
Cast Away: On the Security of DLNA Deployments in the SmartTV Ecosystem

Guangwei Tian1,2, Jiongyi Chen3,∗, Kailun Yan1,2, Shishuai Yang1,2, and Wenrui Diao1,2,∗
1School of Cyber Science and Technology, Shandong University, China

2Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, China
3National University of Defense Technology, China

gwtian@mail.sdu.edu.cn, jiongyi_chen@126.com, {kailun, shishuai}@mail.sdu.edu.cn, diaowenrui@link.cuhk.edu.hk

*corresponding author

Abstract—The casting service on SmartTV has been increas-
ingly used for home entertainment and business, given the
convenience offered in media broadcast and screen sharing.
Among the underlying protocols that support TV cast, DLNA
(Digital Living Networking Alliance) – established by a group of
tech giants – has become a prevailing standard in the consumer
market. Although DLNA has launched the market for years,
concerns may arise about whether its real-world deployment has
been clearly understood.

In this work, we systematically evaluate the security of
DLNA deployments in the SmartTV ecosystem. Specifically, we
identify a series of critical security issues in the interactions
between SmartTVs and casting apps on the smartphone, ranging
from non-mandatory encryption to unauthorized file access. The
identified security risks can be exploited by a malicious app on
the victim’s phone, without requesting sensitive permissions, to
launch multiple attacks, including arbitrary command execution,
data theft, MITM (man-in-the-middle) attack, and DoS (denial-
of-service) attack. To measure the impact of the identified security
issues, we designed semi-automated analysis solutions to facilitate
the measurements and conducted real-world experiments on 10
on-shelf TV boxes. The results show that most DLNA implemen-
tations of products and apps in the wild are insecure. In the
end, we provide immediate improvement solutions to mitigate
the identified security issues.

I. INTRODUCTION

As a new instance of the Internet of Things, the Internet-

connected SmartTV with essential features (like media broad-

cast, content sharing, and projection) has been increasingly

owned by households and offices. A recent report shows that

more than 665 million homes worldwide owned a SmartTV

by the end of 2020, which will rise to 1.1 billion by 2026 [29].

The growing popularity of SmartTV could be attributed to

the rich functionalities backed by the wide interconnection

and the board integration of the ecosystem, compared with

traditional TVs that only allow access to limited channels. A

prominent and unique feature is the cast service, which enables

the sharing of digital media between the SmartTV and other

multimedia devices like the smartphone. Users can push local

streaming videos and photos on their smartphones for a larger

and clearer display.

One of the most representative protocols that support the

cast service of SmartTV is DLNA (Digital Living Network

Alliance). It is a set of interoperability guidelines for digital

media sharing in multimedia devices developed and promoted

by a group of tech giants (including Microsoft, Intel, Samsung,

HP, Sony, and Philips) in June 2003 [3]. The latest version –

DLNA 4.0, was released in June 2016. Nowadays, consider-

able SmartTV and set-up box manufacturers have pre-installed

the DLNA-based TV casting services on their devices.

DLNA Security. Though the DLNA service is widely de-

ployed with SmartTVs, its security has not been brought to

the forefront. As a result, we have seen some real-world

security incidents. For example, an X-rated film was cast on

the SmartTV in a famous hotpot restaurant by pranksters [5],

but the root cause of this incident is still unknown to the

public. Regarding the protection provided by the casting pro-

tocol, although the DLNA guideline details the specification

about security configurations, it does not provide clear imple-

mentation and configuration instructions for developers. For

instance, implementing secure authentication and authoriza-

tion are non-mandatory, which makes such implementations

vulnerable. On the other hand, DLNA is designed for the LAN

(local area network) environment with a coarse-grained trust

model – all devices on the same LAN are trusted. Different

from the previous security concern on the device-level access

control [30], [37], the SmartTV ecosystem brings the new

security risks to the communicated devices when a malicious

app is installed on a trusted smartphone [25], [21]. Further,

the security of DLNA deployments in the wild has not been

systematically evaluated.

Our Work. In this study, we evaluated the security of DLNA

deployments in the SmartTV ecosystem by investigating the

interaction between the casting app installed on the smart-

phone and the SmartTV device. After investigation, we iden-

tified four critical security issues: (1) no message content pro-
tection; (2) unauthorized file access on phone; (3) inadequate
authentication for SmartTV; (4) inadequate authentication
for casting app. Exploiting those security issues, attackers

can steal confidential data, gain access to sensitive files, or

perform unauthorized actions, by only installing a malicious

app without sensitive permissions on the victim’s smartphone.

To measure the impacts of the identified security issues,

we designed semi-automated analysis solutions to analyze

SmartTVs and casting apps, and conducted a series of experi-

ments. The results show that, out of 15 devices we purchased,

10 have DLNA casting service built-in, and all of them (100%)

have at least one security issue. Of the 117 casting apps that

we crawled from app markets, 73 (62.4%) have at least one

105

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS57517.2022.00021

security issue. Also, we present two concrete attack cases to

demonstrate the consequences of identified vulnerabilities.

Responsible Disclosure. The discovered vulnerabilities have

been reported to the corresponding vendors and vulnerability

management organizations. Currently, two reports have been

confirmed with assigning CNVD-2022-54667 (rated as high
severity) and CNVD-2022-34589 (rated as low severity).

Contributions. Here we summarize the main contributions:

• New understanding. We performed the first systematic

study on the security of DLNA deployments in the

SmartTV ecosystem and identified four widespread secu-

rity issues. Also, we provided several practical mitigation

measures.

• Concrete attacks. Exploiting the identified security issues,

a malicious app without sensitive permissions can execute

commands, control the TV, and even steal sensitive files

from the victim user’s smartphone.

• Real-world measurement. We designed a new analysis

tool and conducted real-world measurement experiments.

The results show that most DLNA implementations are

insecure.

Roadmap. The rest of this paper is organized as follows.

Section II provides the necessary background of TV cast and

DLNA. Section III gives the threat model used in this work.

Section IV elaborates the four security issues we identified.

In Section V, we introduce the detailed design of our analysis

solutions and presents the findings. Section VI presents two

case studies of real-world attacks. In Section VII, we discuss

some mitigation and limitations of our work. Section VIII

reviews related work, and Section IX concludes this paper.

II. BACKGROUND

In this section, we provide the necessary background of TV

cast and the DLNA protocol.

A. SmartTV & TV Cast

SmartTV is a traditional TV with integrated Internet and

interactive features, allowing users to stream music and videos,

browse the Internet, and view photos [15]. The smart features

could also be implemented by deploying a smart set-top box1.

The systems of most SmartTVs and set-top boxes are built

based on the Android TV OS [9] with customized features.

Like smartphones, SmartTVs also allow users to install apps

from TV app markets.

SmartTVs have larger screen sizes than smartphones, usu-

ally from 32 ∼ 75 inches. Pushing the multimedia contents

like videos or photos from a small-screen smartphone to a

nearby large-screen TV for display is called TV cast (also

known as screen mirroring or screen projection), as shown in

Figure 1. Usually, the smartphone and the SmartTV should

be connected to the same LAN. On the one hand, there is

a need for users to share with others in the same room or

1In this paper, we do not strictly distinguish between SmartTVs and set-top
boxes, because SmartTV can be treated as [set-top box + traditional TV]. For
convenience, we refer to them as “SmartTV” in subsequent sections.

Fig. 1: Cast smartphone to TV.

to view personal multimedia files on a larger screen. On the

other hand, some video software does not have a universal

VIP service on different platforms (TV and mobile phone), or

the accessible content is not the same on different platforms.

These reasons create a demand for TV cast.

The TV cast function can be implemented through the

casting protocols, such as AirPlay [7], Chromecast built-in

(formerly Google Cast) [12], Miracast [13], and DLNA [3].

AirPlay was designed by Apple, and its deployment was

originally limited to Apple devices (e.g., Apple TV) until 2018

when Apple opened up the license for the protocol. There

are currently over 70 TV devices [8] that support AirPlay.

Similarly, Chromecast built-in is mainly used by Google

devices (e.g., Google TV) as well as some mainstream Android

TVs (e.g., Xiaomi Mi TVs, Sony TVs). Over 4,000 certified

Android TVs or devices currently available [11]. Miracast is a

screen mirroring protocol introduced by the Wi-Fi Alliance in

2012. It currently has over 6,400 certified TV or set-top box

devices [14]. The DLNA (Digital Living Network Alliance)

protocol is designed to share digital media among multimedia

devices, introduced in 2003. Given the first-mover advantage,

openness, and support from a group of tech giants, DLNA has

been recognized as one of the most popular TV cast protocols.

According to the DLNA official statistics [4], there are more

than 13,000 DLNA-certified TVs and set-top boxes around

the world. Therefore, in this study, we focus on the security

of DLNA deployments in the SmartTV ecosystem.

B. DLNA Protocol

The DLNA protocol enables media file sharing and playing

between different devices within the same LAN, which is well

suited for casting on TVs. Therefore, in the smart home era,

DLNA finds its own place. Below we elaborate on the details

of the roles and workflow in DLNA.

DLNA Roles. There are four roles involved in the DLNA

deployment – DMR, DMC, DMP, and DMS, as listed below.

• Digital Media Renderer (DMR) is like a traditional TV,

waiting for media data to play, and executing commands

sent by DMC.

• Digital Media Controller (DMC) acts as a remote con-

troller to control the playback like stop/play and adjusting

volumes. It is also in charge of discovering media content

on DMS and sending the file to DMR.

106

TV

Fig. 2: Roles of DLNA in the SmartTV ecosystem.

Fig. 3: Workflow of DLNA.

• Digital Media Player (DMP) is the media player on the

control side. Compared with DMR, DMP can actively

search and play media content on DMS.

• Digital Media Server (DMS) is a file server that can

provide photos, videos, or audios to DMP and DMR.

Those files are accessed from the file system of the

smartphone.

As shown in Figure 2, from the user’s perspective, if she

wants to cast a local video file (on the phone) to the TV, she

needs to install a casting app on her phone. In fact, this casting

app serves the roles of DMS (for setting up a local multimedia

file server), DMP (for finding multimedia files), and DMC

(for pushing files and controlling the playback of media). The

service app on SmartTV, on the other hand, only implements

the role of DMR, which is responsible for receiving media

files and executing control commands. The service apps are

usually pre-installed by vendors or installed by users.

Workflow. The DLNA protocol is developed based on the

UPnP protocol [2]. Therefore, as shown in Figure 3, the

interaction between two communication parties are similarly

modeled, including the stages of discovery, description, and

control.

• Stage1 – Discovery. Before casting a video to TV, the

casting app needs to discover other devices in the same

LAN. Usually, there are two ways to do so: the service

app can send a NOTIFY message from time to time,

actively sending out its basic information (such as device

type, unique identifier, current status, and description

URI) via multicast; alternatively, for the casting app,

it can send an M-SEARCH message via multicast. The

SmartTV listens to the message and responds with its

basic information via unicast. With IPv4, the multicast

address is 239.255.255.250, and the port number is

1900. All UPnP-enabled devices (or services) in the LAN

listen to this port, but only the devices (or services) that

match the request type in M-SEARCH message will reply.

• Stage 2 – Description. After the discovery stage, the cast-

ing app needs to request more detailed information (e.g.,

supported actions and the format of control command)

about the discovered device and select an appropriate

device. This is achieved by accessing the description URL

returned by the SmartTV.

• Stage 3 – Control. After selecting the appropriate device,

the casting app can then cast contents to it. At this

stage, users can preview the media files on the DMS

via DMP. The DMC then pushes the file URL to DMR

through commands such as SetAVTransportURI. DMR

can display the corresponding media files by accessing

the URL. While playing, the DMC can perform various

controls on the DMR through the actions acquired during

the Description stage.

III. THREAT MODEL

In the traditional threat model on LAN (local area network)

security research [22], the adversary (usually as a device) can

connect to the Wi-Fi AP and access other devices on this LAN.

It means the adversary has obtained the password of this LAN

or compromised this AP’s authentication mechanism.

Our Model. Compared with previous work [30], [37], our

study considers a weaker threat model, and all attacks are
launched through a malicious app installed on the victim’s
Android phone. Also, this malicious app does not claim
any sensitive permissions, such as storage access. Since the

user owns a SmartTV, she uses a casting app on her phone

to facilitate TV control and video sharing. Restricted by the

Android app isolation mechanism, the malicious app cannot

interact with the casting app or directly access its data. The

attacker’s goal is to control the TV and steal the data stored

in the phone by leveraging the malicious app and exploiting

the DLNA security issues.

107

IV. SECURITY ANALYSIS OF DLNA

In this work, we systematically study the security of DLNA

deployments in the SmartTV ecosystem. Combined with the

field study and the official technical documents [1], we identify

a series of security issues related to TV casting. These issues

can result in various kinds of attacks, like device control, data

leakage, DoS (denial-of-service) attack, and MITM (man-in-

the-middle) attack. In this section, we illustrate these identified

security issues.
We focus on the communication process between the casting

app and SmartTV. The establishment of secure communication

relies on three critical mechanisms, namely authentication,

data encryption, and authorization. Following this trail, we

identify four security issues2 violating these requirements, as

listed in Table I.

• For authentication, two communication parties must au-

thenticate each other’s identity before exchanging any

information. Before communication can take place, both

sides of the communication need to be securely and

effectively authenticated. However, most vendors do not

take sufficient authentication measures, which leads to

SI#3 and SI#4.

• For data encryption, once the identities are verified,

both communication parties need to encrypt the message

content before it is sent out. The absence of an encryption

mechanism leads to SI#1.

• For authorization, accessing resources in a remote system

is also a necessary step during communication, which

requires effective authorization mechanisms to guarantee

legal access to file resources. The lack of an authorization

mechanism presents SI#2.

A. SI#1: No Message Content Protection
Encryption is an effective solution to guarantee message

confidentiality in communication.

DLNA Guideline. In the guideline, message encryption is not

strictly forced and no specific encryption scheme is mentioned.

It is only mentioned in the authentication section, say if the

device needs to be authenticated, it can use the TLS handshake

for authentication. In the UPnP specifications [2] (used in the

underlying implementation of DLNA), it is mentioned that the

privacy and integrity of the service can be guaranteed by the

HTTPS protocol based on the TLS standard. However, it just

is a recommendation, not a mandatory requirement.

Finding. The identified security issue in the wild is that DLNA

messages are all transmitted in plaintext during the entire

casting process. The manufacturer does not effectively secure

the message contents.

Security Risk: Privacy Leakage. Due to plaintext communi-

cation, any device on the same LAN can capture the private

data contained in messages. At each interaction stage, the

leaked information is illustrated as follows.
At Stage 1 – Discovery, the device broadcasts its brief

information on port 1900, and other devices on the same

2SI#X for short. Therefore, we have SI#1 ∼ SI#4.

LAN can also actively detect all DLNA-enabled devices with

the M-SEARCH command. Therefore, with such messages, an

attacker can obtain basic information about the device and its

active time.

At Stage 2 – Description, devices can access the description

URL to obtain detailed information about the casting device.

Thus, with such messages, an attacker can obtain the formats

and parameters of the control commands supported by the

device. Exploiting such information, the attacker can further

actively forge and execute control commands at Stage 3.

At Stage 3 – Control, similarly, the attacker can obtain the

control instructions by traffic analysis, which may contain the

information of cast multimedia files, such as the file name,

file description, and file resource address. Listing 1 gives an

example of the partial information about the currently played

video via the GetMediaInfo command. It means the attacker

can obtain the video’s title, the casting app, and even the user

account information.

1 <dc:title >"Fraidy Cat"</dc:title >
2 <dc:creator >"youku"</dc:creator >
3 ...
4 <yunos os="android"
5 ver="10.1.24"
6 name="youku video"
7 pkg="com.youku.phone"
8 yk_showtitle="Tom and Jerry"
9 definitionStr="540P"
10 device_model="Pixel+2"
11 user_info =\’{"isVip":"0"," ytid":""}\’
12 ...
13 />

Listing 1: Part of obtained video information.

B. SI#2: Unauthorized File Access on Phone

Authorization is needed to protect the resource files from

unauthorized access. For casting, only the cast media files can

be accessed by the DLNA service.

DLNA Guideline. The guideline does not explain how to

access media files before they are transferred. It is only

mentioned in the link protection section that the content stream

in transmission need to be protected. The casting app provider

should consider how to access the files by themselves.

Finding. The identified security issue in the wild is that, at

Stage 3 – Control, the casting app needs to generate a file

URL for DLNA service (i.e., SmartTV) accessing. However,

many app developers generate the file URLs in insecure ways,

resulting in unauthorized file access on the phone. Note that,

such access exploits the DLNA service and bypasses the

restriction of mobile OS, e.g., the READ_EXTERNAL_STORAGE
permission on Android.

Security Risk: File Leakage. As mentioned in SI#1, the cast

file address is transmitted in plaintext. As a result, an attacker

can easily obtain the address, resulting in file leakage. Note

that, in this process, the casting app sets a file server, and

the DLNA service requests accessing a file by providing the

corresponding file URL. It means an attacker can construct

108

TABLE I: Security issues related to DLNA deployments in the wild.

No. Security Issue Components Involved Consequences / Possible Threats
SI#1 No message content protection Both sides Privacy leakage
SI#2 Unauthorized file access on phone Casting app on phone File leakage
SI#3 Inadequate authentication for SmartTV Casting app on phone Man-in-the-middle attack
SI#4 Inadequate authentication for casting app DLNA service app on TV Command execution, denial of service

valid URLs for other files on the phone, even resulting in

arbitrary file access. Therefore, how to generate the file URL

is crucial for preventing URL guessing. We discovered the

following URL generation schemes in the wild:

Scheme#1: Generating URL based on file path. File URLs

can be formed by using the absolute / relative paths of files. In

this case, the attacker can construct URLs for non-designated

files by exhausting file paths in a directory. For example,

for the casting app EasyCast3, the attacker can access

a non-casting file under /sdcard/ directory via the URL

http://ip_addr:port/Pictures/Screenshots/Screenshot
_20200220-022515.png.

Scheme#2: Generating URL based on file serial number.
All files on Android are assigned a serial number, and some

casting apps use this number to generate the file URL. In

this case, it is also possible for the attacker to access other

files by traversing all numbers. Note that the upper limit

of this serial number is determined by the number of mul-

timedia files on the phone, which usually does not exceed

104 or 105. Hence, it only takes a relatively short time to

traverse all the multimedia files. For example, FastCast4, http
://ip_addr:port/image-item-40.

Scheme#3: Generating URL with encoding. Some casting

apps generate the URLs by encoding the absolute path to the

file. The implementation can be based on Base64 or hash

algorithms (e.g., MD5) on the path and then intercepting a

section in the middle. In theory, for URLs of this form, if

we can identify which encoding algorithm is being used,

we can use the same approach to generate valid URLs

for accessing other files. However, in practice, due to the

various customized implementations, it is difficult to tell

the accurate encoding approach. For example, Cast to TV5,

http://ip_addr:port/Y29udGVudDovL21lZGlhL2V4dGVybm
FsL2ltYWdlcy9tZWRpYS80MA==.

Scheme#4: Static URL. In our study, only one casting app

uses this approach to generate URLs for local files. In this case,

all files share the same URL, and the returned file depends on

which file is currently being pushed. That is, a fine-grained

file access control mechanism is implemented. This approach

is effective in preventing attacks from accessing other non-

pushed files. For example, Stream Phone To TV6, http://ip_
addr:port/.

3Package name: com.tv.cast.screen.mirroring.remote.control
4Package name: com.creative.fastscreen.phone
5Package name: com.casttotv.screenmirroring.castwebbrowser
6Package name: com.miracast.smartthing.tv.airplay.screenmirror

ing

To sum up, Scheme#1 & 2 are insecure and face the risk

of file leakage. Scheme#3 & 4 can resist the brute-force (file

traversal) attack to some extent.

C. SI#3: Inadequate Authentication for SmartTV

To prevent device forgery, authentication is an effective

solution in the interactions.

DLNA Guideline. Guideline provides an optional authentica-

tion mechanism. Developers can distribute credentials through

CA (Credential Authority) and use the credentials for authen-

tication, preventing attackers from forging devices. However,

this feature is optional, and developers would not implement

it if they believe the authentication operation is unnecessary.

Finding. The identified security issue is that most casting

apps under investigation do not implement the authentication

feature. It means they may establish a connection with a

malicious or fake device.

Security Risk: MITM Attack. At Stage 2 – Description, the

casting app does not validate the discovered devices. It only

checks the deviceType field to confirm whether the service

is a DMR, that is providing the casting service. Therefore, an

attacker can provide a forged DLNA service with the same

service name and description file as the origin service. From

the user’s perspective, she cannot distinguish which service

is forged or not. Note that such a service can be constructed

through a malicious app running on the user’s smartphone. No

physical device is needed.

Further, this malicious app can also forward the incoming

messages between the casting app and the real device, say

man-in-the-middle (MITM) attack. In this case, since the

DLNA service works well, the user cannot find any irreg-

ularity. Also, the malicious app can record and tamper with

the forwarded control commands. For example, by parsing the

SetAVTransportURI command issued by the casting app, the

attacker can access the currently played content and insert

an advertisement before forwarding the command, thereby

gaining revenue.

D. SI#4: Inadequate Authentication for Casting App

Since the device may receive malicious connection requests

and control commands, authentication to the casting app

(controller) is also necessary.

DLNA Guideline. Guideline provides an optional authentica-

tion mechanism. As described in Section IV-C, this authenti-

cation is not mandatory for device vendors to implement.

Finding. The identified security issue is that most devices un-

der investigation do not implement the authentication feature.

109

Only a few manufacturers implemented customized authenti-

cation mechanisms, such as whitelist.

Security Risk: Command Execution. At Stage 2 – Descrip-

tion, the casting app obtains the information of the device

and control commands (including the parameters, formats, and

control address). Afterward, the casting app can generate and

send control commands to the device (SmartTV), as showen

in Listing 2.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <s:Envelope s:encodingStyle="http:// schemas

.xmlsoap.org/soap/encoding/" xmlns:s="
http:// schemas.xmlsoap.org/soap/envelope
/">

3 <s:Body >
4 <u:SetVolume xmlns:u="urn:schemas -upnp -

org:service:RenderingControl:1">
5 <InstanceID >0</InstanceID >
6 <Channel >Master </Channel >
7 <DesiredVolume >48</DesiredVolume >
8 </u:SetVolume >
9 </s:Body >
10 </s:Envelope >

Listing 2: The SetVolume command.

The control commands supported by most SmartTVs can

be classified into the following three types – AVTransport,

Rendering Control, and Connection Manager [26], as il-

lustrated as follows.

1) AVTransport. This type of command enables the con-

trol of the currently played content, like: GetMediaInfo,

GetPositionInfo, GetTransportInfo, Pause, Play,

Seek, SetAVTransportURI, and Stop.

2) Rendering Control. This type of command enables

the change to the TV state, like volume and image.

However, most available commands are volume related

(GetMute, GetVolume, SetMute, and SetVolume), and

nearly no device we investigated implements the ability

of image property modification, like SetBrightness.

3) Connection Manager. This type of command can get

the information about the current connection or get the

current protocols supported by the device. The com-

mands of this type do not affect the casting process,

like GetCurrentConnectionInfo, GetProtocolInfo,

and GetCurrentConnectionIDs.

Most manufacturers do not introduce effective authentica-

tion mechanisms for DLNA-based casting services. Therefore,

an attacker can send the above commands to a device directly.

Then the device will perform the corresponding actions, such

as playing any local or online media content and device

volume control. As mentioned in Section I, exploiting this

approach, someone cast an X-rated film to the SmartTV in a

famous hotpot restaurant [5].

In addition, the built-in casting services on most SmartTVs

keep the ports of the casting service open permanently, in-

cluding the non-screen casting periods. Some manufacturers

also prefer to set their services as boot-up items. This brings

a better experience to the user. However, at the same time,

TVTV

Fig. 4: Analysis of SmartTVs

Fig. 5: Devices used in our experiments.

always-open ports inevitably result in a long attack window.

An attacker can launch attacks at any time the TV is on.

V. MEASUREMENT IN THE WILD

To understand the real-world impacts of our reported secu-

rity threats, we designed semi-automated analysis solutions to

identify the security issues for the service apps of SmartTV

and the casting apps of smartphone. On the one hand, we

evaluate the service apps of SmartTV by testing whether

control commands sent by illegitimate users can be executed

(SI#4). On the other hand, we evaluate the casting apps on

phones by testing whether they can be connected with a

malicious app (SI#3) and whether this malicious app can

further access files in smartphones via brute-forcing file URLs

(SI#2).

A. Analysis Solutions for SmartTVs

On the SmartTV side, we focused on evaluating SI#4 –

inadequate authentication for casting app. The analysis process

is illustrated in Figure 4.

Setup. To evaluate the real-world implementation, we pur-

chased 15 TV boxes produced by mainstream vendors, as

shown in Figure 5. These TV boxes were selected based on the

recommendations [18]. We setup the experiments to simulate

how a normal user operates on the device: launching all the

service apps on each TV box, returning to the main UI, and

waiting for 5 minutes. The purpose of leaving such time is

to test whether the port of casting service is closed or not

when the service app is not in use. We believe 5 minutes are

110

sufficient for a normal app to finish the procedure of closing

the port. If the port is still open after 5 minutes, the casting

service of the SmartTV is considered not closed on time.

Command Construction. In this step, we request the descrip-

tion file of the cast service and construct commands from

it, which contains action name, action parameters, allowed

value range, etc. The description file is requested by invoking

the API discover() of the package upnpy [20] to interact

with the SmartTV. upnpy is a lightweight Python library that

implements a range of functions of UPnP protocol like device

discovery and control. We show an example of the collected

description file in Listing 3. It specifies the description of the

SetVolume command, including several fields like argument
and allowedValueRange. We reconstruct the command ac-

cording to the description file, by specifying the action name,

the arguments, and the values of arguments. The values of

arguments are determined by randomly choosing a value that

is within the range specified by the label allowedValueRange.

1 <actionList >
2 ...
3 <action >
4 <name>SetVolume </name>
5 <argumentList >
6 ...
7 <argument >
8 <name>DesiredVolume </name>
9 ...
10 </argument >
11 </argumentList >
12 </action >
13 </actionList >
14 <serviceStateTable >
15 ...
16 <allowedValueRange >
17 <minimum >0</minimum >
18 <maximum >100</maximum >
19 ...
20 </allowedValueRange >
21 ...
22 </serviceStateTable >

Listing 3: Partial description of the SetVolume command

Command Execution. We send the constructed commands

to the SmartTV and receive the replied messages. When the

replied message (based on the HTTP protocol) contains status

code "200", the service is responding to the requests. On that

basis, if the replied message indicates "error", it means that the

request has been processed by the cast service but the format

or the fields of the command are incorrect. For example, when

a response contains error description "Invalid Channel", we

replace the command field "Channel" with other options like

"LF" and "RF" in the description file. When the traversal of

command fields is done, and the response still indicates an

error, we discard the command request and construct requests

for the next action. A request can be categorized into the

following, according to its replied message:

• Action executed. When the replied message contains

status code 200 and does not contain the keywords like

TVTV

Fig. 6: Analysis of casting apps

"error", "fail", "invalid", "abort", or "not implemented",

we consider the previous request triggers a action on the

server side.

• Action failed. On the other hand, if the status code of the

replied message is "200" and the message contains failure

keywords like "action failed", "action not implemented",

it indicates that the constructed command was received

and processed, but the action was not executed for some

reason.

• Request Denied. When the status code of the response

is not "200", the control command is denied and not

processed at all. This is attributed to the fact that the

service app in the SmartTV requests authentication for

the sender before acting any control actions.

We determine whether SI#4 exists in the service app with

Action executed: as long as the replied messages contain

this indicator, there is a possibility that the device could be

controlled by an unauthenticated user.

B. Analysis Solutions for Casting Apps

On the smartphone side, we evaluate the DLNA-based

casting apps downloaded from Android app markets. The main

idea of our analysis is to trigger the screen cast function of the

casting app, extract the URLs of casting files, generate new

URLs on the same smartphone and access them. The analysis

process is illustrated in Figure 6.

Setup. We design a malicious Android app based on

Cling [19], which is a UPnP stack for Java and Android

development. This app runs on the smartphone, has a similar

description file, and provides similar functions to the cast

service of SmartTV. It connects to the casting app to perform

unauthorized actions such as accessing files.

Using "DLNA" and "cast" as the keywords, we found

a total of 337 apps from four app stores (Google Play,

Wandoujia [17], Anzhi [10], and Yingyongbao [16]). Then we

selected 117 apps by specifying the updated date (from 2020

to 2022) and the number of downloads (more than 1,000).

Among them, 14 apps have more than 10 million downloads.

Next, we ran the 117 apps one by one and manually examined

the app interfaces to confirm whether they support casting

local contents.

Triggering of Cast Function. Before we extract and access

the URLs of casting files, we need to trigger the cast function

from the casting app. As UI designs are largely varied from

each other, it is difficult to trigger the cast function for each

app automatically. Therefore, we manually operate the app to

111

trigger such a function by following the steps to cast local

media to a SmartTV: selecting a device to display, browsing

local files, and pushing the file.

This procedure determines whether the casting app under

test authenticates the malicious app (i.e., a fake device) or not.

We test whether an app can successfully discover the malicious

app, establish a connection with it, and push files to it. If the

malicious app accepts the URL of the file to be played, it

indicates that the casting app under test does not authenticate

the malicious app, resulting in SI#3. Furthermore, if the file

can be accessed by the malicious app, there is a SI#2.

URL Generation. In this step, we extract the file URL

from SetAVTransportURI – a command sent by the casting

app to specify file location on the smartphone. In addition

to the specified casting files, we also generate new URLs

to access other files, by mutating the parameters of the

SetAVTransportURI command. The generation of new URLs

is based on Scheme#1 and Scheme#27 described in Section

IV-B. For Scheme#1, since the files on the smartphone were

available to the tester, we directly specify the file paths in the

SetAVTransportURI command for casting. For Scheme#2, By

increasing/decreasing the number at the end of the filename,

a series of new filenames are produced. We then make access

to them to confirm the existence. The access does not extend

outside the /sdcard/ directory, because the malicious app is

"delegating" permissions from the casting app. The casting app

does not have permissions to access other locations like the

underlying Android filesystem (e.g., the /system/ directory).

URL Access. Through the malicious app, we push the contents

of the URLs to the service app on the SmartTV and check

whether the contents can be accessed. The SmartTV here is

used to display the contents to the tester. However, during

testing, some casting apps returned the same content for the

requests with different URLs. As such, we need to check if the

contents on the SmartTV are changed when traversing URLs.

C. Findings on the SmartTVs

Results. As mentioned in Section V-A, the measurement was

conducted on 15 TV boxes. 10 out the 15 TV boxes have

DLNA-based cast service apps built-in. We found that security

issues were presented in the 10 devices. None of the 10 devices

authenticate casting apps (SI#4). The results are summarized

in Table II.

For the DLNA service apps in SmartTVs, we invoke and

traverse all the actions it provides to check whether the actions

could be executed without authentication. Table III details the

number of extracted actions and the number of actions that can

be actually executed. We can see that most service apps can

directly execute unauthorized actions. Those actions include

SetAVTransportURI, Pause, SetVolume and other actions

that are directly related to the current playback status.

7The URL generation does no cover Scheme#3 and Scheme#4, as those
two schemes provide a certain level of security and it is difficult to correctly
specify the URL.

TABLE II: Evaluation results of SmartTVs

Device Model SI#3
DiyoMate K3 �
Mi Box 4SE �
Webox WE60C �
Tmall Box M20_A �
Tencent Aurora Q0102 �
Dangbei Box DBH1A �
Skyworth Q0102 �
Mifon HG680-KA �
Bell Tree 6108 �
Magicsee N5 �
Chromecast GZRNL N/A
TiVo Stream 4K N/A
Fire TV E9L29Y N/A
Mecool KM6 N/A
Ematic AGT419 N/A

�: security issue found; �: security issue not found; N/A: not applicable.

TABLE III: Amounts of executed and total commands

Device Service App AVT RCS CMS

DiyoMate
HiMedia Render 11/13 2/6 3/3
KuMiao Video 11/18 9/11 3/3

Mi Box Wireless Share 8/14 4/35 3/3

Webox
QiYiGuo TV 13/14 4/8 3/3
KuMiao Video 11/18 9/11 3/3

Tmall Box KuMiao Video 11/18 9/11 3/3

Tencent Aurora
System Service 8/14 4/35 3/3
Aurora TV 13/14 35/35 3/3

Dangbei Box
System Service 12/13 2/7 3/3
LeBo Cast 8/14 4/35 3/3

Skyworth
System Service 8/14 4/35 3/3
KuMiao Video 11/18 9/11 3/3

Mifon
System Service 8/14 4/35 3/3
KuMiao Video 11/18 9/11 3/3

Bell Tree
KuMiao Video 11/18 9/11 3/3
System Service 7/13 2/6 3/3

Magicsee System Service 9/14 2/8 3/3

AVT: AV Transport; RCS: Rendering Control; CMS: Connection Manager.

Failed Command Executions. For the actions that are not

successfully executed, we summarize the cause of failures as

follows:

• Incorrect parameters or incorrect state during command
execution. Some apps require a specific value of parame-

ter, like DesireMute in command SetMute to be 0 or 1.

Filling it with other integers would lead to errors. Besides,

instructions like Previous and Next require a specific

status to run. For example, the Next instruction needs to

be executed in the presence of the next playable item.

Otherwise, the execution may fail.

• Unimplemented actions. Certain service apps recognize

and accept some unimplemented actions (e.g., the actions

of adjusting brightness), by simply replying with "action

unimplemented".

• Denied actions. A few casting service apps (e.g., Bilibili

for TV, or pre-installed casting service in Bell Tree) have

authentication mechanisms and close the open port in

time. As a result, the command requests are refused.

112

TABLE IV: Evaluation results of casting apps

SI#2 SI#3
of confirmation 31 73

Percentage 55.4% 62.4%

The evaluation on SI#3 is based on 117 casting apps, and the evaluation for
SI#2 is based on 56 casting apps that can cast local files.

TABLE V: Casting apps with different file accessing schemes.

Privilege of file access URL generation schemes
Sch.#1 Sch.#2 Sch.#3 Sch.#4

Can not access any files 0 0 2 1
Can access casting file 13 0 8 1
Can access unauthorized files 24 7 0 0

In general, there are two types of built-in service apps. The

first type is the streaming app like Youku Video and Tencent
Video that integrates cast service functions. The cast service of

this type comes as an additional feature of streaming apps and

tends not to offer abundant specialized settings. The other type

is the dedicated screen casting app. For example, a customized

service app called Lebo Cast is pre-installed in Mi Box and

Dangbei Box. It offers more specialized features like manually

confirming the connection status.

In the service app developed by Lebo Cast, mitigation

to authorized access is provided. The service app identifies

the casting app that is attempting to cast content to the

SmartTV and requires the user to manually choose to al-

low or deny the connection. However, we found that this

feature only restricts some of the actions in AVTransport
class (e.g., SetAVTransportURI), while some actions in

RenderingControl (e.g., SetVolume) can still be executed

without authentication.

False Positives & False Negatives. False positives occur in

the detection of SI#4, for QiYiGuo TV on WeBox and Aurora

TV on Tencent Aurora. This is mainly attributed to the fact

that some service apps on TVs do not report any errors for the

received command, even if the command is not executed. The

actions/commands that are not executed but do not correspond

to an error reply are incorrectly classified as "action executed"

by the tool. We manually confirm whether the execution is

successful by checking the status and settings of the SmartTV

to eliminate the false positives of the tool. Also, there is no

service app that reports errors for executed commands. Thus,

the tool gives no false negatives for the detection of SI#4.

D. Findings on the Casting Apps

Results. As mentioned earlier, the test is carried out on a total

of 117 apps. We tested the 117 apps for SI#3. Out of the

117 apps, 56 apps can cast local multimedia files to the TV

via DLNA. Thus, the 56 apps are used for the evaluation of

SI#2. As shown in Table IV, 73 of the 117 casting apps suffer

from SI#3, by accepting the URL from the malicious app in

the control stage and successfully replying with acceptance

messages. 31 out of the 56 casting apps suffer from SI#2, by

allowing file access on the smartphone.

Table V shows that more than half of the apps (31/56) use

risky file URLs, leading to unauthorized file access on the

smartphone. That means a malicious app installed on the user’s

phone can access the files on external storage without any

permissions by exhausting the URLs. There are also 13 apps

that cannot access unauthorized files because only the current

file’s URL is set to be valid.

Only a small number of apps (10/56) use hashes or random

numbers to generate file URLs (Scheme#3). We test it by

detecting the URL format and do not generate new URLs

based on the existing URL. This mitigation makes it more

difficult for malicious apps to exhaust the file URLs. As for

Scheme#4, which uses a static URL as the file URL, we

cannot enumerate it, given that all files share the same URL.

Therefore, only the current casting file can be accessed.

Failed File Access. File access is closely related to the

configuration of the casting app on phone. There are few apps

that set a very short expiry time (a few seconds) for the URL,

which can cause us to time out when accessing it and thus not

be able to access the casting file.

False Positives & False Negatives. As long as the malicious

app can accept the URL, the casting app must have established

a connection with the malicious app. Therefore there is no

false positive in this experiment. False negatives in the exper-

iment are mainly caused by the rudimentary implementation

of the "malicious app". The improper implementation for app-

SmartTV interaction causes the connection to interrupt due to

command execution exceptions. In this situation, the casting

app was classified by the tool as not having SI#2. In reality, the

casting app does not implement authentication mechanisms.

VI. PRACTICAL ATTACK CASES

Exploiting the identified vulnerabilities, we present two

concrete attack cases against SmartTV and smartphone, re-

spectively.

A. Attack Case 1: Command Execution and DoS

As mentioned in SI#4, the DLNA services of SmartTVs

tend to lack effective authentication for the control command

sender, resulting in the risk of device control. Also, what

is worse, after casting, the DLNA service port may not be

closed on time, facilitating the attack at any time. Here we

demonstrate a practical attack case.

Attack Setup. We choose Mi Box 4SE as the attack target.

It has 2 pre-installed apps providing the DLNA service,

LeBo Cast for TV and Tencent Video for TV. Following our

threat model, we developed a malicious Android app MalApp1
without any dangerous-level permission. It achieves various

DLNA control functions, and the code implementation is based

on Cling [19], an open-source UPnP/DLNA library for Java

and Android.

Attack Process. We assume MalApp1 has been installed on

the victim user’s phone and runs in the background. At a

certain time, the user is using a casting app (e.g., Youku

113

Fig. 7: Attack case: command execution.

Video8) on her phone to cast an online movie to her TV. If

MalApp1 detects an available DLNA device appears, it starts to

launch the command execution attack. To both DLNA service

apps9, MalApp1 can execute 7 kinds of control commands

(i.e., Pause, Play, Seek, SetAVTransportURI, Stop, SetMute,

and SetVolume) directly. For example, it can execute the

SetAVTransportURI command to make the TV play another

video, SetVolume for increasing the TV volume.

Furthermore, in addition to executing a single control com-

mand, MalApp1 also can launch a DoS attack. The DLNA

service ports of 49153 (LeBo Cast for TV) and 39520 (Tencent
Video for TV) are always open. Therefore, MalApp1 can send

the SetAVTransportURI and SetMute commands repeatedly

and frequently (e.g., at 5s intervals), resulting in the normal

service not being provided. The former command brings the

TV to the video playback screen repeatedly, and the latter one

keeps the TV muted at all times.

Note that the TV remote control handset operations still

work well during the attacks. However, even if the user exits

the DLNA service apps or reboots the device, the casting

service will still run in the background. On the other hand,

due to heavy OS customization, the TV OS of Mi Box does

not provide the function of forcing closing an app. Therefore,

as a general user, she has no way to stop the DoS attack.

Impact. This case has been confirmed by CNVD with rating

high severity, and an ID has been assigned: CNVD-2022-54667.

B. Attack Case 2: Phone Data Theft

As mentioned in SI#2 and SI#3, the casting app does not

authenticate the devices for connection, and the file URL

generation mechanism may not be secure. It brings the security

risk of data theft.

Attack Setup. We choose Fast Cast10 as our attack target.

It is a popular casting app on Google Play with over 1

million installations. Following our threat model, the attack

is launched through a malicious app MalApp2 without any

dangerous-level permission. Similar to the previous attack

case, MalApp2 is developed based on Cling. Exploiting SI#3,

it can provide the DLNA service like a SmartTV. This means

8Package name: com.youku.phone
9LeBo Cast for TV provides the "anti-harassment" feature which is a kind of

white-list mechanism. However, by default, this option is switched off.
10Package name: com.creative.fastscreen.phone

Fig. 8: Attack case: data theft.

that MalApp2 can [receive – record or modify – forward] a

control command, say MITM attack. The test phone is Google

Pixel 2 with Android 12.

Attack Process. As illustrated in Figure 8, at the moment of

connection establishment between the user’s casting app and

the SmartTV, she cannot distinguish whether the listed DLNA

service is provided by her TV or by a malicious app on her

phone. Therefore, the user may pick the fake service provided

by MalApp2 for connection. After that, during user operations,

when Fast Cast sends a casting command, MalApp2 can extract

the file URL from the command to steal the cast media file.

Also, other files that are not be cast still can be theft

through file name traversal. Taking Fast Cast as an ex-

ample, if the user wants to cast an image file named

Screenshot_20200220-022515.png in the folder /sdcard
/Pictures/Screenshots/, this casting app will generate a

file URL based on the sequence number, like http://192.
168.123.167:8090/image-item-40. MalApp2 can traverse

the last number of this URL to access other files, like [image-
item-1 ∼ image-item-999]. Note that, this kind of file access

is based on DLNA, that is, exploiting the Internet permission

(normal-level), not the READ_EXTERNAL_STORAGE permission

(dangerous-level). It is still Fast Cast that has access to the

files directly. What MalApp2 needs to do is to make a network

request and receive the files over the network. Therefore, it

does not break the isolation mechanism of the Android OS.

Following this approach, MalApp2 can access all image files

on the phone.

Impact. This case has been confirmed by CNVD with rating

low severity, and an ID has been assigned: CNVD-2022-34589.

VII. DISCUSSIONS

In this study, we identified four DLNA-related security

issues in the SmartTV ecosystem and designed analysis so-

114

lutions to detect them in devices and apps. Here we discuss

how to mitigate these security issues and some limitations of

this study.

A. Mitigation

Though the DLNA guidelines [26] design some protection

mechanisms, most of them are optional and do not affect the

core functions. On the other hand, the threat model of DLNA

is outdated and does not consider the scenario of malicious

apps on smartphones. A LAN does not mean all components

are trusted, such as malicious apps on the user’s phone. As a

result, most vendors did not implement these protections. For

each security issue, we propose the corresponding mitigation

solutions with the least modifications.

To SI#1, a straightforward and standard solution is message

encryption. PIN codes or QR codes can be used. By displaying

a PIN code or QR code on the TV side, the user enters or scans

the code on the mobile phone side. Then we can use the code

for key generation and negotiation, and later for encrypted

communication. For the exact process, we can refer to the

Bluetooth pairing and authentication process [6]. Also, since

the PIN codes or QR codes are displayed directly on the TV

screen, the malicious app on the phone has no way of knowing

the exact contents of these codes.

To SI#2, app developers can use secure file URL generation

schemes (such as Scheme#3 and Scheme#4 mentioned in

Section IV-B) to avoid brute-forcing file URLs. In addition,

denying any requests that do not match the URL of the cast

file can also prevent the leakage of non-cast files.

To SI#3, when the casting app establishes the connection

with the discovered device, it should deny the local DLNA

services (with local IPs) to prevent the attacks launched from

malicious apps on the same phone. Besides, using a PIN code

or scanning a QR code, as mentioned before, can also achieve

the effect of authentication.

To SI#4, it is necessary to add an extra connection confirma-

tion on the TV side. After receiving the request to establish a

connection, a connection confirmation window can be popped

up on the TV side for the user to mannualy confirm, in order

to avoid malicious users taking control of the TV. In addition,

whitelisting and blacklisting mechanisms are also necessary to

block frequent malicious requests. For example, we can use

user agents [30] to construct an access control list.

B. Limitations

Fully-automated Analysis. In Section V, we designed two

analysis solutions to detect our identified security issues in

casting apps and SmartTVs. However, some manual actions

are still required to trigger the operations of casting apps due

to the diverse code implementations. Though the workload of

manual actions is slight, it affects the analysis efficiency.

For the casting app analysis, we intended to use static

analysis to find the execution path of how the file URLs are

generated. The endpoint of the path is easy to determine. How-

ever, there is no unified interface for DLNA, and the software

vendor’s code implementations are quite different. Therefore,

tracing the path back to the starting point is challenging.

Finally, we launched our experiments by triggering a casting

action to capture the file URL. We faced a similar challenge to

the automated UI click triggering – the UI designs of casting

apps are quite different. Therefore, we have to trigger the

casting actions in the experiments by manual clicks.

Attack Consequences. The security impacts of some identi-

fied issues are not quite serious. For example, SI#4 can result

in the command execution attack, but this attack affects the

availability of services, not affecting the user’s private data

security. The main reason is that the DLNA is a file-sharing

protocol, and the user generally does not use the TV to process

sensitive data.

Other Casting Protocols. As described in Section II-B, there

are various casting protocols. In this study, we focus on DLNA

for its popularity. Other protocols are also deployed widely,

and we plan to study them in our future work.

VIII. RELATED WORK

Security of Smart Home. The security of the smart home is a

trending topic and has attracted attention from researchers. For

example, Fu et al. [28] proposed a semantics-aware anomaly

detection system for smart homes. Trimananda et al. [35]

presented a tool that can automatically extract packet-level

signatures for device events from network traffic. Fernandes

et al. [27] and Tian et al. [34] illustrate the security issues

associated with weak or lack of authentication in the smart

home. Zhou et al. [38] investigated the security issues in

the interaction between different entities in a smart home

platform. On the DLNA security, the previous work focused

on designing device-level access control schemes [30], [37].

However, these schemes are not suitable for our threat model

in the SmartTV ecosystem.

Security of SmartTV. Prior studies have traditionally focused

on the security of physical system and firmware for SmartTVs.

For example, Aafer et al. [21] developed a log-guided dynamic

fuzzing technique to evaluate Android SmartTV API additions.

The vulnerabilities they revealed could cause cyber threats,

memory corruption, and even visual and auditory disturbances.

Sitterer et al. [33] shared an approach to extract Android TV

application data without root access nor any authentication.

Bachy et al. [23] investigated the specific case of SmartTVs,

presented a new attack path that allows remote vulnerability

exploitation on smart devices, and discussed several methods

to extract and analyze the embedded firmware. Privitera et

al. [32] explored various security threats for SmartTV, fol-

lowed by the design and development of an asset protector by

considering inexpensive hardware and open-source software.

Bachy et al. [24] focused on the security of communication

channels for aerial TV broadcasts or between smartTVs and

their service providers. Niemietz et al. [31] conducted studies

on smart TV apps and found that these apps suffer from

security risks such as data leakage. Varmarken et al. [36]

proposed FingerprinTV, a method for automatically extracting

and evaluating network fingerprints of smart TV apps. In

115

contrast, our work focuses on security issues when performing

DLNA-based casting from smartphones to SmartTVs.

IX. CONCLUSION

In this paper, we conducted a systematic study on the

security of DLNA deployments in the SmartTV ecosystem, fo-

cusing on the interaction between casting apps and SmartTVs.

After investigation, we discovered four widely existed security

issues in the wild. Further, based on the new analysis solutions,

we conducted a series of experiments to measure the scope of

identified issues. The results are not encouraging: 100% TVs

and 62.4% casting apps have at least one security issue. The

current security risks should be mitigated immediately, and

further studies are needed.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful

comments. This work was partially supported by National

Natural Science Foundation of China (Grant No. 61902148),

Shandong Provincial Natural Science Foundation (Grant

No. ZR2020MF055, ZR2021LZH007, ZR2020LZH002, and

ZR2020QF045), and Taishan Scholar Program of Shandong

Province, China. Jiongyi Chen was supported in part by

Natural Science Foundation of Hunan Province, China (Grant

No. 2022JJ40553).

REFERENCES

[1] (2016) DLNA Guidelines. [Online]. Available: https://spirespark.com/d
lna/guidelines/

[2] (2016) UPnP Standards & Architecture. [Online]. Available: https:
//openconnectivity.org/developer/specifications/upnp-resources/upnp/

[3] (2017) DLNA. [Online]. Available: https://www.dlna.org/
[4] (2017) DLNA Product Search. [Online]. Available: https://spirespark.c

om/dlna/products
[5] (2019) When Hotpot Gets Really Hot: Haidilao Customers Shocked by

Steamy TV. [Online]. Available: https://www.whatsonweibo.com/whe
n-hotpot-gets-really-hot/

[6] (2021) Bluetooth Core Specification. [Online]. Available: https:
//www.bluetooth.com/specifications/bluetooth-core-specification/

[7] (2022) AirPlay. [Online]. Available: https://www.apple.com/airplay/
[8] (2022) AirPlay Enabled TVs and Devices. [Online]. Available:

https://www.apple.com/ios/home/accessories/#section-tv
[9] (2022) Android TV. [Online]. Available: https://www.android.com/tv/

[10] (2022) Anzhi. [Online]. Available: http://www.anzhi.com/
[11] (2022) Certified Android TV. [Online]. Available: https://docs.google.

com/spreadsheets/d/1kdnHLt673EjoAJisOal2uIpcmVS2Defbgk1ntWRL
Y3E/edit

[12] (2022) Chromecast built-in. [Online]. Available: https://www.google.c
om/chromecast/built-in/

[13] (2022) Miracast. [Online]. Available: https://www.wi-fi.org/discover-w
i-fi/miracast

[14] (2022) Miracast Certified Products. [Online]. Available: https:
//www.wi-fi.org/product-finder-results?sort_by=certified&sort_order=d
esc&capabilities=100

[15] (2022) Smart TV. [Online]. Available: https://en.wikipedia.org/wiki/Sm
art_TV

[16] (2022) Tencent Yingyongbao. [Online]. Available: https://sj.qq.com/
[17] (2022) Wandoujia. [Online]. Available: https://www.wandoujia.com/
[18] (2022) What Android TV Buy? Comparison, Best 2022 Android

TV-Box. [Online]. Available: https://androidpctv.com/best-android-tv-b
ox/comment-page-1/

[19] 4thline. (2018) Cling. [Online]. Available: https://github.com/4thline/cli
ng

[20] 5kyc0d3r. (2020) upnpy. [Online]. Available: https://github.com/5kyc0
d3r/upnpy

[21] Y. Aafer, W. You, Y. Sun, Y. Shi, X. Zhang, and H. Yin, “Android
SmartTVs Vulnerability Discovery via Log-Guided Fuzzing,” in Pro-
ceedings of the 30th USENIX Security Symposium (USENIX-SEC),
August 11-13, 2021, 2021.

[22] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “SoK: Security
Evaluation of Home-Based IoT Deployments,” in Proceedings of the
2019 IEEE Symposium on Security and Privacy (Oakland), San Fran-
cisco, CA, USA, May 19-23, 2019, 2019.

[23] Y. Bachy, F. Basse, V. Nicomette, E. Alata, M. Kaâniche, J. Courrège,
and P. Lukjanenko, “Smart-TV Security Analysis: Practical Experi-
ments,” in Proceedings of the 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), June 22-25,
2015, 2015.

[24] Y. Bachy, V. Nicomette, M. Kaâniche, and E. Alata, “Smart-TV Security:
Risk Analysis and Experiments on Smart-TV Communication Chan-
nels,” Journal of Computer Virology and Hacking Techniques, vol. 15,
no. 1, pp. 61–76, 2019.

[25] Z. B. Celik, G. Tan, and P. D. McDaniel, “IoTGuard: Dynamic Enforce-
ment of Security and Safety Policy in Commodity IoT,” in Proceedings
of the 26th Annual Network and Distributed System Security Symposium
(NDSS), February 24-27, 2019, 2019.

[26] DLNA guidelines June 2016 release, Digital Living Network Alliance,
2016.

[27] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging
Smart Home Applications,” in Proceedings of the 2016 IEEE Symposium
on Security and Privacy (Oakland), May 22-26, 2016, 2016.

[28] C. Fu, Q. Zeng, and X. Du, “HAWatcher: Semantics-Aware Anomaly
Detection for Appified Smart Homes,” in Proceedings of the 30th
USENIX Security Symposium (USENIX-SEC), August 11-13, 2021, 2021.

[29] Ians. (2021) Over 665 million households own smart TVs globally,
says report. [Online]. Available: https://www.business-standard.com/ar
ticle/current-affairs/over-665-million-households-own-smart-tvs-globa
lly-says-report-121072500630_1.html

[30] M. Z. Islam, M. M. Hossain, S. Haque, J. Lahiry, S. A. Bonny, and
M. N. Uddin, “User-agent based Access Control for DLNA Devices,”
in Proceedings of the 6th International Conference on Knowledge and
Smart Technology (KST), Chonburi, Thailand, January 30-31, 2014,
2014.

[31] M. Niemietz, J. Somorovsky, C. Mainka, and J. Schwenk, “Not so smart:
On smart TV apps,” in 2015 International Workshop on Secure Internet
of Things, SIoT 2015, Vienna, Austria, September 21-25, 2015, 2015.

[32] D. Privitera and H. Shahriar, “Design and Development of Smart TV
Protector,” in Proceedings of the National Cyber Summit (NCS), June
5-7, 2018, 2018.

[33] A. Sitterer, N. Dubois, and I. M. Baggili, “Forensicast: A non-intrusive
approach & tool for logical forensic acquisition & analysis of the google
chromecast TV,” in Proceedings of the 16th International Conference
on Availability (ARES), August 17-20, 2021, 2021.

[34] Y. Tian, N. Zhang, Y. Lin, X. Wang, B. Ur, X. Guo, and P. Tague,
“SmartAuth: User-Centered Authorization for the Internet of Things,” in
Proceedings of the 26th USENIX Security Symposium (USENIX-SEC),
August 16-18, 2017, 2017.

[35] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky,
“Packet-Level Signatures for Smart Home Devices,” in Proceedings of
the 27th Annual Network and Distributed System Security Symposium
(NDSS), February 23-26, 2020, 2020.

[36] J. Varmarken, J. A. Aaraj, R. Trimananda, and A. Markopoulou, “Fin-
gerprinTV: Fingerprinting Smart TV Apps,” Proceedings on Privacy
Enhancing Technologies (PoPETs), vol. 2022, no. 3, pp. 606–629, 2022.

[37] Y. Wu and X. Zhi, “ARP Spoofing Based Access Control for DLNA
Devices,” in Proceedings of the 2015 International Conference on Cloud
and Big Data Computing, Beijing (CBDCom), China, August 10-14,
2015, 2015.

[38] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and
Y. Zhang, “Discovering and Understanding the Security Hazards in
the Interactions between IoT Devices, Mobile Apps, and Clouds on
Smart Home Platforms,” in Proceedings of the 28th USENIX Security
Symposium (USENIX-SEC), August 14-16, 2019, 2019.

116

