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Abstract—Defect data is critical for software defect prediction.
To collect defect data, it is essential to establish links between
bugs and their fixes. Missing links (i.e. low link rate) can cause
false negatives in the defect dataset, and bias the experimental
results. Despite the importance of bug links, little prior work
has used bug link rate as a criterion for selecting subjects,
and there is no empirical evidence to know whether there are
simpler alternative criteria for evaluating a project’s link rate to
aid selection. To this end, we conduct a comprehensive study
on the bug link rate. Based on 34 open-source projects, we
make a detailed statistical analysis of the actual link rates of
the projects, and examine the factors affecting link rates from
both quantitative and qualitative perspectives. The findings could
improve the understanding of bug link rates, and guide the
selection of better subjects for defect prediction.

Keywords—bug link rate; defect data; defect prediction; mining
software repositories; Bug priority

I. INTRODUCTION

Defect data plays an important role in software maintenance
especially predicting defects. Most of the existing studies
leverage the SZZ algorithms to collect defect data [11, 14,
16, 15, 18, 29], which rely on the premise that developers
leave hints or links about bug fixes in the change logs. Ideally,
when a developer fixes a bug, they will attach the necessary
information (e.g., bug id) in the change log to help trace the
bug so as to establish a link between the bug and its fixing
commit. However, it is not compulsory for developers to do
that [7]. As a result, in fact, many bug fixing commits do not
carry information about which bugs they fix [10, 26]. This
may lead to the loss of bug links, resulting in a low linking
rate (i.e., the proportion of bugs of a project that are linked
to the bug-fixing commits).

In prior studies, especially defect prediction, it has been
suggested that missing links (i.e. low link rates) can adversely
affect algorithms and functions that rely on such data [2,
5]. If some links are missing, the bug-fixing changes cannot
be identified. Hence the involved modules will be treated
as defect-free, which leads to false negatives in the defect
dataset. Building defect prediction models based on such
biased datasets will threaten the validity of conclusions and
findings. Therefore, the links between bugs and their fixes play
an important role in the dataset quality for defect prediction.
Hence it is suggested to perform studies on the subjects with
higher link rate to ensure the defect data quality. However,
despite the significance of the bug links, little prior work
leverages bug link rate as a criterion for selecting high-quality
research subjects before data collection, which may skew

the conclusions. One possible reason for this may be that
calculating the link rate of a project is time-consuming [9,
12, 25]. As a result, it is valuable to investigate whether there
are more accessible factors to help select projects with high
link rates.

To this end, we are motivated to conduct a comprehensive
study on the bug-fixing links and the factors that affect the
link rate of a project. Based on 34 large open-source projects,
we make a detailed statistical analysis of the actual linking
rate of the projects and examine the factors affecting the link
rate from both quantitative and qualitative perspectives.

Following are the main contributions:
1) We collect data from more than 600 popular projects and

screen out 34 projects to investigate the actual link rate.
The results reveal that, for most studied projects, the
link rates are over 60%. However, there are still 23.5%
of projects whose link rate are relatively low (less than
60%), with a minimum value of only 9%.

2) We analyze the correlation between the bug priority and
the link rate. The results show that the proportion of
bugs with high priority is positively correlated with link
rates at the significant level of 0.01. This can provide
researchers with an alternative criterion to estimate the
link rate when selecting projects.

3) We study the factors affecting link rate from both
quantitative and qualitative perspectives. For the
quantitative study, we design five metrics from two
dimensions of software development efficiency and
bug reporter quality, and the results reveal a significant
correlation between bug reporter quality and link rate.
For the qualitative study, we manually analyzed the
possible reasons for the low link rate and summarized
the reasons into three aspects, including lack of attention,
lack of standards, and invalidation of bug reports.

The findings and implications in this study will help re-
searchers to identify better research subjects with higher link-
ing rate, and give some inspiration for developers to improve
the link rate of their project.
Paper outline The remainder of this paper is organized as
follows. SectionII explain our research motivation. SectionIII
describe the data we collected and the experimental setup, in
SectionIV, we present results for three research questions and
discuss the implications, and Section V discloses threats to
the validity of this study. Finally, Section VII concludes our
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paper.

II. MOTIVATION

In software development, version control systems (e.g. GIT)
and issue tracking systems (e.g. Jira) are widely used for
project management. The former contains information on
software developments, including the source codes, commits,
change logs, etc. While the latter includes defect information,
such as bug reports and their status. Such information is
valuable for software quality assurance, especially predicting
defects [3]. To collect defect data from them, existing studies
mostly leveraged the SZZ algorithm [33] and its variants [8].
The main steps are as follows: (1) identify the bug-fixing
commits by establishing links between bugs and their fixes;
(2) leverage the diff command to locate the modified lines
purely for fixing bugs; (3) trace back through the code history
to identify the changes that induce buggy lines by the annotate
and blame commands; (4) finally, filter out the innocent ones,
such as changes on blank lines, comments, etc [33, 9].

In the process of the SZZ algorithm, the links between bugs
and their fixes play an important role in identifying the bug-
fixing commits. Establishing such links relies on the premise
that developers leave information about bug fixes when they
commit code changes to deal with a bug. For example, when
a developer submits a commit for purely fixing a bug, he is
supposed to attach the necessary information (e,g. bug id) in
the change log to help trace the bug. However, in practice,
some developers neglect to do that since it is not a mandatory
action. As a result, many bug links cannot be successfully
established, which causes the link rate of the project to be
relatively low. For a project with a low link rate, many bug-
fixing commits cannot be identified, the related modules hence
will be treated as defect-free, resulting in false negatives in
defect data. Training defect prediction models using the defect
data collected from such projects will bias the experimental
results. In addition, it has been pointed out in prior works
that, link loss can also lead to dataset quality problems, which
adversely affect applications and algorithms relying on such
data [6, 7, 2, 5]. Therefore, before collecting defect data, it
is necessary to select those projects with the higher link rate
as experimental subjects to ensure the data quality. However,
few prior studies have used bug link rate as one of the criteria
for selecting subjects.

Even though researchers are aware of the importance of
link rate and try to select projects based on their link rates,
there are still some difficulties in practice. One reason is that
calculating the link rate is time-consuming [9, 12, 25]. It may
be frustrating that, despite a lot of effort in calculating the link
rate of a project, researchers should still abandon it if it has
a low link rate. So it might be more acceptable if there were
simpler alternative criteria for evaluating a project’s link rate
to help with selection.

Due to the importance of link rate, many studies have
been conducted to investigate bug links, mainly including
two aspects: (1) investigated the impact of missing links
on the dataset quality [2, 26]; (2) proposed a number of

automated or semi-automated tools to create data on links
between bugs and bug fixing changes, such as Linkster [6],
Relink [35], and so on. These studies provided a foundation for
subsequent research about bug links. However, as mentioned
above, there are still some limitations regarding bug links that
are unresolved in the existing studies.

(1) When collecting defect data, existing studies ignored the
link rate when selecting experimental subjects. Consequently,
the link rates of candidate projects were unclear, which may
adversely affect the reliability of defect prediction results.

(2) Many previous studies have investigated the impact of
low link rates on the quality of datasets, but there is still no
empirical evidence to know which factors may affect link rates.

(3) Calculating link rates may consume a significant amount
of work, such as some consumption on projects with low
link rates may be worthless. However, previous studies have
not presented effective ways to help researchers preliminarily
determine the link rate of a project.

In order to fill the gaps left by the previous work, we
collected data from 34 large open-source projects from the
Apache Software Foundation as our dataset and conducted a
comprehensive study on the bug link rate.

III. METHODOLOGY

In this section, we first highlight the three research questions
of our study. Then we describe the data collection method in
detail. After that, we present the definition and calculation
approach of link rate. Finally, we introduce experimental
methods for these three research questions.

A. Research questions

RQ1: What are the characteristics of projects’ link rates?
As we know, collecting defect data for projects with high

link rates is critical to ensure data quality. But unfortunately, it
is still unknown how the link rate is distributed in open-source
software projects. This gives rise to the question of whether
there is a risk in randomly selecting subjects from them to
collect defect data. Intuitively, if the link rates of all (at least
most) projects are very high, then the quality of candidate
projects selected from them will be satisfactory. But if, on the
contrary, a large percentage of projects have a low link rate, it
would be unwise to select such projects for defect prediction
randomly. Therefore, to gain insights into the link rate, this
question is proposed for investigating the characteristics of
projects’ link rates.

RQ2: What is the relationship between project link rate and
bug priority?

To some extent, the priority of a bug reflects its severity.
In general, the developers usually pay more attention to the
bugs with a higher priority. Therefore, intuitively, the higher
the priority of a bug, the higher the probability of being dealt
with. If there are more high-priority bugs in the project, more
bugs may be dealt with, and thus the link rate may be higher.
This leads us to naturally conjecture that there is a positive
association between the link rate and the proportion of high-
priority bugs. To verify this assumption, we propose RQ2.
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Figure 1. A bug report of JIRA with issue ID ROL-2164.

For this research question, we will investigate the relationship
between the priority of bugs and the link rate of these research
projects.

RQ3: What factors affect the link rate of a project?
Despite the importance of link rate, few existing defect

prediction studies have used link rate as a screening crite-
rion when selecting study subjects. The main reason is that
calculating the link rate is time-consuming, and there are no
relevant criteria to help estimate the link rates of candidate
projects. To address this deficiency, in RQ3, we analyze
which factors affect the link rate of a project. Based on the
experimental results, we will derive informative implications
to help researchers filter out these high link-rate projects.

B. Data collection

Issue tracking systems store valuable data for software qual-
ity assurance. In particular, Jira, as an issue tracking system, is
widely adopted to manage issues by a large number of open-
source projects. Since Jira contains detailed event information,
many previous studies have constructed defect datasets by
mining bug data from Jira [9, 37, 22, 19, 32]. Specifically,
bug reports in Jira are often linked to corresponding bug fix
commits. Therefore, in order to study the links between bug
reports and commits, we also collect bug data from Jira. In
the Jira system, each Jira issue report is assigned a unique
issue id. The issue id is composed of the project name and
number. For example, ROL-2164, as shown in Figure 1, is an
issue id for the project Apache Roller. Table I illustrates fields
of an issue we collect from Jira. The first column is the name
of the attributes and the second column is the corresponding
description.

TABLE I
THE ATTRIBUTES COLLECTED IN ISSUE REPORTS.

Attribution Description

Title A title of reports which briefly describe this issue
Description The detail description of issue
Id Consists of keywords and an unique numbers that

identify issue reports and establish link between bug
and bug-fixing commits

Type The type of this issue report
Status The current status of the issue being processed
Resolution The result of the issue being processed
Priority Indicates the priority of the issue being processed
Reporter The person who reported the issue

Figure 2. The distribution of issue report types in 659 projects.

Among the projects that use Jira to manage their issues, we
select Apache open-source projects as our research projects.
The major reasons are as follows: 1) they employ Jira to store
and manage their issues, which ensures we can obtain suffi-
cient information on issue reports to build a dataset; 2) they
are mature, which means these projects have abundant data
of issue reports and commits log; 3)open-source extensively
applied in various domains, even make our study results more
convincing and reduce threats to external validity; 4) they are
widely served as research subjects in previous studies, which
proves that the data collected from Apache projects are suitable
for software engineering study [9, 7, 34, 23].

659 Apache open-source projects’ issue reports are col-
lected. According to the report’s type, we count the proportion
of different types of issue reports and present the results
in Figure 2. Each sub-part represents the proportion of the
corresponding type. As it is shown in Figure 2, 51.9% of issue
reports report bugs. In addition, for these 659 projects, we also
collect the data of commits, pull requests, and git issues from
GitHub.

Project filtering: From these 659 projects, we will filter the
dataset to make the projects closer to the ones that might
be selected in a real defect prediction study. We formulate
three rules to select projects, and the incompetent projects
will be excluded. The three rules are as follows. First, by
manually checking, we find some projects are inactive or
retired. To avoid the influence of outdated data, the projects
should be active in the recent year. Second, we find that in
some projects, the data of bug reports is insufficient. These
projects either have not enough issue reports, or the percentage
of bug reports is too low. Therefore, we retain the projects
with over 1000 issue reports and a bug report percentage of
over 50%. Third, the projects should only host their code in
one GitHub repository. Since some projects are distributedly
managed in multiple repositories and lack an explicit list to
record the information of repositories. This case may affect
data integrity.
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Figure 3. The distribution of issue report types in the selected 34 projects.

TABLE II
THE STATISTIC OF QUANTITY RANGES OF ISSUE REPORTS IN 34 PROJECT

Range Projects Proportion

Between 1000 and 2000 13 38.23%
Between 2000 and 3000 7 20.59%
More than 3000 14 41.18%

Finally, after the filtering process, 34 projects are left. We
further collect the data for these 34 projects, which contains
issue reports from JIRA and the information of all commits,
pull requests and git issues from Github. Table II shows
the distribution of the number ranges of issue reports for
the 34 projects. We divide the projects into three different
intervals based on the number of issue reports. The first
column indicates the quantity ranges of issue reports, the
second column indicates the number of projects belonging to
this range, and the third column is the proportion of these
projects. For example, the first row of Table II indicates that
there are 13 projects with the number of issues between 1000
and 2000, accounting for 38.23%(13/34).

Furthermore, we count the proportion of different types
of reports for these 34 projects and show their average
distribution in Figure 3. As shown in Figure 3, 60.8 percent
of issue reports report bugs. Compared with Figure 2, the
filtering process increases the percentage of bug reports. More
specifically, Figure 4 further illustrates the statistics of bug
ratios of these 34 projects using a boxplot, which shows the
median (the horizontal line within the box), the 25th, and the
75th percentiles (the lower and upper sides of the box) of the
proportion of bugs. Each point in Figure 4 stands for a project,
and the value in the vertical axis represents the corresponding
percentage of bugs. As it is shown in Figure 4, the bug ratios
of these 34 projects are relatively high, with an average bug
ratio of 62.04%. Particularly, of these projects, four have a
bug report percentage above 80%.

C. Definition of link and link rate

To study link rate, we first filter out the valid bugs, then
establish links between them and their fixes, and finally
calculate the link rate for each project (i.e. the proportion of
bugs of a project that are linked to the bug-fixing commits).

Bug filtering: In order to filter out the valid bugs, we did
the following process. First, we ignore all the bugs marked

Figure 4. The percentage of bugs in 34 projects.
with OPEN, since apparently there is no full fix commits for
them. Second, we exclude the invalid bugs, as they would not
be dealt with. More specifically, in the CLOSED bug reports,
there are many invalid issue reports, which are indicated in
the RESOLUTION field. Table III lists the resolutions to the
common invalid bugs. In Table III, the first column shows
the common resolution types of invalid bugs, and the second
column is the corresponding description. For these bugs with
the resolutions in Table III, we call them invalid bugs. In
summary, both the unresolved and invalid bugs, they do not
have corresponding bug-fixing commits. If we take them into
account when we calculate the link rate, it will reduce the
real link rate of the project, thus adversely affecting the results.
Therefore, we exclude them to ensure the validity of our study.

TABLE III
THE INFORMATION OF INVALID BUGS.

Resolution Description

Duplicate The problem is a duplicate of an existing issue.
Won’t Fix The problem described is an issue which will never

be fixed.
Cannot
Reproduce

All attempts at reproducing this issue failed, or not
enough information was available to reproduce the
issue. Reading the code produces no clues as to
why this behavior would occur. If more information
appears later, please reopen the issue.

Incomplete The problem is not completely described.
Not A Problem The described issue is not actually a problem - it is

as designed.
Not A Bug Not A Bug.
Won’t Do Won’t Do.
Invalid The problem isn’t valid and it can’t be fixed.

Link establishing: To establish links between bugs and their
fixes, many existing studies took advantage of the Jira add-
ons, which is convenient to refer to the bug report which they
are addressing in the commit logs. With such benefit, the links
between bugs and commits can be automatically inferred when
commits are checked into the repository [7]. However, with
manual checking, we found that many projects did not adopt
this function to manage their bugs. Therefore, to guarantee the
integrity of the link data, we take a different approach to build
links. We use the hints about bugs left by the developer in the
change log, such as bug ID, to establish the links. During
the process of building links, we found two kinds of links,
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which we call direct links and indirect links. The direct link
means that the defect information is directly attached to the
commit log. While the indirect link indicates that there is no
direct correlation between bug report and bug fix commit, but
through issue or pull request indirectly. For different types of
links, we use different strategies to establish bug links. Details
are as follows. In particular, for the one-to-many case (i.e. a
bug is fixed through multiple commits), we only create one
link. What is more, for the correctness of the data collection
process, the authors double checked the accuracy of the link-
establishing scripts.

Direct link The bug information is directly attached to the
bug-fixing commit log. Figure 5 shows an example of a direct
link. As can be seen, the bug id ”OPENJPA-2861” is explicitly
attached in the message of a fixing commit. In such cases, we
establish links by extracting bug ID from bug-fixing commits
straightly. As is shown in Figure 6, we first extract the bug
id from bug-fixing commits. Second, we search bug reports to
find the report with the same bug id. Finally, we establish a
link between them.

Figure 5. An example of bug fixing commit that contains Bug ID .

Figure 6. The method of establishing direct links for the bug fixing commits
.

Indirect link There are two cases of indirect links. (1)
Developers attached bug ID to the pull request page but
neglected to attach it to the involved commits. Figure 7 shows
an example of an indirect link with a pull request. The bug
ID CXF-8345 is attached to the title of the pull request. As
can be seen, this pull request is merged for fixing bug CXF-
8345. However, the corresponding bug ID is not added to the
change log of the commits involved in this pull request. In
such case, if we only search the bug information in the commit
log, we will lose the link for this bug. In order to establish the
indirect links based on pull requests, as is shown in Figure 8,
for each project, we check if the pull requests contain bug-
fixing information. We consider the pull requests with bug ID
to fix bugs. We mark the involved commits in this pull request
as bug-fixing commits. Finally, we establish an indirect link
between these commits and the bug report.

Figure 7. An example of Pull Request that contains Bug ID .

Figure 8. The method of building links for the merge commits of Pull Request
which contains Bug id .

(2) Developers attached bug ID to the issue page but
neglected to attach it to the involved commits. Figure 9 shows
an example of an indirect link with a git issue. The bug ID
COUNCHDB-3221 is attached to an issue page. As can be
seen, issue #858 is created for fixing bug COUNCHDB-3221.
However, the corresponding bug ID is not added to the change
log of the commits involved. In such a case, we should extract
the bug ID from the Issue information to prevent the loss of
the link. As is shown in Figure 10, first, we search for bug id
from the issue pages. second, we mark the involved commits
based on the issue ID as bug-fixing commits. Third, we search
for bug report by the same bug ID and establish links between
the bug report and the involved commits.

Figure 9. A example of Issue that contains Bug ID .

Figure 10. The method of building links for the corresponding commits of
Issue which contain Bug ID .

Link rate calculation: With the dataset collected above, we
calculate the link rate. In this study, the link rate means the
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percentage of valid bugs which are linked to their bug-fixing
commits. We establish the links for the valid bug reports that
meet the three conditions described above. Specifically, for a
project, assuming that the number of valid bug reports is Y ,
out of Y bug reports, the number of linked bug reports is X .
Then, the link rate of a project is X/Y .

D. Validate method

In this section, we illustrate the validation methods for each
research question.

To answer RQ1, we will calculate the link rate for each
project following the steps in section III-C, and perform
statistical analysis to study the characteristics of projects’ link
rates.

For RQ2, we will study the relationship between project link
rate and bug priority. In Jira, each bug report is prioritized
based on the property of the bug report and then assigned
to the fixer. By observation, the priority of the bugs in these
projects are labeled in five levels, including Blocker, Critical,
Major, Minor, and Trivial from highest to lowest severity,
which is shown in Table IV. In Table IV, the first column is the
name of priorities and the second column is their description.
We calculated the proportion of various priority bugs of each
project. Moreover, we classify the Blocker, Critical and Major
bugs as Urgent bugs, and the Minor and Trivial bugs as non-
Urgent bugs. We will analyze the correlation between different
level priorities and the link rate by the Pearson correlation
analysis method.

TABLE IV
THE PRIORITY LEVEL IN OUR REPORTS DATA.

Attribution Description

Blocker Blocks development and/or testing work, production
could not run

Critical Crashes, loss of data, severe memory leak.
Major Major loss of function
Minor Minor loss of function, or other problem where easy

workaround is present.
Trivial Cosmetic problem like misspelt words or misaligned

text.

In order to answer RQ3, we investigate the factors which
may influence the link rates of projects from both quantitative
and qualitative perspectives.

In the quantitative study, we define the following six metrics
from two dimensions, including software development effi-
ciency and bug reporter quality. We adopt Pearson correlation
analysis to analyze the correlation between the metrics and the
link rate of projects.
Software development efficiency: Intuitively, in order to deliver
software products quickly, the development efficiency of the
project is often very high, and its issues are also processed
quickly. This leads us to conjecture that bugs in projects
with high development efficiency may be quick to deal with,
resulting in a higher link rate. To verify this, we collect the
following development efficiency metrics for each project.

• Mean time interval of commits(MTIC): Average inter-
val time between commits and the their next commit in
a project, in hours.

• Mean number of commits each month(MNC): For a
project, this is the average number of commits submitted
per month.

• Number of pull requests opened/closed per
month(NPRO/NPRC): We count the quantity of
pull requests opened or closed for per month.

• Mean pull request latency per mouth(MPRL): in
hours, computed as the difference between the timestamp
when the PR was closed and that when it was opened
each month. The mean is computed over all PRs since
the project was created.

Bug reporter quality: Previous studies have mentioned that a
bug reporter’s contribution may affect bug fixing, that is, the
more the bugs reporter participates in, the more likely the bug
will be fixed successfully [7]. Thus, we believe that the quality
of the bug reporter may have an impact on the link rate. The
quality of the bug reporter metric is described as follows:

• Average Quality of the bug reporters(AQR): We mea-
sure a bug reporter’s quality by the proportion of valid
bug reports in all bug reports. For instance, if a bug
reporter reported Y bug reports, and X of those bug
reports were valid, then the quality of this bug reporter
is X/Y. For the whole project, the average quality of
reporters (AQR) is the sum of each reporter’s proportion
of valid reports, and then divided by the total number
of reporters. In this study, valid bugs refer to real and
fixed bugs, excluding open bugs and invalid bugs (with
the resolutions in TABLE III).

In the qualitative study, we manually analyze the factors
affecting the link rate. The manual analysis was completed by
two researchers, a master student and a supervisor of master’s.
Specifically, the student discovers the phenomena in data,
analyzes the reasons and summarizes the findings. The mentor
is responsible for checking these phenomena, verifying these
findings, and summarizing the implications.

IV. EXPERIMENTAL RESULTS

In this section, we report the detailed experimental results.
Section IV-A presents the calculation results of the link rate of
our dataset(RQ1). Section IV-B shows the results of analyzing
the correlation between link rate and priority of bugs(RQ2).
Section IV-C reveals the results from both quantitative and
qualitative studies(RQ3).

A. RQ1: What are the characteristics of projects’ link rates?

To answer RQ1, we establish links for valid bug reports
and calculate the link rate for each project. The method of
link establishing and link rate calculation has been introduced
in Section III-C.

Figure 11 shows the distribution of link rates of all projects.
In Figure 11, each point stands for a project, and the corre-
sponding value in the vertical axis represents the link rate of
this project. As can be seen, the highest link rate is 96.4% and
the lowest one is 9.5%. Most projects’ link rates are between
60% and 90%. In addition, Figure 12 reveals the distribution
of link rate ranges. According to the link rate, we divide the
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Figure 11. the link rate for each project

Figure 12. The distribution of link rate ranges

projects into eight ranges. For Example, 23.5% projects have
a link rate in the range of (70,80], which means the link rate
is more than 70% but less than 80%. As shown in Figure 12,
there are approximately 76.5% (26/34) of projects whose link
rate is more than 60%, which belong to high link rate projects.
Particularly, 11.8 percent of studied projects have a link rate of
more than 90%, which is promising as experimental subjects.
However, in contrast, there are about 23.5% (8/34) of projects
whose link rate is less than 60%, which belong to low link
rate projects.

Finding 1: For most studied projects, the link rates are high
(over 60%). However, there are still 23.5% (8/34) projects
whose link rate are relatively low (less than 60%), with a
minimum value of only 9%.

Implication 1: Since there are still many projects with low
link rates, randomly selecting projects to collect bug data may
bias the results. It is recommended to use the link rate as a
criterion to select the experimental subjects.

B. RQ2:What is the relationship between project link rate and
bug report priority?

To answer RQ2, we analyze the correlation between the
priority of bugs and the link rate of projects by Pearson
correlation analysis. For each project, we calculated the ratio
of all priorities. Then, we analyzed the correlation between
both Urgent bugs and non-Urgent bugs and the link rate.

Table V shows the result of the Pearson correlation coeffi-
cient between the two kinds of priority levels and link rate. The

TABLE V
THE CORRELATION COEFFICIENT OF PRIORITY AND LINK RATE BY

PEARSON ANALYZE.
Metrics correlation coefficient

Urgent 0.635 (***)
Non-Urgent 0.101

first column is the name of the bug’s priorities, and the second
column is the correlation coefficient of different priorities and
the link rate at the significant level of 0.05 (denoted by *),
0.10 (denoted by **), or 0.01 (denoted by ***). As shown
in Table V, the proportion of Urgent bugs is significantly
associated with the link rate of projects at the significant level
of 0.01. To further figure out which of the three different

TABLE VI
THE CORRELATION COEFFICIENT OF BLOCKER, CRITICAL AND MAJOR

PRIORITY AND LINK RATE BY PEARSON ANALYZE.
Metrics correlation coefficient

Blocker -0.025
Critical 0.099
Major 0.661 (***)

priorities of Urgent bugs (i.e. Blocker, Critical and Major
priorities) are easier to be fixed. We analyzed the correlation
between them and the link rate separately. The results of the
correlation analysis are shown in Table VI. The result shows
Major bugs have a significant positive correlation with link
rate, while Blocker and Critical, two higher priority grades, are
not correlated with link rate. The reason for this result may be
that the dataset is collected from Apache projects, which are
mature and stable. In addition, the development teams of these
projects are experienced. As a result, the number of Blocker
and Critical bugs is extremely less. To verify this inference,
we average the percentages of different priorities for the 34
projects and reveal the result in Figure 13. As it can be seen
from Figure 13, the average proportion of bug reports for
Blocker and Critical is only 5.31% and 6.10%, respectively,
resulting in no significant correlation between them and links.

Figure 13. the distribution of different priorities in all projects
Finding 2: The proportion of Urgent bugs is positively

correlated with the link rate at the significant level of 0.01.
Particularly, in the Urgent priority bugs, the proportion of the
Major bugs have a significant positive correlation with the link
rate.

Implication 2: For a project, the higher proportion of
bugs with high priority, the higher its link rate is probably
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to be. When selecting experimental projects, researchers can
prioritize those with a higher proportion of Urgent bugs.

C. RQ3:What factors affect the link rate of a project?

To answer RQ3, we present our results from both quantita-
tive and qualitative analysis.

Quantitative study we analyze the correlation between the
link rate and two kinds of metrics, including four metrics
for software development efficiency and one metric for bug
reporter quality, by Pearson correlation analysis. Table VII
shows the results of the Pearson correlation analysis. In
Table VII, each cell with a value indicates the correlation
between the metric and the link rate at the significant level of
0.01 (denoted by ***), 0.10 (denoted by **), or 0.50 (denoted
by *).

From Table VII, we find that the metrics of software
development efficiency are not significantly associated with
link rate. On the contrary, the correlation coefficient between
AQR and link rate is 0.603 at the significant level of 0.01,
which means the average quality of bug reporters is positively
associated with the link rate of projects. The reason may
be that, low-quality bug reports cause a lot of extra work
for developers, e.g. bug reports with vague descriptions can
mislead developers. It has been noted that bugs submitted
by high-quality reporters were more likely to be fixed [40].
Therefore, for developers, high-quality bug reports submitted
by experienced reporters can help them complete bug fixes,
thereby establishing bug fixing links. Moreover, the daily
development effort involves many activities in addition to bug
fixing, such as implementation of new features and software
refactoring. High development efficiency does not mean high
defect fixing efficiency. Therefore, development efficiency
does not necessarily correlate with link rate.

TABLE VII
THE CORRELATION COEFFICIENT OF SOFTWARE DEVELOP EFFICIENCY

AND LINK RATE BY PEARSON ANALYZE.
Metrics Metrics correlation coefficient

Software development efficiency

MTIC -0.196
MNC 0.153
NPRO 0.271
NPRC 0.156
MPRL 0.241

Bug reporter quality AQR 0.603 (***)

Findings 3: The quality of bug reporters is positively
associated with the link rate. And the development efficiency
of projects does not show a significant association with link
rate.

Implications 3: The projects with higher average quality
of reporters have higher link rate. For researchers, this result
provides them with a preliminary judgment about the link
rate. Compared with calculating the link rate of all projects,
this preliminary judgment may reduce the effort in project
screening.

Qualitative study we further study the factors affecting the
link rates by manual inspection of our dataset. The findings

are as follows. We attempt to give reasonable explanations and
implications, so as to give some inspiration to developers who
are trying to improve the link rate of their projects. The results
are as follows.

(1) Lack of attentions For some projects, in the early days
of using Jira to manage bugs, their link rates are relatively low.
However, in the later period, the link rates of these projects
increase significantly. We find that choosing a time point is
critical, and link rates differ significantly before and after
that point. For example, in the Daffodil project, we select
1 January 2018 as a time point and calculate the link rate
for two periods. The link rate before the point is 8.18%, and
after the point is 83.61%. The link rate of the two periods in
Daffodil was significantly different. The reason may be that in
the early period of using Jira, the development team did not
pay enough attention to Jira usage specifications. Therefore,
the link rate is relatively low during this period. After a
certain moment, the development team paid more attention
to the usage specification of Jira, and consciously added bug
information to the commit log when repairing bugs. Therefore,
the link rate increases after this time. In addition, to check
the influence of data imbalance on this conjecture, we further
examine the number of bugs before and after the time split
point. We find that, there were 653 fixed bugs before the split
point and 406 fixed bugs after the split point, which indicates
that there is no significant imbalance in the data.

Finding 4: Link rates of some projects significantly change
with time.

Implication 4: Developers who want to improve bug trace-
ability should pay more attention to the mechanism of the bug
tracking system when managing and fixing bugs. In addition,
if researchers want to preliminarily judge the link rate of a
project by observing the historical data, they need to observe
the link situations in different periods.

(2) Lack of standards By checking the GitHub repositories,
we find that some projects with a high link rate have an
explicit contribution guideline that regulates how developers
can formally contribute a bug-fixing commit. These contribu-
tion guidelines are usually documented in README, wiki, or
other files. The contribution guidelines illustrate the process
for contributing bug-fixing commits and the specification for
attaching bug IDs to the commits’ log. For example, the link
rate of the Ranger project is 84.49%, which is high. It is a
contribution guideline, as shown in Figure 14, requires devel-
opers to commit the changes with the comment containing the
Apache Jira number. Therefore, a standardized contribution
guideline can help developers to standardize commits, thus
avoiding link loss.

Finding 5: A standardized contribution guideline may help
improve the link rate of the project.

Implication 5: For software development, a contribution
guideline should be developed to guide contributors’ commit
specifications, especially the standards of bug-fix information
in the change log.

(3) Invalidation of bug reports we examine invalid bug
reports and count the proportion of different resolutions of

184



Figure 14. Contribution guides of Ranger.

Figure 15. The distribution of different resolutions of invalid bug reports.

invalid bug reports. Figure 15 shows the distribution of differ-
ent resolutions. These data can be obtained from the RESOLU-
TION field of reports, which reflects the processing result of
bugs. Of these different resolutions, Duplicate, Won’t Fix and
Cannot Reproduce are the three most common, causing almost
60% of bug reports to fail. In addition, invalid bugs will cause
some disturbance to the fixers, thereby reducing the efficiency
of bug fixing and delaying the establishment of bug links. In
this context, we further attempt to give the reporter guidance
on improving the report’s quality by analyzing the causes of
invalid bugs. We manually analyze the reasons for the top three
resolutions of invalid reports and provide inspiration to avoid
submitting invalid reports.

Duplicate: This resolution indicates that the bug has been
reported in the past. It is emphasized that bug reporters should
first inquire about Jira to see if this bug has been reported
when reporting a bug. However, some reporters ignore this
rule when reporting, resulting in duplicate bugs, which is the
most common reason for invalid bug reports.

Won’t Fix: This resolution indicates that the bug does not
need to be processed. There are three main reasons why bug
reports are marked as Won’t Fix :

• The reporter reported other purposes in bug reports.
The main reason for this is that they do not understand
the mechanics of Jira. For example, in Figure 16, the
reporter submits a report to seek project support rather
than recording a bug.

• The reporter reported a report that is not a bug. For
example, in Figure 17, the reporter reports a problem but
it is the default configuration and design of the system.

Figure 16. Aa example of a bug report ROL-1784.

Figure 17. An example of a bug report ZEPPELIN-5389.

• The reporter reported a solved bug. This is different
from Duplicate. For example, in Figure 18, the reporter
illustrates a bug that has been fixed in the new version.
Thus, the bugs won’t fix.

Figure 18. An example of a bug report ZEPPELIN-4470.

Cannot Reproduce: This resolution indicates that the in-
formation about the bug is too little to reproduce the bug.
This is mainly because the reporter did not specify the bug in
detail. Therefore, developers can not reproduce this bug. In the
READMEs of some projects, it is mentioned that the reporter
should accurately describe the bug and its occurrence, so that
developer can solve the problem faster and better.

Findings 6: The three types that account for the largest
percentage of invalid bug reports are Duplicate, Won’t Fix,
and Cannot Produce.

Implication 6: The suggestions to avoid the three invalid
bugs and increase the success rate of reporting bugs are as
follows:

• In order to avoid Duplicate bugs, reporters should query
whether it has already been reported in Jira before re-
porting bugs. Development teams should post available
guidelines to constrain reporters. To support our infer-
ence, we manually checked two projects, Syncope and
Openjpa, with high link rates of 96.46% and 89.39%,
respectively, which clearly state that reporters should
search existing issues in Jira to check whether the same
issues have been reported. Particularly, in terms of invalid
bugs, the percentage of duplicated bug reports in these
two projects are 9.75% and 22.16% respectively, lower
than the average value of all projects. To some extent,
this result suggests that a clarity guideline can help reduce
Duplicate reports.

• To avoid reporting a Won’t Fix bug, firstly, reporter
should make sure they want to report the bug rather
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than other purposes, such as asking for help; Secondly,
reporter should determine if it’s a real bug rather than a
configuration or design problem; Finally, reporter should
avoid reporting bugs that occurred in older version but
have been fixed in the new version.

• In order to avoid reporting a bug that Cannot Reproduce,
reporter should add enough detailed information in the
report so that the fixer can reproduce the bug easily.

V. VALIDITY

In this section, we discuss the most critical threats to the
validity of our study, including Internal validity, External
validity, and Construct validity.

Internal Validity Threats to internal validity are concerned
with potential deficiencies in the link establishment. In our
study, if the method of establishing links is flawed, it will
impact the results. To mitigate the threats, we integrally
collect commit, pull request, and issue data, which almost
contain all project’s bug-fix information. Additionally, like
previous studies, we match the bug id extracted from such
data with the bug report to create a link. While we’ve collected
almost all the information about bugs from GitHub, it’s still
possible that some factors that cause bug links to be lost.
For example, a link cannot be established because of a typo.
This case may cause false negative effects, but the existing
method of building bug links cannot wholly avoid human
causes. In addition, in previous studies, the accuracy of link
recognition methods cannot reach 100%. For example, Relink,
and traditional heuristics identify links with 89% and 91%
accuracy, respectively.

External Validity Threats to external validity are concerned
with the generality of our conclusions. To mitigate external
threats, we conducted experiments on 34 Apache open-source
projects with applications in various domains. Each project’s
data size is different (more than 1000 submissions, more than
50% of bugs in all reports). To enhance the generality of
conclusions, we build a large dataset in our study. However,
since our research projects are only based on the JAVA
language, and their bug report data is only collected from
Jira, the conclusions may not be appropriate for every project.
In future work, we will attempt to study projects from other
languages and other Issue Track systems, such as Bugzilla, to
expand our research scope. In addition, we did not use big data
to support the manual findings. For example, in finding 5, we
did not use supportive data to demonstrate a direct relationship
between self-report and link rate. In future research, we will
try to find some reasonable supporting evidence to help us
understand our conclusions.

Construct Validity The main threats to construct validity are
related to the correlation analysis method. In the correlation
research, we only use the Pearson correlation analysis method
to measure it. However, Pearson correlation analysis has been
widely used in the field of empirical software engineering in
the past, which proves that the results obtained by this method
are effective. Besides, for RQ3, we investigated the factors

which may influence the link rates through five metrics, which
may not be comprehensive. We will design more metrics for
more systematic analysis in future work.

VI. RELATED WORKS

A. Bug link

Many previous studies focus on the bug link. On the one
hand, some studies proposed various tools to identify bug-
fixing commits and build bug links.

Fischer et al. [10] proposed a technique to establish the
relationship between code modification and bugs based on
keyword extraction. More specifically, they mainly extracted
bug id from historical data to link bugs. After that, Sliwerski et
al. [33] and Bachmann et al. [1] respectively added the rule of
time filtering to their studies based on keyword extraction and
further proposed methods for building bug links. Then, Wu et
al. [35] proposed Relink model to recover bug links. Compared
with prior studies, they considered the similarity of natural
language text. Except for text similarity, some researchers
also associated words between the description of a bug report
and commit message based on context relationship, such as
MLink proposed by Nguyen et al. [24] Moreover, for these
bugs whose information of bug report and commit are empty
or minimum, Le et al. [21] proposed RClinker to solve this
problem. RCLinker relied on Change Scribe, an automatic tool
to produce the description information of bug reports and com-
mits, and extracted the feature from the information to create
a model. This method can predict if a link exists between
a commit and a bug report. Besides, the scenario of bug-
fixing commit is also used in link establishment studies, such
as PaLiMod model [28]. In recent years, Machine learning
appeared more and more in the research of recovering bug
links. For example, Xie et al. [36] proposed Deeplink, a deep
learning approach for link recovery.

On the other hand, some researchers proposed studies about
the impact of bug links on software projects. A series of studies
have discussed the effects of the bug link on other research.
For example, Bachmann et al. [3] mentioned that missing
links in the dataset might cause quality problems in research,
adversely affecting applications or algorithms in academic
research. Moreover, Rahman et al. [26] also indicated that such
data may cause bias in defect prediction, but these biases can
be alleviated by increasing the dataset’s sample size.

B. Bug report

The bug report is closely related to the management of
software projects, and many papers have studied the quality
and content of bug reports. A good bug report can reduce
the workload of developers in maintaining projects. To help
reporters report bugs better, Bettenburg et al. [4] and Zimmer-
mann et al. [39] both proposed papers about how to write
a good bug report. In addition, many studies have offered
automated tools to manage bug reports. Herzig et al. [13]
found that bug reports were frequently misclassified, and there
were 39% of files were misclassified as defective. To solve
this problem, Terdchanakul et al. [30] proposed a bug report
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classification model to classify bugs. Yu et al. [38] proposed
an automated method to classify bug reports by mining text
information. There are also many automated methods for bug
priority judgment and prediction. For example, Kanwal et
al. [17] proposed a practical approach to recommend bug pri-
oritization to triage based on machine learning automatically.
Yuan et al. [31] proposed an automated prediction model for
report priority. Moreover, there are many automated methods
to judge and predict the bug’s severity. Lamkanfi et al. [20]
proposed a tool to predict the severity of bug reports through
text mining algorithms, which can help the inexperienced
triage make estimates. Ramay et al. [27] also proposed an
automatic classification method to predict the severity of bug
reports based on neural networks.

These studies have researched the impact of bug reports
from different perspectives and proposed various automatic
tools. Besides, they have greatly improved the quality of bug
reports and reduced the consumption of manual inspection.

VII. CONCLUSION

In this paper, we conduct a comprehensive study on bug-
fixing links. First, we perform statistical analysis to study the
characteristics of projects’ link rates. The results show that
for most studied projects, the link rates are high. However,
there are still 23.5% of projects whose link rate are relatively
low (less than 60%), with a minimum value of only 9%.
Second, we study the relationship between project link rate
and bug priority. We find that the proportion of Urgent bugs
is positively correlated with the link rate at the significant level
of 0.01. Particularly, in the Urgent priority bugs, the proportion
of the Major bugs have a significant positive correlation with
the link rate. In addition, we examine the factors affecting the
link rate from both quantitative and qualitative perspectives. In
terms of quantitative study, the results reveal that the quality
of bug reporters is positively associated with the link rate. In
terms of the qualitative study, we manually summarize three
main reasons for the low link rate, including lack of attention,
lack of standards, and invalidation of bug reports. To better
understand the findings, we also raise the implications for each
finding. The findings and implications in this study will help
researchers to identify better research subjects with higher link
rate, and give some inspiration for developers to improve the
link rate of their projects.
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