described by it.

SwO works well for characterizing the nature of software
and how it is materialized and executed in a computer-driven
system. However, SwO is a common solution but not specific

312

to safety-critical software. Safety-critical software is essen-
tially software while critical to system safety. We still need an
ontology model that captures both the software nature and the
safety-critical property. SCSO will be built upon SwO while
incorporating other concepts necessary for characterizing the
safety-critical property. Some concepts of SwO will also be
reused for developing SFO and SFIHO.

C. Ontological Interpretations of Software Anomalies and
Hazard

In the literature, there are a few ontological interpretations
of anomalies in engineering artifacts. [30] analyzes the notion
of failure for engineering artifacts and defines three types of
failures. For each type of failure, a failure is considered as
an event that, once happens, will bring about a fault as a
state of the artifact. Here the terminology “fault” has a notion
different from that is conceived in our study as the initiator
of anomalies that software may present. In [31], the authors
perform an ontological analysis of fault process and propose
an ontology of faults. This work focuses on the fault process
and a complete vocabulary of faults, the other concepts (e.g.,
error, failure) have not been discussed.

[10] is the first ontological research focusing on software
anomalies. The research delivers the Ontology of Software
Defects, Errors and Failures (OSDEF). OSDEF provides an
ontological interpretation for the two important concepts,
vulnerability and failure, which represent, respectively, the
cause and effect of software anomalies. However, it misses a
concept that represents an incorrect intermediate state that may
be bought about by the activation of a vulnerability. The notion
of incorrect state is generally mentioned in widely accepted
standards/guides/literatures (see Section IV). We will address
this by adding the concept Error in SFO.

On the other hand, there are rich studies dedicating to con-
ceptualization of Hazard and ontology-driven methodology for
hazard/risk analysis [13], [32]–[36]. However, the conceptual
models proposed in these works define only the universal
notions that constitute Hazard and/or its cause/consequence.
The associations between these notions and the anomalies
and related entities of software have not been discussed. To
target this problem, we propose SFIHO. The Hazard Ontology
(HO; [13]) is selected as a core ontology to construct SFIHO
because it provides a relatively complete concepts that consti-
tute Hazard and its cause/consequence. Furthermore, it is also
grounded on UFO so that it can be reused directly. The main
concepts and relations of HO will be presented in Section V.

As discussed above, there are substantial reference concep-
tual models regarding the two aspects – software anomalies
and system hazard. However, these models are not specific
to the context of the safety-critical software/system, and thus
the individual models have not been organized to form a
systematic framework that can be utilized to manage and
formalize Hazard experience resulting from software issues.

D. Systematic Approach for Building Ontologies
We follow the SABiO method [15] to develop the proposed

ontologies. SABiO is an ontology engineering method that
incorporates practices from software engineering. It provides
activities that apply to develop domain reference ontologies, as
well as the design and coding of operational ontologies. Sev-
eral reference ontologies of the software engineering domain,
such as SwO discussed above, were built using this method.

SABiO’s development process comprises five main phases:
(1) purpose identification and requirements elicitation; (2)
ontology capture and formalization; (3) design; (4) imple-
mentation; and (5) test. These phases are supported by a set
of processes, i.e., knowledge acquisition, reuse, configuration
management, evaluation, and documentation. Since our goal
is to build reference ontologies (conceptual models), we
accomplish only the first two phases as suggested. We first
talk with domain experts and review the existing standards,
guides and literatures, to elicit functional requirements of each
ontology. These requirements will be formulated as a set of
Competency Questions (CQs; i.e., questions that each ontology
should be able to answer). Guided by these CQs, we then
identify and organize the concepts, relations, properties and
axioms. Relevant knowledge are acquired from experts, as
well as from standards, guides and reference models. The
identified concepts and relations will be analyzed semantically
and grounded on UFO. For illustration and communication
purposes, Unified Modeling Language (UML) class diagrams
are used to represent the conceptual models. Finally, the on-
tologies are evaluated by verification and validation processes.

III. ONTOLOGICAL ANALYSIS OF SAFETY-CRITICAL
SOFTWARE

As aforementioned, safety-critical software is essentially
software while possessing the safety-critical property. Soft-
ware becomes safety-critical only if it is in a safety-related
system context. From the relevant literature [11], standards
[12], [37]–[40] and guides [2], [3], [41], we know that
safety-critical software is treated as an implementation ele-
ment of a safety-critical system, and it is usually designed
to handle safety-related functionality. The safety-critical na-
ture is thus determined by the assigned safety requirements
and safety-related functionality. We will perform an onto-
logical analysis toward a safety-critical system that contains
safety-critical software elements, from a requirements engi-
neering perspective.

Following the SABiO method, we first formulate a set of
CQs as the functional requirements of the ontology. To elicit
the CQs, we have analyzed widely adopted guides [2], [3], [41]
and international standards [37], [38] of systems and software
engineering, and functional safety standards [39], [40]. The
CQs are listed below:

• CQ1: What are the requirements specifications that exist
for a project of a Safety-critical System?

• CQ2: How are these requirements specifications related?
• CQ3: What is a Safety-critical System? Which concepts

indicate its safety-critical nature?

313

Figure 1. Conceptual model of SCSO. Each rectangle represents a concept. A single solid line represents an association with a labeled notion, and a nearby
filled arrowhead indicates the direction in which the relationship works. A solid line with a hollow arrowhead represents an inheritance between two concepts;
the arrowhead points from the child element (subclass) to the parent element (superclass). A solid line with a hollow diamond represents an aggregation where
the diamond connects the containing class. Multiplicity labeled on each end of a relation is an indication of how many objects may participate in the given
relationship. These representations also apply to the following figures. The concepts of UFO [17]–[20] are shown in yellow; the green ones show the concepts
adopted from SwO [16]. The concepts in light red are the indicators of the safety-critical property of system/software (see the text for more details).

• CQ4: What is a Safety-critical System composed of?
• CQ5: What is Safety-critical Software? Which concepts

indicate its safety-critical nature?
• CQ6: What is the relation between the requirements spec-

ification/functions of Safety-critical Software and those of
the Safety-critical System?

The different natures of Requirement and Requirement
Specification (as suggested by [28]) have been introduced
in Section II-B. For simplicity, SCSO presents only a set
of Requirements Specifications that exist for the domain of
safety-critical system. A Requirements Specification represents
a set of documents or models (Artifacts) that elaborate needs
or formal requirements of a system/software artifact. Here
Artifacts refer to objects intentionally developed to serve a
given purpose in the context of a system development project
[26], [27], meanwhile relevant domain assumptions are ac-
counted for. From this viewpoint, a Requirements Specification
is description of requirements based on a set of domain
assumptions. A Requirement Specification may not be able
to properly describe the requirements if making incorrect or
incomplete assumptions [10].

The conceptual model of SCSO, represented as UML
class diagrams, is shown in Figure 1. SCSO is centered on
the concept of Safety-critical System (hereafter System for
short). A System refers to an implementation solution of
System-of-Interest (SOI); the latter exists in the problem space
while the former exists in the corresponding solution space

[41]. As presented in [37], System is generally defined as “a
combination of interacting elements organized to achieve one
or more stated purposes”. We also consider Zave and Jackson’
interpretation [28] that treats System as an interface between
the machine and the environment; it is an artifact with manual,
automated and even abstract (data) components, separating
it from the concept of machine. From an ontological point
of view, a System is a complex and heterogeneous artifact
composed by many other artifacts that exist in different levels
of abstraction. A System can be decomposed into several
subsystems that can be further decomposed into smaller units
until non-decomposable technological elements. For simplic-
ity, SCSO presents only System Element and Interface; the
instances of Interface are located between different System
Elements. As a type of artifact, each System Element has its
own identity and intended purposes.

A System is developed based on system requirements,
which are generally classified into functional requirements
and non-functional requirements. The functional requirements
refer to System Function Universals that denote the types
of functions expected for the System. The non-functional
requirements define the criteria or capabilities of the System
[16]; they can be quality requirements that refer to Quality
Characteristics (e.g., reliability, safety, efficiency) that the
System shall exhibit in some degree [16], [42]. All these
system requirements are translated into models or textual
requirements that are documented as a System Requirements

314

Specification (SyRS), taking into account assumptions about
the machine and the environment. Therefore, the SyRS de-
scribes System Function Universals that the System should
implement. It also defines Quality Characteristics that should
be exhibited. A System is in conformance to its SyRS only if
it implements (and exhibits) System Function Universals (and
Quality Characteristics) the same as described by the SyRS.

There is a Technical Safety Requirements Specification
(TSRS) that constitutes part of the SyRS. This concept is
the same as Technical Safety Concept in ISO 26262 [40],
i.e., “specification of the technical safety requirements and
their allocation to system elements with associated information
providing a rationale for functional safety at the system level”.
Therefore, a TSRS is specific to a system implementation
scheme. The TSRS describes a set of Safety-related Func-
tion Universals and Safety Characteristics. For clarity, the
describes relation is not presented in Figure 1. Safety-related
Function Universals refer to Function Universals that (1)
enable a System to achieve or maintain a safe state or degraded
state or (2) may cause hazards once improperly implemented.
Safety Characteristic is generally defined as safety integrity
level (i.e., probability of a System satisfactorily performing
the specified Safety-related Function Universals; see [39],
[40]). It should be noted that, besides TSRS, there are other
specifications constituting a complete SyRS.

A SyRS intends to satisfy a Stakeholder Requirements
Specification (StRS), which in turn, intends to satisfy a Busi-
ness Requirements Specification (BRS). StRS and BRS record
high-level requirements of the SOI [41]. Note that both BRS
and StRS subsume safety goals/requirements; for brevity, these
notions are not presented in the conceptual model shown in
Figure 1.

As a System is decomposed into a set of System Elements
and Interfaces, the system requirements are also decom-
posed and allocated to a set of system element requirements.
Safety-critical Software (hereafter Software for short) is also a
complex artifact that intends to implement a Software Require-
ments Specification (SwRS) that formally defines Software
(SW) requirements. As presented in SwO [16], Software (i.e.,
Software System) is constituted by Programs that implement
SW Function Universals, which are described by a Program
Requirements Specification (PgRS). As a distinction, the SwRS
determines the desired behaviors (including Quality Char-
acteristics) at the Interface between the Software and other
System Elements, while the PgRS determines the desired be-
haviors inside the Software. Due to the safety-critical property,
the Software shall implement an SW Safety Requirements Spec-
ification (SwSRS; as part of the SwRS) that is refined from the
TSRS. The SwSRS defines a set of SW Safety Characteristics
and constraints on Safety-related SW Function Universals. The
Safety-related SW Function Universals, as part of the SW
Function Universals implemented by the Program, in turn
support the Safety-related Function Universals of the System.

From the discussions above we know that the safety-critical
property of Software/System is indicated by the concepts
shown as light red in Figure 1. It would be a common

system/software (not necessarily related to safety) if these
concepts are removed from the conceptual model.

IV. ONTOLOGICAL ANALYSIS OF SOFTWARE FAULT,
ERROR AND FAILURE

From SCSO we learn that the construction of safety-critical
software is related to a lot of artifacts. The correctness of
safety-critical software depends on whether these artifacts are
created based on correct assumptions and in a correct manner.
Artifacts inevitably contain imperfections, flaws or limits
because humans can make mistakes; even if they do not, soft-
ware behaves correctly (i.e., properly implements the SwRS)
only under nominal conditions. For safety-critical software,
the underlying risks may be activated under out-of-nominal
conditions and finally evolve into threats for system safety.
Software Fault Ontology (SFO) is developed to facilitate an
understanding of software anomaly mechanisms and the de-
sign of intervening/mitigation solutions towards safety issues
of software.

To elicit relevant concepts, besides the aforementioned
standards, guides and literatures, we have analyzed other
materials including a guidebook of software dependability
engineering [7], a paper that proposes concepts and taxonomy
in the context of dependability [43], and relevant standards
[4], [5], [44]. The vocabularies in these references have been
closely investigated. As discussed in Section I, there is still
lack of an agreement about the terminologies/concepts that
represent software anomalies. The three terms, Fault, Error
and Failure, are most frequently mentioned, however, with
different notions. We select them as the core concepts of SFO.
We will illustrate how the three concepts and their relations
are organized to form the causal chain from a design flaw to
the symptom for software. The requirements of this ontology
are expressed as CQS listed below:

• CQ7: What is Fault?
• CQ8: What is Error?
• CQ9: What are the events that result in Errors?
• CQ10: What is Failure?
• CQ11: In which type of situations can a Failure occur?
• CQ12: What is the error propagation process?
The conceptual model of SFO is shown in Figure 2. Some

concepts from SwO [16] and OSDEF [10] are reused. Fault is
defined as a flaw that if executed/activated potentially results
in an Error. Faults represent Dispositions that exist in Loaded
Program Copies or Hardware Equipment (e.g., Controllers)
that participate in Program Copy Executions. Hardware Faults,
usually known as random Faults, can be activated at any time.
In contrast, Loaded Program Faults are manifested only if the
part of Loaded Program Copy containing Faults is executed.
Fault can also be classified into Development Fault and Usage-
limit Fault. A Development Fault refers to a flaw that tied to
any software artifact (e.g., requirements specification, source
code and architecture model); for example, it refers to a bug
(i.e., Code Fault) if presented in Code. As mentioned in Sec-
tion III, artifacts are built upon a set of domain assumptions.
Throughout a software life cycle any incorrect assumptions

315

Figure 2. Conceptual model of SFO. The concepts of UFO are shown in yellow; the concepts shown in green are adopted from SwO [16] and OSDEF [10].

may result in Development Faults. However, in some cases
when the assumptions are explicitly defined as disclaimers and
usage guidelines while neglected by Users of system/software,
Usage-limit Faults will be manifested [10].

A Fault is activated by a Fault Trigger Condition and
manifested as a Fault Activation. Fault Activation has two sub-
types – Development Fault Activation and Usage-limit Fault
Activation, corresponding to the two types of Faults. Particu-
larly, Usage-limit Fault Activations are caused by Erroneous
User Actions performed by Users who have User Malicious
Intentions or False Beliefs about the domain assumptions. We
note that intentional malicious Faults are generally the focus
of security but not of dependability [43]. To present a complete
set of Mental Moments that cause Erroneous User Actions, we
thus still include User Malicious Intentions in SFO.

A Fault Activation further brings about another Situation,
i.e., Error. Error is defined as an incorrect state of an exe-
cuted program that shows discrepancy between a computed,
observed or measured value/condition and the true, specified
or theoretically correct value/condition. As presented in SwO
(see Figure 1), an Event of Program Copy Execution may bring
about an Observable State. The Fault Activation Event refers
to the execution of a fragment of program copy with Faults,
which brings about an erroneous Observable State (Error).
Such a Situation may work as another Fault Trigger Condition
that activates other Faults, which is in turn manifested as
another Fault Activation. It is the error propagation process. A
Failure occurs only if an Error is observed to be far beyond
a specified threshold.

As discussed in Section III, Software is a complex artifact
designed to fulfill a certain goal, that is, to implement an
SwRS. From the viewpoint of a System, a Failure of embedded
Software indicates that the assigned SwRS is not satisfied,
which has two unfolded interpretations: (1) the Software does
not implement the SW Function Universals as described in
the PgRS; (2) the Software properly implements the PgRS,
which, however, does not satisfy the SwRS. The first type of
Failure is caused by a wrong construction of the Program

due to such as Code Faults and Architecture Faults. These
Faults lead to the incorrect implementations of the (supposed-
to-be-correct) PgRS. The latter type of Failure may result from
Specification Faults that are introduced when inadequate or in-
correct requirements are defined in the PgRS; alternatively, the
PgRS is based on incorrect or incomplete machine assumptions
that the developers have towards the programming platform
[10]. Therefore, Failure in SFO refers to inability of Software
to provide correct services (i.e., undertake a part of System
Function Universals) specified by an SwRS. For safety-critical
software, once it fails to properly implement the SwSRS, the
Failure is likely to be a threat for system safety.

V. ONTOLOGICAL ANALYSIS OF
SOFTWARE-FAILURE-INDUCED HAZARD AND ACCIDENT

In the above sections, we first present SCSO that explains
the nature of Safety-critical Software. We later build SFO
that clarifies different natures of anomalies inside Software,
so that the conceptual model can be used to explain why and
how Software goes wrong. In this section, based on these two
ontologies, we will develop a conceptual model that facilitates
the analysis of safety issues induced by software Failures.
Generally, safety analysis is performed through identifying
hazards and potential causes/consequences [39], [40]. We will
first analyze the entities (including Situations, Events, Objects
etc.) that contribute to a hazard, from an ontological point
of view. These entities will be later linked to the concepts
of SCSO and SFO, to characterize how software anomalies
contribute to system hazards.

The concept of Hazard has been extensively discussed in the
literature [11], [39], [40] (also see Section II-C). Particularly,
HO [13] treats Hazard as a combination of system and
environment states (Situations) comprised by a set of necessary
objects and harm factors. From the definitions we know that a
Hazard can result from software failures, while environmental
factors necessarily participate in the state. SFIHO aims to
capture the concepts and relations that form a causal chain
from a software failure to harm to the environment and people.

316

Figure 3. Conceptual Model of SFIHO. The concepts of UFO are shown in yellow; the concepts in green are adopted from SwO [16] and OSDEF [10]; the
concepts in blue are from HO [13].

SFIHO will be built upon HO by extending its concepts and
relations. SFIHO aims to answer the following CQs:

• CQ13: What is Hazard?
• CQ14: Which type of events can result in Hazards?
• CQ15: What is Accident? In which type of Situations can

an Accident occur?
• CQ16: How does a Software Failure trigger a Hazard?
• CQ17: In the case of a software-failure-induced Hazard,

which of the entities in SFO contribute to the Hazard?
The conceptual model of SFIHO is shown in Figure 3,

where the classes in blue and their relations are mainly adopted
from HO [13] with a few adjustments. Hazard is treated as a
kind of Situation, and it comprises four types of Entities: (1)
Hazard Element (as an instance of Role; e.g., a car); (2) Harm
TruthMaker (as a subtype of Disposition; e.g., kinetic energy
of a car) that inheres in Hazard Elements; (3) Victim (as a
subtype of Hazard Element; e.g., a driver, a passenger); (4)
Exposure Relator that represents a relation through which at
least a Victim is exposed to the safety threats posed by Hazard
Elements (e.g., “a man crossing a road is exposed to the threats
of an out-of-control car”). When these necessary Entities exist
and constitute a Hazard, the Hazard will trigger an Accident
that brings about harm to people and the environment. In order
to bring about such a Hazard, there must be an Initiating
Event that is triggered by a prior Initiating Condition; the
Initiating Condition comprises necessarily the Initiating Roles
and Initiating Factors.

An SW Failure (i.e., Failure in SFO) is defined as an Event
when Software losses the ability to provide specified services
to a System. From the view of a System that contains Software,
the SW Failure corresponds to an activation of a fault at
the system level (i.e., System Fault Activation), which brings
about an incorrect state (i.e., System Error) of the System. The
System Error may further trigger a Malfunction of the System;
alternatively, it activates another fault of the System, which

is manifested as another System Fault Activation. As defined
in [40], Malfunction is failure or unintended behavior of an
Item with respect to its design intent, where Item refers to
system or combination of systems that implements a function
or part of a function that is observable by the customer (User).
Malfunctions are thus associated with an item-level System that
perform functions/behaviors in a real environment surrounding
the machine where the System locates. For simplicity, SFIHO
presents only limited classes. However, it should be kept in
mind that a real item-level System may be decomposed to sev-
eral levels of abstraction of Systems; an SW Failure probably
propagates to the item-level System via several iterations of
the Fault Activation-Error-Failure process at different levels.

A Malfunction could be an Initiating Event that brings about
a Software-Failure-Induced Hazard (SFI Hazard). In this case,
the System Error works as an Initiating Condition, and the
Initiating Role is played by the User (as an Environment
Object) of the Software/System. Considering there must be
other objects (Hardware Equipment and/or Loaded Program
Copies) that exist in the System and contain SW Faults
participating in the Initiating Condition, we add the concept of
Internal Object. The SW Faults are an Initiator Factor. When
Fault Activations are caused by Erroneous User Actions, the
User’s False Beliefs or User Malicious Intentions are another
Initiator Factor. The Environment Objects including the User
also play the roles of Hazard Elements. Sometimes the User
is also a Victim when it is exposed to the Hazard Element
that possesses the Harm TruthMaker. The Hazard can further
trigger an Accident, as a manifestation of Harm TruthMaker,
which will generate Harm to the Victims. Harm is Intrinsic
Moment that can be physical/mental injury or death to people
or damage to a system, equipment, or property.

The ontological interpretations of Hazard, Accident and
associated concepts shed light on the basic principle for
designing safety mechanisms. SFIHO indicates that it may

317

go through a set of transitions between Situations (i.e., SW
Error, Initiating Condition and Hazard) and Events (i.e., SW
Failure, Initiating Event) before an Accident occurs. From an
ontological point of view, a certain prior Situation is necessary
to trigger an Event [18]. One can thus prevent an Event
from happening by breaking its prior Situation. To avoid an
Accident, a System or its User can perform intervening actions
when a Hazard is caught; alternatively, technical solutions are
designed to transit the Initiating Condition to a safe Situation
so that it cannot trigger the Initiating Event. Correspondingly,
there are two types of safety mechanisms proposed in [40]:
(1) when a Fault of an item-level system is activated and an
Error state is observed, the first type of safety mechanism is
able to transition to, or maintain the item in a safe state. (2)
otherwise, once a Malfunction of an item is unavoidable and it
triggers a Hazard, the second type of safety mechanism is able
to alert the driver such that the driver is expected to control
the effects of the Malfunction.

VI. ONTOLOGY EVALUATION

In this section, we will follow the SABiO method and
evaluate the proposed ontologies by conducting ontology ver-
ification and ontology validation processes.

A. Ontology Verification

Concerning ontology verification, the main objective is
to ensure that the ontology is being built correctly, in the
sense that there is no coherence and consistency issue and
the output artifacts meet the previously defined specifications
[15]. To achieve this goal, the verification can be done in
a competency-question-driven manner. A suggested method
is to create a table that indicates which ontology elements
(concepts, relations, and axioms) are able to answer each
CQ. Tables I show the verifications of SCSO, SFO and
SFIHO regarding the predefined CQs. All the three proposed
ontologies are able to adequately respond to all the CQs. The
verifications are thus considered successful.

B. Ontology Validation

In this section, we will validate that the right ontologies have
been developed, that is, to demonstrate that the ontologies ful-
fill the intended purpose: (1) managing the domain knowledge
of safety-critical software/system; (2) supporting the practical
analysis of software anomalies and their impacts on safety.
We follow the SABiO method and adopt a real-world case
the same as one presented in [10], to investigate if the built
ontologies can be instantiated to represent the selected case.

The selected case is the Patriot Missile Battery Intercept
Failure [45]. On February 25, 1991, during the Gulf War, a
Patriot Missile Battery’s incorrect tracking of an Iraqi Scud
missile resulted in the death of 28 soldiers (Harm). A later
investigation revealed that a software Fault is responsible
for the failed intercept. The Patriot system was designed to
track and shoot down Soviet missiles including Scuds (System
Function Universal), and the embedded software is mainly
used for missile tracking and intercept decision (Software

TABLE I
ONTOLOGY VERIFICATIONS BASED ON COMPETENCY QUESTIONS

CQ Concepts and Relations
CQ1 Requirements specifications from high- to low-level are BRS, StRS,

SyRS, SwRS and PgRS.
CQ2 An StRS is constrained by a BRS; an SyRS intends to satisfy an

StRS; an SwRS intends to satisfy an SyRS; a PgRS intends to satisfy
an SwRS.

CQ3 A Safety-critical System is an Artifact that intends to implement an
SyRS including a TSRS. The concepts of TSRS, Safety Characteris-
tic and Safety-related Function Universal indicate its safety-critical
nature.

CQ4 A Safety-critical System is composed of a set of System Elements
and Interfaces between them.

CQ5 Safety-critical Software is a System Element that constitutes a
Safety-critical System. It is an Artifact that intends to implement
an SwRS including an SwSRS. The concepts of SwSRS, SW Safety
Characteristic and Safety-related SW Function indicate its Safety-
critical nature.

CQ6 An SwRS intends to satisfy an SyRS, meanwhile a set of SW
Function Universals (described by the PgRS) support the Function
Universals (described by the SyRS) of the System.

CQ7 Fault is a subtype of Disposition that inheres in an Endurant.
A Loaded Program Fault inheres in a Loaded Program copy. A
Hardware Fault inheres in Hardware Equipment.

CQ8 Error is a subtype of Situation. An Error triggers a Failure or,
alternatively, activates a Fault and triggers a Fault Activation.

CQ9 Fault Activation, as a manifestation of a Fault, brings about an
Error. A Development Fault Activation is a manifestation of a
Development Fault. A Usage-limit Fault Activation that is caused
by an Erroneous User Action, is a manifestation of a Usage-limit
Fault.

CQ10 Failure is a subtype of Event.
CQ11 A Failure is triggered by an Error.
CQ12 An Error brought by a Fault Activation activates another Fault

somewhere and triggers another Fault Activation, which further
brings about another Error.

CQ13 Hazard is a subtype of Situation that is constituted by a set
of Entities – Hazard Element, Harm TruthMaker, Victim, and
Exposure.

CQ14 Initiating Event is a subtype of Event that can bring about Hazards.
CQ15 Accident is a subtype of Event that generates Harms to Victims.

When necessary Entities exist and constitute a Hazard, the Hazard
triggers an Accident.

CQ16 A Software Failure corresponds to a System Fault Activation, which
brings about a System Error. The System Error further triggers a
Malfunction. The Malfunction, as a subtype of Initiating Event,
brings about an SFI Hazard.

CQ17 Hardware Equipment or a Loaded Program Copy, as an Internal
Object that contains SW Faults, plays an Initiating Role that
participates in an Initiating Condition. The SW Faults work as an
Initiator Factor that inheres in the Initiating Role. Meanwhile, the
User of software/system, as an Environment Object, also plays an
Initiating Role. The False Believes or User Malicious Intentions of
the User can be another Initiator Factor.

Function Universal). The system was specified to operate for
a few hours at a time to avoid detection. However, at the
time of this accident, it had been operated for about 100
hours (Incorrect User Action). The radar had successfully
detected the incoming Scud. However, a Failure occurred in
determining the next location of the missile by the Program,
for which the velocity of missile and the time of the last
radar detection are necessary. The time was measured with
a precision of tenths of a second, and it was truncated at
24 bits (Fault Activation) due to a 24-bit fixed-point register
(Usage-limit Fault). The inaccuracy of the measure time and
the subsequent track length (Error) grew with the increasing
time. The program thus returned a wrong predicted location of

318

Figure 4. Patriot Missile Battery intercept failure as an instance of SCSO, SFO and SFIHO. Each box represents an instance; each solid line with an annotation
represents a relation; in the lower partition of each box the classes from SCSO, SFO or SFIHO are presented. The UFO concepts inherited by the classes are
represented with a color code: orange represents situations; yellow–events; blue–intrinsic moments; light red–agents/objects; green–function universals.

the missile (SW Failure). The initial detection of the missile is
treated as a false alarm and removed (System Error), and no
intercept was attempted (Malfunction). The US Army Barracks
thus lost the protection of the Patriot system while the Scud
was approaching (Hazard). The Scud finally hit the barracks
and exploded (Accident).

As shown in Figure 4, the case introduced above is repre-
sented as an instantiation model of SCSO, SFO and SFIHO.
By connecting the anomalies inherent in the System to the
Situations/Events prior to the Hazard, the model establishes a
causal chain from a root cause (software Fault) to symptoms
(Hazard/Accident). The instantiation process thus provides a
more exhaustive interpretation of the Hazard experience than
that of an analysis based solely on HO [46]. Besides, compared
to the instance model presented in [10], our model identifies
the Hazard/Accident at the system level and associated entities.
In a nutshell, our model captures a more complete set of
entities that contribute to the final Hazard/Accident, including
those inherent to the system and the necessary environmental
objects. Such an instantiation process can work as an example
template of a hazard analysis. The combination of the three
ontologies thus provide a structured framework to formalize
and manage the real-world Hazard experience.

VII. CONCLUSION AND FUTURE WORK

In this study, we propose the three reference ontologies,
SCSO, SFO and SFIHO. The first ontology characterizes
the safety-critical software and associated artifacts in the
safety-critical system, from a requirements engineering per-
spective. The second ontology is about various software
anomalies. The last one is about Hazard and related entities

of software that contribute to it. The concepts and relations
involved in the ontologies are elicited from a set of inter-
national standards and scientific literatures. The ontologies
are grounded on Unified Foundational Ontology so that they
obtain real-world semantics. The contributions of the three
ontologies proposed in this paper to conceptual modelling
and the dependability analysis of safety-critical software are
summarized as follows.

Firstly, the three ontologies clarify relevant concepts and
relations and convey the fundamental principles and basic
functionality of the safety-critical software and its anomaly
mechanisms. The ontologies provide a common vocabulary
that can be shared among different communities, improving
communication and avoiding misunderstanding among engi-
neers and stakeholders of safety-critical systems. Besides,
the conceptual models provide a point of reference for the
developers of safety-critical software/systems to systematically
extract and analyze safety requirements specifications. Further-
more, the three ontologies, together as a framework, provide
conceptual basis and a systematic guide to the dependability
analysis of the safety-critical software. It has been confirmed in
Section VI-B that through the ontology instantiation process,
the software-related hazard causes and consequences and the
other entities that participate in/contribute to the hazard are
well identified. The ontologies can support the development of
tools that apply to configuration and management of the safety-
critical software, anomaly tracking and hazard experience
management.

As future work, more industrial case studies are required
to further evaluate and improve the ontologies. Besides, an
important application of the conceptual models is to support

319

an automated hazard analysis at the early phase of the de-
velopment of a safety-critical system. To do that, operational
versions of these ontologies implemented in machine-readable
language (e.g., OWL) will be established to provide concepts
and annotations to system configuration, to further support
anomaly data management. These operational ontologies will
provide basis to an analysis framework that can be used
for fault generation and error propagation inference (e.g.,
[47]); a further hazard analysis can be implemented once the
environmental objects are modelled.

REFERENCES

[1] C. Hagen, S. Hurt, and J. Sorenson, “Effective approaches for delivering
affordable military software,” Real-time Information Assurance, vol. 26,
pp. 26–32, 11 2013.

[2] P. Bourque and R. E. Fairley, The guide to the Software Engineering
Body of Knowledge (SWEBOK(R)): V.3.0. IEEE Computer Society Press,
January 2014.

[3] C. P. Team, “Cmmi for development, version 1.3,” Tech. Rep. CMU/SEI-
2010-TR-033, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, 2010.

[4] “Standard classification for software anomalies,” IEEE 1044:2010,
pp. 1–23.

[5] “Iso/iec/ieee international standards - systems and software engineering–
vocabulary,” ISO/IEC/IEEE 24765:2017, pp. 1–541.

[6] “Systems and software engineering–systems and software assurance–
part 1: Concepts and vocabulary,” IEEE 15026:2014, pp. 1–34.

[7] M. R. Lyu, Handbook of Software Reliability Engineering. IEEE
Computer Society Press, 1996.

[8] N. Ullah, M. Morisio, and A. Vetro, “A comparative analysis of software
reliability growth models using defects data of closed and open source
software,” in 2012 35th Annual IEEE Software Engineering Workshop,
pp. 187–192, 2012.

[9] R. Butler and G. Finelli, “The infeasibility of quantifying the reliability
of life-critical real-time software,” IEEE Transactions on Software
Engineering, vol. 19, no. 1, pp. 3–12, 1993.

[10] B. B. Duarte, R. de Almeida Falbo, G. Guizzardi, R. Guizzardi, and
V. E. S. Souza, “An ontological analysis of software system anomalies
and their associated risks,” Data & Knowledge Engineering, vol. 134,
p. 101892, 2021.

[11] N. Leverson, Safeware: System Safety and Computers. Boston: Addison-
Wesley, 1995.

[12] NASA-STD-8719.13, “Nasa software safety guidebook: Nasa technical
standard,” Department of Defense, 2004.

[13] J. Zhou, K. Hänninen, K. Lundqvist, and L. Provenzano, “An ontological
interpretation of the hazard concept for safety-critical systems,” in The
27th European Safety and Reliability Conference, June 2017.

[14] G. Guizzardi, “On ontology, ontologies, conceptualizations, modeling
languages, and (meta)models,” in DB&IS, 2006.

[15] R. de Almeida Falbo, “Sabio: Systematic approach for building on-
tologies,” in ONTO.COM/ODISE@FOIS, vol. 1301 of CEUR Workshop
Proceedings, CEUR-WS.org, 2014.

[16] B. Duarte, A. Leal, R. Falbo, G. Guizzardi, R. Guizzardi, and
V. Silva Souza, “Ontological foundations for software requirements with
a focus on requirements at runtime,” Applied Ontology, vol. 13, pp. 1–
33, April 2018.

[17] G. Guizzardi, Ontological foundations for structural conceptual models.
PhD thesis, University of Twente, Oct. 2005.

[18] G. Guizzardi, G. Wagner, R. de Almeida Falbo, R. S. S. Guizzardi, and
J. P. A. Almeida, “Towards ontological foundations for the conceptual
modeling of events,” in Conceptual Modeling, pp. 327–341, Springer
Berlin Heidelberg, 2013.

[19] A. Benevides, J.-R. Bourguet, G. Guizzardi, R. Peñaloza, and
J. Almeida, “Representing a reference foundational ontology of events
in sroiq,” Applied Ontology, vol. 14, pp. 1–42, 07 2019.

[20] G. Guizzardi, A. Benevides, C. Fonseca, D. Porello, J. Almeida, and
T. Prince Sales, “Ufo: Unified foundational ontology,” Applied Ontology,
vol. 17, pp. 167–210, January 2022.

[21] Wikipedia contributors, “Upper ontology — Wikipedia, the free ency-
clopedia,” 2022. [Online; accessed 21-June-2022].

[22] P. Suber, “What is software,” J. Specul. Philos., vol. 2, no. 2, pp. 89–119,
1988.

[23] A. H. Eden and R. Turner, “Problems in the ontology of computer
programs,” Appl. Ontol., vol. 2, no. 1, pp. 13–36, 2007.

[24] D. Oberle, S. Grimm, and S. Staab, An Ontology for Software, pp. 383–
402. 05 2009.

[25] N. Irmak, “Software is an abstract artifact,” Grazer Philos. Stud., vol. 86,
no. 1, pp. 55–72, 2013.

[26] X. Wang, N. Guarino, G. Guizzardi, and J. Mylopoulos, “Towards an
ontology of software: a requirements engineering perspective,” in Formal
Ontology in Information Systems, vol. 267, pp. 317–329, September
2014.

[27] L. R. Baker, “The ontology of artifacts,” Philos. Explor., vol. 7, pp. 99–
111, Jun 2004.

[28] P. Zave and M. Jackson, “Four dark corners of requirements engineer-
ing,” ACM Trans. Softw. Eng. Methodol., vol. 6, pp. 1–30, jan 1997.

[29] A. Bringuente, R. Falbo, and G. Guizzardi, “Using a foundational
ontology for reengineering a software process ontology.,” Journal of
Information and Data Management, vol. 2, pp. 511–526, January 2011.

[30] L. D. Frate, “Preliminaries to a formal ontology of failure of engineering
artifacts,” FOIS, pp. 117–130, 2012.

[31] Y. Kitamura and R. Mizoguchi, “An ontological analysis of fault process
and category of faults,” Tenth International Workshop on Principles of
Diagnosis (DX-99), pp. 118–128, 1999.

[32] T. Mahmood, E. Kazmierczak, T. Kelly, and D. Plunkett, “Modeling and
learning interaction-based accidents for safety-critical software systems,”
in 14th Asia-Pacific Software Engineering Conference (APSEC’07),
pp. 175–182, 2007.

[33] O. Daramola, T. Stålhane, G. Sindre, and I. Omoronyia, “Enabling
hazard identification from requirements and reuse-oriented hazop anal-
ysis,” in 2011 4th International Workshop on Managing Requirements
Knowledge, pp. 3–11, 2011.

[34] R. Winther and W. Marsh, “Hazards, accidents and events—a land of
confusing terms,” 2013.

[35] A. Lawrynowicz and I. Lawniczak, “The hazardous situation ontology
design pattern,” in WOP, 2015.

[36] A. Parisaca Vargas and R. Bloomfield, “Using ontologies to support
model-based exploration of the dependencies between causes and con-
sequences of hazards,” in Proceedings of the International Joint Confer-
ence on Knowledge Discovery, Knowledge Engineering and Knowledge
Management, p. 316–327, SCITEPRESS, 2015.

[37] “Iso/iec/ieee international standards - systems and software engineering
– system life cycle processes,” ISO/IEC/IEEE 15288:2015, pp. 1–118.

[38] “Iso/iec/ieee international standard - systems and software engineering
– life cycle processes – requirements engineering,” ISO/IEC/IEEE
29148:2018, pp. 1–104.

[39] “Functional safety of electrical/electronic/programmable electronic
safety-related systems,” IEC 61508:2010.

[40] “Road vehicles — functional safety — part 1: Vocabulary,” ISO
26262:2018.

[41] SEBoK, Guide to the Systems Engineering Body of Knowledge (SEBoK)
v.2.5. Hoboken, NJ: The Trustees of the Stevens Institute of Technology,
15 October 2021.

[42] E. Y. Lawrence Chung, Brian A. Nixon and J. Mylopoulos, “Non-
functional requirements in software engineering,” Springer New York,
NY, 2000.

[43] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[44] “Iso/iec/ieee international standard - systems and software engineering–
systems and software assurance –part 1:concepts and vocabulary,”
ISO/IEC/IEEE 15026-1:2019(E), pp. 1–38.

[45] P. M. Defense, “Software problem led to system failure at dhahran, saudi
arabia,” US GAO Reports, report no. GAO/IMTEC-92-26, 1992.

[46] J. Zhou, K. Hänninen, K. Lundqvist, and L. Provenzano, “An ontological
approach to identify the causes of hazards for safety-critical systems,”
in 2017 2nd International Conference on System Reliability and Safety
(ICSRS), pp. 405–413, 2017.

[47] X. Diao, M. Pietrykowski, F. Huang, C. Mutha, and C. Smidts, “An
ontology-based fault generation and fault propagation analysis approach
for safety-critical computer systems at the design stage,” Artificial Intel-
ligence for Engineering Design, Analysis and Manufacturing, vol. 36,
p. e1, 2022.

320

