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Abstract—The software defect prediction method based on
requirement specification is proposed to address the defect
prediction needs in the requirements phase when the organization
adopts the W-model of software development. The theoretical
synthesis presents that the function point and the number of
defects should be positively correlated. The theory’s correctness
is verified by analyzing the correlation between function point
and defect distribution of eight software applications. Then,
the mathematical equations for software configuration testing
defects are derived, and the specific meaning of the equation
is explained. Finally, the shortcomings of this study and the
subsequent research directions are pointed out.
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I. INTRODUCTION

Software defect prediction is one of the key research di-
rections in software testing and software engineering. This is
because failures caused by software defects can have very
severe consequences including property damage, monetary
loss, or even human casualty [34], [36]. Software defect
prediction can predict the number of potential software bugs
and their distribution based on the code, documents, con-
figuration process information, etc. The results of software
defect prediction are very instructive for the organization’s
software testing resource allocation, software product quality
judgment, software process quality management, and software
testing result assessment. Defect prediction methods are gen-
erally based on the size of software code [2], complexity
[8], and various design parameters [11], [35]. After the pre-
processing, fitting, and regression of the inherent properties of
software and process information, a targeted prediction model
is formed. The model predicts the likelihood of the distribution
of defects in the target software.

Software configuration testing is the process of testing
software configuration items’ functionality, performance, and
other characteristics. This type of testing is typically performed
by an organization-level software testing department and al-
ways occurs when the development team has completed the
code work and unit testing. Configuration testing is crucial
throughout the software life cycle as the last step of the orga-
nization’s software quality control. In the traditional waterfall
model [3], the overall activity of configuration testing begins
when the source code of SUT (software under test) is fully
developed. The software testing member can use the source
code and the process information from the configuration man-
agement system to predict the number and the distribution of
defects. However, in the present day, to increase the software
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tester’s involvement, the V-model, or the more explicit W-
model [32] always be chosen. In W-model, testers’ activity
tends to shift left [21]. In this model, the configuration testing
plan starts in the requirements phase of the project. Testers
must decide on test strategies and allocate test resources
and complete the main test case design work before the
requirements phase is completed. Unlike the Waterfall and V-
model, the design and coding work is not carried out then.
Software defect prediction based on source code or process
information is impossible.

This study proposes a method for predicting software de-
fects using software requirement specifications as input. Thus,
the managers can obtain software fault prediction results in
the requirement phase, which may be helpful for software
activities such as software quality assurance and test resource
allocation. In terms of input parameter selection, function
point for every requirement item are used to calculate which
requirement item is more likely to have bugs. Because we
didn’t find an open-source database that we could use, we
chose eight software projects from our organization’s historical
software repository. These software projects were randomly
selected. All function point for each requirement item have
been analyzed with the IFPUG method [16]. The configuration
tests” bugs have been selected from the software configuration
testing reports. This study involves 374 functional items,
5011.24 functional points, and 233 software defects. The
results show that the probability of occurrence and number
of functional errors of software configuration items positively
correlate with the number of function point of software
requirements. Then we use the least-squares method with
curve fitting to calculate a mathematical model for defect
risk calculation. The mathematical model can use the function
point of each requirement as input and calculate the relative
risk level of defects. At last, the differences between the actual
data and the theory are given, and our insights are provided.

The subsequent chapters are organized as follows: Chapter
2 gives a brief description of the development of defect
prediction and related research works; Chapter 3 introduces
the theoretical basis of this study; Chapter 4 presents the
information of the selected validation software and the calcu-
lation of function point, as well as the difficulties encountered
in data collection and our solutions; Chapter 5 discusses the
relationship between the final function point and defects, gives
the fitting equation and analyze the engineering significance of
each parameter of the equation; Then, we give some results of
data distribution in Chapter 6. Chapter 7 explores the reasons



for the data distribution in the context of the research. Chapter
8 describes the follow-up research plan. Chapter 9 shows the
summary and outlook of this study.

II. RELATED WORKS

The original defect prediction methods are mainly based on
lines of code and their complexity-derived metrics. In 1971,
Akiyama proposed a measure of complexity based on lines
of code and used this for defect prediction [2]. Akiyama also
gave a correspondence between software defects and lines of
code based on his research sample. In 1973, Ferdinand used
the relevant information theory to analyze the complexity of a
system, the number, and the density of defects. It shows that
the larger the system size, the more possible defects [11].

There is one obvious problem with using the code line to
predict defects. This method does not include the complexity
of the software system. Based on Akiyama’s research, Hal-
stead proposed complexity metrics derived from operations
and operands in the following years. He calculated the cor-
relation between these metrics and defects, and he got the
result that the correlation coefficient is greater than 0.9 [13].
Lipow et al. generalize based on Halstead’s study by proposing
a polynomial correspondence between the LOC and defects
which coefficients depend on language-related operands [18].
But Lipow’s conclusions still had some arguments. Gaftney
proposed that the correspondence between defects and LOC
is language-independent, and he uses Lipow’s sample to derive
a more simplified relational expression independent of the
programming language [12].

Unlike the route taken by Halstead et al., who based their
calculations on the metrics derived from code and operands,
McCabe used a language-independent, structure-based ap-
proach to the complexity measure. He utilized a graphical
method to calculate the complexity of programs by computing
the circle complexity of the program’s flowchart and used this
as the primary metric for defect distribution prediction [8].
These studies, like Halstead and McCabe’s, were prevalent
around the 1980s. The effectiveness of these metrics in practice
has been evaluated and compared [4].

Most of the studies in the 1970s and early 1980s focused
on the fit of prediction models to existing program data. In
contrast, the performance of the models and their different
parameters were not validated for the new SUT. Shen et al.
selected three commercial programs as test subjects to address
this issue and validated the correlation between models and
metrics using linear regression [30]. Munson et al. stated that
the current regression model yielded inaccurate predictions
of the number of defects and proposed the classification of
modules into high and low-risk categories to replace the
number of predictions. The classification model obtained 92%
prediction accuracy on their target software [23].

The above studies are based on code, and many more studies
try to establish available metrics in another way. Henry and
Kafura et al. established a metric system for module complex-
ity based on statements and data flow in design documents
[15]. Ohlsson et al. implemented the automatic collection of
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information from design documents and made a successful
defects prediction on Ericsson’s telephone switch software
[27]. In addition, another research direction is complexity
analysis and defect prediction based on object-oriented (OO).
Basili and Chidamber et al. have published their study results
in this area [4], [6].

After 2000, with the popularity of version control systems
such as SVN and Git, using process information to predict
defects has become a new direction [24]. Moser et al. build
metrics from records of code revisions, refactoring, and bug
fixes, and he illustrates that the model of using change records
is much more accurate than the code-based model [22].

Since 2000, machine learning has become more and more
popular. Using machine learning in software defect prediction
has become a new research hotspot. In the direction of cross-
project prediction, machine learning has helped researchers a
lot in processing and analyzing large amounts of data, and
many scholars have given their own models for cross-project
prediction [5], [14], [17], [19], [25], [33]. However, how to
evaluate these cross-project models is also a problem that
needs to be faced. Zimmermann [38] and He [14] et al. have
done research in this area.

There are a lot of studies on software defect predictions,
but there is little literature about how to predict defects in the
requirement phase. Air force’s Rome laboratory developed a
model for early software reliability prediction, which is based
on the software requirement specification data collection [20].
Smidts suggest a reliability prediction model based on the
requirement changes during the life cycle [31]. Yadav [37]
et al. propose a software defect prediction model using fuzzy
logic to solve the problem of early-stage defect prediction,
but he uses not only the requirement information but also
the metrics about the size and historical quality information.
Sangeeta et al. show a failure rate model centered on iterative
software development life cycle [29]. However, all the studies
above are centered on the defect distribution of the different
phases of the software development life cycle across programs.
They haven’t answered the question of how to analyze the
defects distribution across the different functions and how a
software manager can predict defects when he gets a new
requirement specification.

III. THEORETICAL ANALYSIS

There is no suitable theory or method for predicting de-
fects from software requirement specifications. However, it is
possible to achieve it indirectly using some relevant research
findings. The ideas involved are mainly in the following two
areas.

Theory 1: The more function point there are, the larger
LOC will be.

Function point analysis (FPA) is one of the most mature and
popular methods of software size prediction today. The main
FPA methods are IFPUG [16] and COSMIC [9]. Although
the calculation methods of these two are different, both ways
calculate function point that are proportional to LOC.



Theory 2: The larger LOC of the software module, the
larger number of BUGs.

In the discussion in Chapter 2, whether it is Halstead or
Akiyama, or later Lipow, Gaffney, and other subsequent stud-
ies, although the final prediction models of their studies differ,
their results show that the larger the software size (LOC), the
higher the number and likelihood of bugs embedded in the
software modules.

By combining theory 1 and theory 2, we can draw the
inference below.

Inference: The more function point of the software module,
the more probability and larger the number of bugs in the
software.

Using this inference, we can predict the distribution of
defects in software by calculating the function point of the
software requirement specification in the early stage of the
software life-cycle, when only the software requirement spec-
ification is available.

IV. DATA AND METHODS
A. Target Programs

We did not find a publicly available database about software
requirement function point and defects. In order to make the
experimental data more realistic, we randomly selected eight
commercial programs from the organization’s project database
for validation. The descriptions of these projects are in Table
1.

These projects were developed by different teams and have
been completely done unit tests and integration tests, and then
handed over to the organization-level software testing depart-
ment to complete the configuration testing. The requirements
of all projects were formulated according to the relevant stan-
dards, and all functions were described in natural language.
All projects have been in operation for more than one year,
and no escape defects were found during the operation that
was not detected by the configuration tests.

B. FPA method

Nowadays, the most widely used FPA methods are IFPUG
and COSMIC [10], [26]. Although COSMIC is simpler than
IFPUG, we still use IFPUG because it is the recommended
method in our organization. According to the related research
[11, [7], [28], the difference between the results using IFPUG
and COSMIC methods is not much for the final prediction
results. Since the difference brought by their methods is within
our tolerance range, it does not affect our research results.

The IFPUG method is with the following steps.

1. Analyze user functional requirements The functional
requirements are identified by analyzing the documentation
related to the software requirements. In this study, the func-
tional requirements do not include performance, quality, and
environmental requirements.

2. Decompose functional requirements

Decompose the requirement entries according to the func-
tional unit in Table 2, down to the smallest functional unit
possible.

Internal Logic File (ILF): A set of logic-related data or
control information that can be identified by the user and
maintained within this software. The primary use of an internal
logic file is to control data through one or more of the
software’s basic processes.

External Interface File (EIF): A set of logically related data
or control information that can be identified by the user and
referenced by software but maintained by other software. The
primary purpose of the external interface file is to control data
references through one or more fundamental processes of this
software, i.e., the external interface file of one software should
be the internal logic file of another software.

External Input (EI): A basic processing of data or control
information that comes unexpectedly from the boundaries of
this software. The main purpose of external input is to maintain
one or more internal logic files and (or) to change the behavior
of the system.

External Output (EO): A basic process of sending data or
controlling information outside the boundaries of this software.
The main purpose of external output is to provide information
to the user through processing logic or through the retrieval
of data or control information. The process should contain
at least one mathematical formula or calculation, generate
data everywhere, maintain one or more internal logic files,
or change system behavior.

External Query (EQ): A basic processing of sending data
or controlling information outside the boundaries of this
software. The main purpose of the external query is to provide
information to the user by retrieving data or controlling infor-
mation from internal logic files in external interface files. This
processing logic does not contain mathematical formulas or
calculations, does not produce exported data, and the process
neither maintains the internal logic files nor changes the
system behavior.

3. Determine the weighting factor

The functions are divided into different levels according to
high, average, or low. The level is determined by the number
of data element types and the number of record element types
or the number of reference file types involved in a particular
function together. Different functional units are involved in
different levels with different corresponding weights.

4. Calculate the number of unadjusted function point

The number of external inputs (EI), external outputs (EO),
external queries (EQ), internal logic files (ILF), and external
interface files (EIF) are multiplied by their corresponding
weighting factors, and then the products are added together,
and the result is the number of unadjusted function point
(UFP).

UFPZNE]*HE'[—FNEO*eEo—FNEQ*QEQ-l—... (1)

5. Determine the adjustment factor

Each function was analyzed for system impact according
to fourteen system characteristics: data communication, dis-
tributed data processing, performance, system configuration

169



Table 1. Experimental Validation Software

Index  Software Name Software Type Platform  Language  Size

P1 Display and control software Non-Embedded QT C++ Medium
P2 Photoelectric tracking software Embedded IAR C Small
P3 Resource allocation management software Non-Embedded  Eclipse JAVA Medium
P4 Data census analysis software Non-Embedded QT C++ Medium
P5 Data customization platform software Non-Embedded  Eclipse JAVA Medium
P6 Data processing and forwarding software Embedded Keil C Small
P7 Information processing and control software ~ Non-Embedded VS 2015  C# Medium
P8 Control software Non-Embedded VS 2015  C++ Small

Table 2. Functional Unit
Data Functions Operation Function
Internal logic files External Input
External interface files  External Output
External queries

requirements, processing rate, online data entry, end-user effi-
ciency, online updates, complex processing, reusability, ease of
installation, ease of operation, multiple workplaces, and ease
of change, and each system characteristic was scored on a scale
of 0 to 5 for system impact, where 0 indicates no impact and
5 indicates strong impact. After that, the total impact degree
was obtained by adding up all the system characteristics, and
the value of the adjustment factor (VAF) was calculated by
equation 2.

VAF =0.65+ () _ N;/100)

=1

2

Where n is the number of system performance characteris-
tics (not limited to 14) determined based on the actual impact,
and N; is the degree of influence of the i influence factor.

6. Calculate the number of delivered function point

Multiplying the unadjusted function point (UFP) and the
adjustment factor (VAF) yields the IFPUG function point (FP).

FP=UFP xVAF 3)

C. Difficulties and Solutions in Implementation

In the actual implementation process, we also found some
difficulties in the implementation of the IFPUG method, the
details, and solutions of which are described as follows.

1. Function point calculation for data-related functional
units

The IFPUG calculation method involves five main param-
eters, which are external input (EI), external output (EO),
external query (EQ), internal logic file (ILF), and external
interface file (EIF). EI, EO, and EQ are relatively easy to
analyze, but ILF and EIF may be highly subjective if the con-
clusion is drawn only from the textual descriptions in software
requirement specifications. For example, as a certain complex
logic control information, we can divide it into several small
ILF, or we can calculate it to one larger ILF. However, the
final result about FP would be somewhat different.

We made some adaptations for this situation when we
calculate the function point. For ILF, when the requirement
specification clearly shows that there is a more complex
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process or logical relationship, or when the process is complex
according to our judgment, we will consider making the ILF
level to medium or high, so this ILF’s function point would
be larger. Vice versa. If the requirements clearly state that the
internal logic is divided into several parts or the processing
is divided into several steps, we will divide the ILF into
several parts according to the description of the requirements,
otherwise, they will all be processed into one ILF.

2. Treatment of adjustment factors

The adjustment factor in the IFPUG method requires the es-
timation of 14 factors. However, in the actual implementation,
we found that a large part of the impact factors recommended
by IFPUG was not suitable for our project. So we did not
follow the method recommended by IFPUG in the selection
of impact factors but based on the understanding of the project
requirement. We made an overall estimate of the adjustment
factor VAF directly. We estimated a value between 0.65 to 1
for the VAF by judging the requirement in terms of perfor-
mance, reliability, fault tolerance, and criticality. We should
notice that this method may cause a decrease in estimation
accuracy compared to the recommended method of IFPUG,
but it would greatly reduce the estimation effort of VAF.

3. Handing of interfaces, performance, and other non-
functional requirements

Although the interface specification description is often a
very important section in the requirement document, there is
no specific treatment for interface requirements in IFPUG.
In the target projects we selected, the interface requirements
are all external interfaces, so we merged all contents in the
interface requirement specification into the relevant functional
requirement entries and treated them as external inputs (EI) to
the functional requirement units.

The IFPUG approach does not give an explicit treatment
on performance and other non-functional requirements. We
choose to reflect such elements in the adjustment factors. If
a functional unit has performance or other non-functional re-
quirements, such as special safety and reliability requirements,
we adjust its adjustment factor (VAF) by adding a value of 0.05
to 0.1 to reflect the requirement.

4. Statistical methods for software defects

We use projects that have passed the organization-level
testing and have operated for a long time to ensure that
there are no obvious remaining defects in the software. Our
defect statistics are derived from the organization’s software
configuration test report. Our program defects are derived from
the organization’s software configuration test reports. The re-



Table 3. Function Point and Defects Information

Software  Function items  Function point  error  omissions
P1 32 578.1 19 4
P2 12 196.8 2 0
P3 81 812.95 32 2
P4 62 764.53 34 4
P5 94 1264.91 92 0
P6 20 308.35 3 1
P7 58 915.4 33 1
P8 15 170.2 6 0

ports only contain the software defects related to functionality,
performance, reliability, etc. which were found by the software
testing department at the organization level during the software
configuration testing, and do not include the defects found by
the static analysis, code review, unit testing, and integration
testing.

In the statistics, we also eliminated some low-level errors
that existed in the software, because these defects are useless to
analyze the statistical results. For example, in P3 software, all
the input controllers in this program did not have a length limit,
and we intentionally eliminated these defects from statistics.

In terms of classifying functional defects, this study clas-
sifies defects into two types: functional errors and functional
omissions. If a function is not as expected due to incorrect
design or coding, the defect is classified as a functional error,
while if human negligence causes a function to be ignored
in whole or in part, the defect is classified as a functional
omission.

In terms of the number of defects counted, we use different
treatments for different defects in the software.

1) Defects that appear separately in functional tests and
have no obvious correlation with other defects are
counted according to the number of defects, and each
regular defect is counted as one defect. However, if there
are several defects of the same kind in one requirement
item, we count them as one defect. But if they are in
two different requirement items, we count them as two
defects.

These items also involve fault-tolerant, environment-
adaptive, and performance-related requirements. For
fault-tolerant requirements, we count the defects int
the corresponding functional requirement items. In the
defects statistics of this study, we ignore environmental
adaptability defects and performance defects.

This study ignored defects classified as documentation
bugs found in all inspections in the software defect
statistics.

2)

3)

V. FUNCTION POINT STATISTICS AND DEFECTS
DISTRIBUTION

A. Function point and defects data

After the calculation of function point, the number of
function point and defects of the software selected for this
study shows in Table 3.

The distribution of function point and defects of the target

171

software is shown in Figure 1'. The horizontal coordinate is
the index of the function items, the vertical axis is the function
point, the red vertical axis on the left is the function error
defects, and the right vertical axis is the function omission
defects. The blue dots in the figure indicate the function point
of the corresponding requirement items, the red dots indicate
the number of functional error defects of the corresponding
requirement items, and the green dots indicate the number of
functional omission defects of the corresponding requirement
items. In order to represent the relationship between function
point, function errors and functional omissions more clearly,
the requirement point in the figure are reordered from smallest
to largest function point.

The relationship between defects and function point in
Figure 1 can support our conclusion in Chapter 3. It is obvious
from Figure 1 that the number and probability of defects in
software increases as the number of function point increases.
However, we also need to note that it is not always the case
that more function point will result in defects; there are also
some functions with more function point that do not have
defects, and similarly, requirement items with relatively low
function point also have a certain probability of having defects.
In addition, functional omissions often occur in requirements
with fewer function point.

B. Modeling

We use the results of FPA and the defect distributions as
inputs to generate the predictive model by curve fitting, the
specific steps are described as follows.

1. Normalize the function point

The function point of different software vary greatly, so
we normalize the function point in order to allow horizontal
comparison between software. For the m'" requirement, the
corresponding normalization method is

F,

_ m
fm — n

> B
1=0

Where F),, is the number of function point corresponding
to the original requirement, and f,, is the number of function
point after normalization.

2. Normalize the software defects

As the same reason, we use the same method to normalize
the software defects. For the m'h requirement, the normaliza-
tion of defects is

> B
1=0

Where E,,, denotes the number of defects corresponding to
the original requirement, and e,,, denotes the normalized value
of defects.

In the statistics here, we did not include functional omission
defects in the calculation of the model generation because

€m

IThe raw data has been published at git@ github.com:zhaoxinghan/FPA.git
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the number of functional omission defects is small and not
sufficient to support the mathematical model generation.

3. Form the set of function point and defects

After normalization, each software will have a normalized
set of function point and defects, and then these sets will be
grouped into a universal set A.

8
A= U U( gzvezn)

Where n; denotes the number of the requirement items
in the j'" software, and (fJ, el ) denotes the data pair
corresponding to the m*" function point and defects in the
jth program.

4. Construct the required mathematical expression using
curve fitting

A curve fitting approach is used to construct the most
suitable mathematical expression for the set of A, so that the
error between the mathematical model and the actual value is
minimized.

In the case of independent requirements, there should be a
linear relationship between the requirements of the software
and the corresponding defects. In another word, if we combine
any two requirement items, the number of defects after their
combination should be equal to the sum of the number
of defects corresponding to the original two requirements.
We suppose the fitting function is f(z), the function point
corresponding to any two requirement items (z1,x2) and
the number of defects corresponding to them (y1,y2), the
relationship between them should be

y1+y2 = fla1 + x2) )
we assume the form of fitting function is
y=f(z)=az®+bx+c
Because y should satisfy equation 4, we can get
a=20

If a requirement item is empty, the function point should be
0.

f(0)=0
we can deduce that
c=0
So the final form of the fitting function should be
y=bxr

we use the least squares pair for fitting, and the value of b
calculated to be 1.21, which corresponds to a residual sum of
squares of 0.61. The prediction model for the defects is

y=121z 5)

The distribution of the normalized relationship in A and the
fitting curve are shown as Figure 2. The horizontal coordinates
are the normalized function point and the vertical coordinates
are the number of defects after normalization.

C. Interpretation of the prediction equation

In equation 5, x represents the proportion of a certain
function point to the total function point of the software, while
y represents the proportion of defects of a certain functional
item to the total number of defects.

In the software engineering context, ¥ in equation 5 denotes
the probability that one certain functional item has bugs. The
higher the value, the greater the probability of failure and the
more defects that may exist.

The final value of the coefficient b is calculated as 1.21,
which is named as ‘configuration item maturity factor’. In the
software engineering context, the smaller the value, the slower
the growth of defects in the software’s requirement items in the
case of growing function point (size), which can be interpreted
that the software is more stable. Of course, stability here does
not mean excellent quality.

The sum squared residual is 0.61 after fitting in Figure 2,
it can be seen that there are some data that still deviate from
the fit to a greater extent. This is because the appearance of
software defects is not a logical event and can be influenced by
the designer’s condition and many external circumstances. Our
prediction model can only represent a trend and probability,
but the defect data in the specific software will not exactly
match the prediction results.

VI. STATISTICAL RESULTS

By combining two acknowledged theories, we obtain a the-
oretical inference that the more function point that a function
requirement item has, the more probability that the item has
defects. We randomly choose 8 empirical programs to verify
this theory and get some results as follow.

1) The distribution of function point and defects is gen-
erally in line with the trend of the theoretical conclu-
sion. The probability and number of defects in most
requirement items in the configuration test increase as
the number of function point increases.

2) However, there are still some function items data which
is not followed this trend. Some requirement items
with large function point have not found defects in the
configuration test, and vice versa.

VII. ISSUES AND ANALYSIS
A. Function point is not in keeping with the LOC

From our statistics, the LOC of the software is basically
consistent with the function point, but not completely consis-
tent. Specifically, in the case of the same function point, the
scale of embedded software is always larger than the scale of
non-embedded software. From our investigation and analysis,
the reasons are mainly reflected in two aspects.
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Figure 2. Distribution relationship between FPs and defects

1. In terms of support for the development environment,
the embedded development environment is not as supportive
as the non-embedded development environment.

Non-embedded development environments, such as Java, C
sharp, etc. various standard libraries and algorithm libraries are
more mature, and most of them are integrated with the IDE,
while most embedded development environments do not have
the corresponding standard libraries, many basic functions
need to be implemented by the designers themselves.

2. Embedded software project often contains some other
code that is not written by the developers.

The codes of non-embedded software are often closely
related to the program’s functions, and most of them were
written by the program developers. However, the embedded
software often contains some manufacturers to provide the
basic library, such as bootloader and some basic functions of
the package, as well as some general standard library, such as
TCP/IP library, etc. These codes are often integrated into the
source code and counted into the LOC statistics.

B. The difference between the distribution of defects and
function point

When conducting the data statistics, it was found that
although the distribution of function point and defects of
the software satisfied the equation 5 in terms of the total
statistical tendency, there would be many cases with a large
amount of deviation. For example, in program P4 there were
9 defects in the function item with not large function point,
but in several other projects, there were a large number of
function point corresponding to a function item with no defects
found. After analysis and verification, the main reasons for this
phenomenon are as follows.

1) The degree of unit test coverage within the project team

2) Difficulty of the processing involved in the function

point corresponding to the requirement item

3) The project team has no similar engineering experience

4) It is also possible that the designer was in a god or bad

state at that time

C. The reason why we choose function point as prediction
input

In recent years, since deep learning become widely used,
defect prediction technology also has a trend that the input
parameters become more and more complex. Of course, if
more input parameters were used, the result would be more
accurate. However, in another way, the costs would be more
expensive.

The FPA is the most accurate program size prediction
technology so far. Many organizations use FPA as the main
method to support the development plan. If we use function
point as the input parameter to predict defects distribution,
this would be no additional costs when the development team
uses FPA to predict the program size. Thus, it would be easy
to spread across the industrial organization.

VIII. FUTURE RESEARCH PLAN
A. Enlarge study samples

Due to limited resources, there are only eight target pro-
grams. Although it shows some basic patterns of defect
distribution in statistics and analysis, the fitting error is large
and the persuasive power is still lacking. We will add more
programs to the study samples so that the requirement items
and defects would be richer.

B. Increase the input parameters

In this project, only the function point of the requirement
items were used as the input to the study. The input form was
homogeneous. We also found that the shake of the distribution
of defects among the fitting curve is still significant. Exploring
the causes of these shakes and the weights of these factors
is helpful for software quality improvement of organizations.
Therefore, the next step should be to add various types of
inputs, such as the composition of the development team,
historical data, process information from configuration man-
agement systems, etc. Then, machine learning would be used
to calculate the impact weights.
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C. Use natural language processing methods

Using manual parsing of software requirements and calcu-
lating the function point is not only a heavy workload but
also prone to errors. The use of natural language processing
(NLP) methods can automatically parse out various types of
entities in the requirement description, which not only greatly
improves efficiency but also ensures the correctness of the
parsing process. This is the only method to enlarge the number
of samples quickly.

IX. SUMMARY AND OUTLOOK

By exploring the relationship between the function point
of software requirement items and the defects of configu-
ration items, we explore the basic law that the defects of
configuration items are consistent with the growth trend of
the number of requirement point, and through the method of
least squares, we derive the mathematical model equation of
the relationship between function point and defects, elaborate
the significance of the parameters of the equation in practical
engineering, and analyze the causes of the problems found
during the calculation and statistics of requirement function
point.

However, we only extracted eight projects as the study
target due to resource constraints and selected only one input
parameter of function point. From the final results, although
the conclusions from the general trend are consistent with
our theoretical derivation, the shakes between the fitting curve
are a bit larger when applied to specific projects. To achieve
more accurate prediction results, it is necessary to upgrade the
number of data samples for the study and obtain more input
parameters as well as various historical and process data to
form a more accurate prediction model.
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