
Exploring Transformers for Multi-Label Classification of Java Vulnerabilities

Cláudia Mamede1, Eduard Pinconschi1, Rui Abreu1,2, and José Campos1,3
1Faculty of Engineering of University of Porto, Porto, Portugal

2INESC-ID, Porto, Portugal
3LASIGE, Faculty of Sciences of the University of Lisbon, Portugal

up201604832@up.pt, up202103584@up.pt, rui@computer.org, jcmc@fe.up.pt

Abstract—Deep learning (DL) techniques have demonstrated
potential in reasoning complex patterns of vulnerable code from
high-level abstractions. Recent advancements in the area, such as
the introduction of transformer-based models, like BERT, help
overcome the problem of the available vulnerability detection
datasets being too small to enable most DL models to capture
all relevant patterns. They mitigate the challenge by leveraging
knowledge from a general domain to solve problems in specific
domains. In this paper, we explore different BERT-based models
for multi-label classification of vulnerabilities in Java on a
synthetic dataset. The models yield up to 99% in accuracy and
94% in f1-score. We remove biases in the training dataset and
observe drops of up to 13% of the f1-score. We further assess
the generalizability of the models on realistic samples and notice
that one model, in particular, predicted unknown vulnerabilities
with an f1-score of nearly 85%.

Keywords—Vulnerability detection; transformer; multi-label
classification; bias; generalizability

I. INTRODUCTION

As society becomes more dependent on technology, cyber-
attacks are becoming more appealing, and so are the number
of incursions and their sophistication. Consequently, compa-
nies are investing in shifting-left security to avoid risks of
exploitation [36], [27]. Traditional static and dynamic analyses
are the standard forms of scans for most companies, but they
do not suit this principle. Challenges include delaying code
scans until the end of development (as they require the code
to be fully developed). In addition, they have high false-
negative/false-positive rates and demand developers to manu-
ally define features, which is a hurdle for fast development [2].

Hence, recent works explore DL-based systems for vul-
nerability detection to tackle some of the issues associated
with conventional approaches and anticipate the detection as
much as possible. The transformer [34] is a recent model
that aims to solve sequence-to-sequence tasks while efficiently
handling long-range dependencies. It has rapidly become the
dominant architecture for Natural Language Processing (NLP),
surpassing alternative neural models in performance for natural
language understanding and generation tasks [37].

This work explores the use of transformer-based models,
specifically BERT-based architectures [5], to identify software
vulnerabilities in Java code. We focus our research on multi-
label classification as other mutually exclusive classifications
may not always provide enough information for the developer
regarding the identified flaws.

Thus, we test different model architectures and configura-
tions to discover which ones perform better in synthetic and
more realistic scenarios. We also analyze our dataset to find

to what extent it impacts the ability of these models to learn
and how it can implicitly introduce bias to the models. Then,
using natural language techniques, we successfully identified
problematic tokens and removed them to minimize these
problems. We further investigate to what extent transformer-
based models that are find-tuned on synthetic and vulnerable
code can predict real vulnerabilities. Lastly, using Software
Fault Patterns views1, we were able to identify groups of
vulnerabilities that share similar patterns of faulty compu-
tations. We leverage that mapping to assess the ability of
transformer-based models to generalize their knowledge to
classify unknown vulnerabilities.

Our contributions. This paper explores the usability of the
transformer in detecting software vulnerabilities in Java code.
We highlight the following contributions:

1) Introduction of different multi-label classification
systems for vulnerability detection in Java code. This
work explores different transformer-based architectures
and configurations to find which outputs the best clas-
sifications. We also identify the benefits of multi-label
classification in this context.

2) Application of natural language techniques to iden-
tity biased scenarios in models trained on source
code. Using the Pointwise Mutual Information (PMI)
score [29], it is possible to pinpoint problematic tokens
in the datasets, which, consequentially, helps minimise
the problem of bias.

3) Assess the ability of models trained with synthetic
data to classify real-world samples. All models were
trained with synthetic data. In this context, we explore
the ability of these models to identify vulnerabilities in
more realistic contexts.

4) Explore the transformer-based models fine-tuned for
vulnerability detection to discover unknown flaws.
We leverage the multi-label models to find out to what
extent they can predict unknown flaws.

To foster reproducibility, all the artefacts are made
publicly available on GitHub at https://github.com/TQRG/
VDET-for-Java.

Paper organization. The remainder of this paper is struc-
tured as it follows. Section II explains fundamental concepts
and discusses related work. Section III enumerates the research
questions and describes implementation details and decisions
made. Section IV presents and analyses the performance

1https://samate.nist.gov/BF/Enlightenment/SFP.html

43

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS57517.2022.00015

results of the models obtained during validation and testing.
Section V discusses the validity of the results presented in the
previous section and describes the NLP techniques applied to
identify and quantify bias in the model. Finally, section VI
presents the conclusions and future work of this study.

II. BACKGROUND AND RELATED WORK

This section introduces different perspectives for classifying
software vulnerabilities, gives a brief overview of vulnerability
detection approaches, follows up with the state-of-the-art, and
finalizes with a description of the BERT architecture.

A. Software vulnerabilities and their classification

Vulnerabilities are usually grouped based on common prop-
erties and similarities to facilitate analysis and understanding.
This classification helps determine exploitation conditions and
prepare adequate countermeasures [18].

Common Weakness Enumeration (CWE)2 is a well-known
form of describing software security weaknesses in archi-
tecture, design, and code. All individual CWEs are held
within a hierarchical structure, allowing different levels of
abstraction. CWEs located at higher system levels provide a
broad overview of a vulnerability type; CWEs at lower levels
provide finer granularity.

The Software Fault Patterns (SFP) are a clustering of
faulty computations (that is, CWEs) that share similar proper-
ties [24]. They focus more on the source code faults and the
features that can facilitate automation and because of that, they
are considered improvements for the CWE classification [38].

B. Vulnerability Detection Systems

More researchers are exploring different approaches to
detect software security vulnerabilities. These techniques can
be divided into Conventional and Machine learning-based
approaches [11].

As the name suggests, the first group includes traditional
procedures such as pattern matching and static and dynamic
analysis. They require experts to define features, relying on
human experience, their level of expertise and domain knowl-
edge [16].

Regarding the second group, there are several forms of
categorization. For example, Hanif et al. [11] proposes divid-
ing ML-based approaches into supervised, semi-supervised,
ensemble, and deep learning. On the other hand, Sonnekalb et
al. [32] divided them into traditional ML, shallow learning
neural networks and DL neural networks. Lastly, Ghaffarian et
al. [9] proposed a division using a twofold categorization
scheme. They first distinguish between approaches that an-
alyze program syntax and semantics and then based on the
purpose of the categorization. So, the ones that do not study
program syntax or semantics fit into the group of Vulnerability
Prediction Models based on Software Metrics. The ones that
do can be divided into Vulnerable Code Pattern Recognition
and Anomaly Detection Approaches. The techniques that do

2https://cwe.mitre.org/

not fit any of the abovementioned groups belong to the
Miscellaneous Approaches.

This paper focuses on the deep learning models currently
trending in the vulnerability detection community [11], specif-
ically the transformers. These DL models use their neural
networks to extract features automatically and leverage knowl-
edge from a general domain to solve problems in other specific
domains, relieving experts from labour-intensive and possibly
error-prone feature engineering tasks [22], [2], [11].

C. Transformer-Based Models

The literature prompted the Transformer architecture for
vulnerability detection even before its application for the
task. The adoption of the Transformer architecture has been
encouraged due to its strong capacity of understanding natural
language [22], its transfer learning capability [11], and over-
coming existing challenges of previous architectures, such as
the missing recurrence [32]. The transfer learning mechanism
allows learning a specific task from a small dataset by reusing
previous generic knowledge learned from a vast dataset with
quality and reliable data.

Ziems et al. [39] are the first authors to introduce the use
of Transformer-based models to solve the problem of vulner-
ability detection. They use the traditional BERT architecture
pretrained on written English to identify flaws in computer
code. They built a multi-class model, to identify CWEs in
software. They focus on C/C++ programming languages and
crafted their own dataset to test the model, addressing more
than 100 CWEs. They use file-level granularity.

Hin et al. [12] leverage the pretrained CodeBERT model to
extract features from real-world C/C++ code at the statement
and function level granularity. In addition, the authors use
Graph Neural Networks to preserve important dependency
information from the data. For classification, the authors opt
for a multi-layer perceptron model to simultaneously learn
from the function-level and statement level code.

Hanif et al. [10] explores RoBERTa for vulnerability de-
tection on real-world C/C++ projects. They first learned code
representations via Masked Language Modelling (MLM), and
then connected the pretrained model to a multi-layer per-
ceptron and convolutional neural network to fine-tune it for
vulnerability detection. This work assesses model performance
for binary and multi-class classifications and compares results
with other well-known projects, such as VulDeePecker [21]
and µVulDeePecker [40].

Le et al. [19] use ML models to predict CVSS metrics of
vulnerable functions, which helps prioritize critical software
vulnerabilities. In particular, they train CodeBERT to build the
vocabulary for feature extraction methods. They also crafted a
dataset with 1782 vulnerability functions in 200 open-source
Java projects.

Thapa et al. [33] compare the performance of multiple
DL-based systems for vulnerability detection, from which
we emphasize the traditional BERT architecture, DistilBERT,
RoBERTa and CodeBERT. They focus on C/C++ program-
ming languages and use VulDeePecker’s released dataset to

44

train these architectures, considering binary and multi-class
classifications.

Fu et al. [8] propose LineVul, a transformer-based line-level
vulnerability prediction approach to address the limitations
of graph-based neural networks. Using a C/C++ real-world
dataset, they were able to show that their architecture had
more accurate and more cost-effective predictions than graph-
based strategies and highlighted the potential of the model in
realistic scenarios.

D. Multi-label vs. mutually exclusive class classifications

In binary classifications, one wants to discover if a code
sample is either vulnerable or non-vulnerable [21]. This clas-
sification does not help developers solve the problem as it lacks
relevant details, such as the type of flaw. On the other hand,
multi-class classification only identifies the type of flaw [40],
assuming that they can always be exploited, i.e., they are
vulnerable. This particular type of classification may not be
accurate due to good source/bad sink and bad source/good sink
scenarios.

For example, the method action in Listing 1 is vulnerable
to CWE-190 (Integer Overflow or Wraparound), as there is
no verification to prevent overflow from occurring. Assum-
ing data ranges between [MIN_VALUE, MAX_VALUE], an
integer overflow scenario would only happen if data =
MAX_VALUE. On the contrary, the flaw is tackled if data is
a hardcoded non-max or if there was a check on the value of
data before using the method. So, even though the construction
still relates to a particular CWE, the flaw may be solved
(in)voluntarily in other code sections.
1 public void action(byte data) throws Throwable {
2

3 /* POTENTIAL FLAW: data == Byte.MAX_VALUE */
4 byte result = (byte)(++data);
5

6 IO.writeLine("result: " + result);
7 }

Listing 1. Example of method vulnerable to CWE-190.

In the real world, where companies are rushing to develop
and release innovative software before competition, it is es-
sential to distinguish between truly concerning issues so that
security experts can efficiently solve them without hindering
the speed of deployment. Hence, models should identify the
type of flaw and understand if it is exploitable. This can be
described as a multi-label classification problem, in which one
wants to predict a particular CWE and if the code is vulnerable
or not.

Conventional strategies to solve multi-label classification
problems include problem transformation, problem adapta-
tion, and ensemble methods. Fallah et al. [6] proposes a
transformer-specific technique to solve the problem - (global)
threshold selection.

E. BERT model

BERT [5] is a transformer-based model which uses only the
encoder blocks from the original architecture. It is bidirectional
and uses attention mechanisms.

Tokenization and model input: BERT models expect 1-
dimensional vectors with a maximum length of 512 numerical
tokens as input. Each token is an integer that ranges from 0
to vocabulary size (in this case, vocabulary size = 30,522),
encoded with a word-piece tokenizer [28]. This tokenizer
receives an input sequence and decides, based on token
frequency, whether to keep every word as a whole word, split
it into sub-words, or decompose it into individual characters.

Model architecture: The BERT model is composed of
twelve layers (encoder blocks), with twelve attention heads [5].
The sequence flow inside the stack is not trivial, but the
process is synthesized in Figure 1. After tokenization, each
token is embedded into a 768-long vector, generating an
input embedding for each token. Using different linear pro-
jections, each embedding vector produces twelve triplets of
64-long vectors (the key, query, and value vectors). Then,
each triplet is forward to its own self-attention head that
calculates the scaled dot-product attention for the received
triplet, generating a 64-long vector that encodes information
regarding the specific token. The outputs from all self-attention
heads are concatenated together, and the result is projected
through a feed-forward layer. The result is a sequence of
transformed embedding vectors that go through the same layer
structure eleven more times, improving representation each
time. Finally, the model can output the last hidden state (all
the improved input embeddings outputted by the last encoder
block), multiple hidden states (the input embeddings outputted
by a group of encoder blocks), or the first input embedding
of the last encoder block, that is, the pooler output (which
matches the representation of the [CLS] token).

III. METHODOLOGY

This section introduces the research questions and describes
implementation details and decisions made that allow the
exploration transformers for vulnerability detection.

A. Research Questions

Our goal is to investigate the ability of BERT-based models
in identifying software vulnerabilities in Java code. We aim at
answering the following Research Questions (RQs):

• RQ1 How do different output configurations impact the
learning of BERT-based models?

• RQ2 Which BERT-based model configuration achieves
better vulnerability identifications?

• RQ3 To what extent does implicit bias in datasets affect
the ability of the model to learn?

• RQ4 How do BERT-based models perform when exposed
to real-world samples?

• RQ5 To what extent BERT-based models can predict
unknown vulnerabilities?

B. Dataset Selection

To feed a DL model, appropriate data should be collected,
filtered and labelled and later transformed into a suitable for-
mat. In the existing literature, the majority of available datasets
for vulnerability detection are suited for C/C++ programming

45

Figure 1. BERT architecture.

languages [2], [22], [32]. Hirsch et al. [13] identified 73
benchmarks for evaluating debugging approaches. Only 6 of
the 73 benchmarks contain vulnerable Java programs and
the majority include a relatively small set of programs or
vulnerabilities. The NIST SAMATE Juliet Test Suite for
Java3 is a collection of synthetic test cases written in Java
that includes bad-source/good-sink and good-source/bad-sink
scenarios. Hence, models can be trained to distinguish both
cases (that is, vulnerable or non-vulnerable) and improve their
classifications. This test suite further identifies the related
CWE for each code sample.

We use the curated dataset developed in [23] to train the
models. It is built from the Juliet Test Suite for Java and uses
function-level granularity. It contains 113 898 methods, 80
269 of which are non-vulnerable and 33 629 are vulnerable.
Each sample is related to only one particular CWE. Figure 2
illustrates the distribution of CWEs in this dataset.

Figure 2. CWE distribution in the dataset.

3https://samate.nist.gov/SARD/test-suites/111

C. Model implementation

JavaBERT [4] and CodeBERT [7] are BERT-based models.
The former was trained on nearly 3 million Java files retrieved
from open-source projects on GitHub, on which a certain
amount of tokens are masked and must be predicted (Masked
Language Modeling task). On the other hand, CodeBERT
was trained on both natural and programming languages. This
model is trained with a dataset [14] containing 6.4 million
unimodal codes in different programming languages, including
Java. Feng et al. [7] trained CodeBERT with two objectives:
Masked Language Modeling and Replaced Token Detection.

As far as we know, JavaBERT is the only model trained on
just the Java programming language so it is relevant to explore
its use in this context. Similarly, we consider CodeBERT
due to its prominence in recent vulnerability detection litera-
ture [25], [26], and because of its promising performance with
small sized datasets on different tasks. We use the Hugging
Face and PyTorch libraries for this purpose. Regarding model
implementation, we address the following components:

1) Model configuration: BERT-based architectures can out-
put different data structures that serve as input for the new
classification layers, influencing the final predictions. So, we
investigate two configurations to find out which one produces
the most accurate predictions for vulnerability detection:

• 4HS: BERT authors confirmed that combining the out-
puts of the last four hidden layers produces the best
results [5]. So, m4HS uses the concatenation of the first
tokens (corresponding to the representation of the [CLS]
tokens) of the last 4 hidden states (due to computational
constraints, we cannot use the complete state output of
the encoders).

• PO: The pooler output is usually the go-to solution in
most cases, providing reasonable results in other prob-
lems. Therefore, mPO uses the pooler output as its output.

46

2) Loss function: It computes the distance between the
current output of the algorithm and the expected output.
Kurate et al. [17] investigated how different loss functions
influence multi-label classifications and concluded that using
Binary Cross-Entropy (BCE) (combined with a sigmoid acti-
vation function in the output layer) achieved superior results
in comparison to other approaches. We follow the prior work
and use BCE with Logits Loss function (implemented with
BCEWithLogitsLoss in PyTorch).

3) Classification layer: The classification layer has 22
output neurons, corresponding to each label (CWEs and
“Vulnerable/NonVulnerable”). Each output neuron (and by
extension, each label) is considered to be independent of each
other. After applying an activation function over the logits to
limit the values to [0,1], it is possible to apply Fallah et al.’s
threshold strategy [6] and obtain the final predictions. Using
a threshold = 0.5, labels with probabilities higher than that
are selected, and those below are ignored. Hence, the model
should be able to identify more than one CWE in code and
confirm its exploitability.

D. Model training and validation

The dataset is split using a split ratio of 80:10:10 for
training, validation (obtained from the training data at each
epoch) and test sets. In this context, having a validation set
is relevant because we are adjusting hyperparameters at each
iteration, based on loss values. There are no repeated samples
through sets, and each collection has representatives from all
classes.

After, both sets are subdivided into batches of size 12
(due to computational limitations, this is the maximum batch
size supported). We use a smart-batching strategy to avoid
redundant computations and speed training. So, instead of
grouping our samples in batches of a fixed size, we adapted
Chris McCormick’s Uniform Length Batching Strategy4 to fit
our data. By sorting the dataset by sequence length and group
samples of similar sizes in batches of 12, we reduced the
number of tokens in our samples by 66% and sped up the
training process.

Lastly, we train and validate all models for 10 epochs
(maximum number of completed iterations for all models due
to computational limitations) before their evaluation.

E. Evaluation

1) Diagnosing models’ behaviour with learning curves: A
learning curve is a mathematical representation of the learning
process as a task repetition occurs [1]. It helps in model
selection and comprehending whether or not the models can
capture meaningful features of the training data [35]. For the
problem of vulnerability detection, we intend to minimize loss
during training. Train loss provides insight into how well
the model learns, and the validation loss helps understand
how models generalize. Thus, we analyze the learning curves
to identify promising models for vulnerability detection and
eliminate architectures that would not perform well.

4https://mccormickml.com/2020/07/29/smart-batching-tutorial/

2) Model evaluation, testing with synthetic samples: Be-
cause the number of samples per label differs in the dataset,
accuracy cannot be considered the main metric for perfor-
mance assessment. Therefore, weighted average values for
precision, recall and f1-score are computed, considering each
class’s support. In addition, mean false-positive (FPR) and
false-negative (FNR) rates are also calculated.

3) Analysis of the training data: When training, validation,
and testing sets share the same data source, implicit biases in
them may impact the ability of models to learn [2]. Thus, we
apply natural language techniques to software code, namely
the Pointwise Mutual Information (PMI) [29], which enables
one to discover problematic tokens in datasets. After that,
we normalize the dataset to minimize its impact on model
performance.

4) Model evaluation, testing with real-world samples: Rus-
sell et al. [30] stated that training models with just synthetic
samples is insufficient as precision may severely decrease
when facing real-world scenarios. We look into this issue
and test the normalized models with real-world samples with
the dataset from [20]. Since the dataset does not include the
CWE identifier of the CVEs, we had to map each CVE to
its respective CWE. We accomplished that by leveraging the
dump of all the CVE published5. Then we selected the samples
by the CWE that our model could identify. We end up with a
the test set contains only 70 vulnerable methods, targeting 8
known CWES6. At last, we evaluate the normalized datasets
with the resulting testing set.

• Synthetic vs real-world datasets: Synthetic data is
similar to real-world data but not collected by real-
life means; instead, it is programmatically generated.
A clear advantage of it is the possibility to reproduce
vulnerabilities that rarely occur and are hard to find in
reality. On the other hand, synthetic code, particularly
single-sourced synthetic samples, follow the same style
and structure [30]. In the context of our problem, the
dataset used to train the models is synthetic, and con-
sequently, the samples share common elements, such as
variable/method names and code structure. On the other
hand, the real-world samples we are using for testing do
not follow specific rules for naming variables/methods
nor have a particular code structure. So, after minimizing
the influence of these traits through the normalization of
the synthetic test set, we expect models to classify real-
world samples equally successfully.

5) Generalizability: Intuitively, generalizability measures
how applicable the results of a study are to a broader group.
In this context, a model is said to have good generalizability if
it can be successfully applied to identify other unknown flaws.

To assess the generalizability of the models we consider
testing them with samples of unknown vulnerability types
that are related with the kind of vulnerabilities these have

5https://www.cve-search.org/dataset/
6CWE113, CWE190, CWE319, CWE400, CWE470, CWE78, CWE89 and

CWE90

47

been trained. This is possible as certain vulnerabilities share
similarities and CWE definitions capture the relationship be-
tween them. Furthermore, SFPs map to CWE elements and
these arrange vulnerabilities by common faulty computations.
We leverage from the CWE List the SFP view that maps
CWE identifiers with SFP clusters. In Table I, we list the
CWEs in the training dataset along with their respective SFP
Secondary Cluster. Since CWE-129, CWE-789, and CWE-
690 are not listed in the SFP view, we omit them in the
table. We also omit CWE-400, CWE-470, and, CWE-319
since their mapping is one-to-one and listing them does not
provide any additional information. As observed, the majority
of the training dataset is composed of vulnerabilities related
to “Glitch in Computation (CWE-998)” and “Tainted Input to
Command (CWE-990)”.

TABLE I
SFP SECONDARY CLUSTERS OF TOP CWES IN THE TRAINING DATASET.

SFP Secondary Cluster CWE ID #Samples

CWE-190 4862
CWE-191 3971
CWE-369 1928Glitch in Computation

CWE-197 1259
CWE-89 2198
CWE-113 1580
CWE-134 836
CWE-80 771
CWE-78 493
CWE-643 459

Tainted Input to Command

CWE-90 232
CWE-606 482Tainted Input to Variable CWE-15 478
CWE-36 342Path Traversal CWE-23 212

As testing set for this experiment we leverage the CWE-611
and CWE-79 samples in the dataset introduced by T. Le et
al. [20]. These two kinds of vulnerability are unknown to the
model but fall under the “Tainted Input to Command (CWE-
990)” cluster, the second most representative cluster in our
dataset. We also assess the impact of the amount of data on
the model by classifying unknown CWEs that are relatable to
training data but in less amount. For that, we select CWE-22
as it belongs to the “Path Traversal (CWE-981)” cluster with
fewer samples in the training set but with many samples in et
al. [20]. Furthermore, we also investigate the ability of the
models predicting unknown and unrelatable vulnerabilities to
the training dataset. For that, we select as candidate CWE-
287 that belongs to the “Authentication Bypass (CWE-947)”
cluster.

We constructed three small test sets. ds 611 79, which
contains only CWE-611 and CWE-79 vulnerabilities, has 239
samples. ds 22, containing only CWE-22 representatives, has
179 samples. Lastly,ds 287, targeting only CWE-287 vulner-
abilities, has 159 samples.

IV. RESULTS

This section presents our results and findings under various
experiments. We use these results to answer the research

Figure 3. Learning curves (loss variations) during training (left) and validation
(right) for all models.

questions enumerated in Section III-A.

RQ1: How do different output configurations impact the
learning of BERT-based models?

Figure 3 illustrates the learning curves, for the first 10
epochs, of the four models. We identify the following in the
graphics:

• JavaBERT 4HS, CodeBERT 4HS and
CodeBERT PO have a good fit. These models
have low loss values, with training and validation curves
decreasing slightly in the beginning and flatten, with a
small gap between them.

• JavaBERT PO is (most likely) underfit. Training loss
has a minimum value of 0.023 (epoch 2) and a maximum
value of 0.209 (epoch 10). Validation loss ranges from
0.019 (epoch 2) to 0.208 (epoch 10). Loss is a subjective
metric that highly depends on the problem, and, in this
context, a loss value of 0.2 is tremendous. The model
has a low training loss at the beginning that gradually
increases. Validation loss follows a similar pattern. We
hypothesize that with more iterations, both values would
drop to 0, and all evidence would point to an underfit
scenario.

48

Finding 1. The pooler output configuration compro-
mises the transfer learning capabilities of the Jav-
aBERT model.

RQ2: Which BERT-based model configuration achieves
better vulnerability identifications?

We observe from the learning curve of JavaBERT PO that
the model is not stable, having considerably high values in the
last three epochs and being incapable of learning the training
set. As a result, we excluded it from subsequent experiments.

Table II lists the performance result for the most accurate
epoch during the training of the JavaBERT and CodeBERT
models for the appropriate configurations. The “#Epoch” col-
umn indicates the number of the epoch with the best training
results. The “Acc.” column shows accuracy. The “wF1”,
“wPrecision”, and “wRecall” columns describe the weighted
average of F1, precision, and recall, respectively. The “FNR”
and “FPR” columns indicate the average FPR and FNR,
respectively.

The JavaBERT model with the 4HS configuration presents
the highest performance metrics. It achieves an accuracy of
almost 99%, a precision of 95%, and a recall of 93%. This
means that when the model predicts a label that is in fact the
expected label (good precision), and when a particular label
is expected, the model usually predicts it right (good recall).
Consequently, the f1-score, that represents a balance between
precision and recall, has also a high value (94%). This model
is stable, with low loss values (ranging from 0.02095 to a
maximum value of 0.04255) and high accuracy.

CodeBERT 4HS and CodeBERT PO perform very simi-
larly, and both have an f1-score of 93%. The models are
also stable, with low loss values (ranging from 0.023 to
0.033 for CodeBERT 4HS and from 0.023 to 0.025 for Code-
BERT PO). Despite the difference between models not being
as expressive as with JavaBERT, using the 4HS configuration
is still the best approach.

Finding 2. Combining the outputs of the last four
hidden layers yields more accurate predictions.

RQ3: To what extent does implicit bias in datasets affect the
ability of the model to learn?

The Pointwise Mutual Information (PMI) [29] score permits
the discovery of problematic tokens in the dataset. The results,
depicted in Table III, prove that some tokens, such as “bad”
and “good” are still present and are tightly related to the
“Vulnerable” and “Non Vulnerable” classes. We hypothesize
that these tokens are most likely over-represented, causing
the model to make wrong predictions in samples. The same
study was made for all the other classes. Similarly, there are
problematic tokens in some of the CWE classes. This time,
it is confirmed that the problematic tokens consist of the
numbers of the CWEs shown in Table III. The complete list
of problematic tokens is available in our GitHub repository.

Then, normalized the dataset and repeated training for
JavaBERT 4HS, CodeBERT 4HS and CodeBERT PO. ob-
served some performance differences, which are represented
in Figure 4.

In both cases, performance severely decreases. Despite Jav-
aBERT 4HS having a slightly higher f1-score when trained on
a non-normalized dataset, both models end up with the same
values after normalization. More specifically, both models
decreased almost 12% in the f1-score metric.

Figure 4. Performance difference before and after dataset normalization.

Finding 3. We can use the Pointwise Mutual Score
(PMI) to identify problematic tokens in software
code.

Finding 4. Removing token that bias the model
substantially reduces the f1-score (up to 12%)

RQ4: How do BERT-based models perform when exposed
to real-world samples?

In Table IV, we list the performance of the models on real
samples. For each metric, we compare them with their previous
performance results reported in Table II. We can observe that
the accuracy is high, while the f1-score and recall have low
values, and precision is reasonable.

On the one hand, recall identifies the proportion of actual
positives which were correctly classified. In this case, both
models struggle to determine (the majority of) positive in-
stances in the dataset, outputting more false negatives. The
models can recognise vulnerable patterns but stumble in select-
ing the type of vulnerability (CWE) and that is why recall has
lower values. On the other hand, precision analyses the number
of samples correctly predicted as positive. The models do not
identify many false positives and because of that precision has
more reasonable values for both models.

To simplify, we can understand these models as being
“picky”. They are usually correct whenever they identify a
vulnerable piece of code and a particular CWE (high recall).
However, they still “prefer” missing predictions, reflecting the
high FNR values.

49

TABLE II
PERFORMANCE RESULTS FOR JAVABERT AND CODEBERT WITH DIFFERENT MODEL CONFIGURATIONS.

Model #Epoch Acc. wF1 wPrecision wRecall FNR FPR

JavaBERT 4HS 8 98.93% 94.0% 95.0% 93.0% 7.12% 0.98%
CodeBERT 4HS 10 98.68% 93.0% 95.0% 91.0% 12.28% 1.02%
CodeBERT PO 9 98.67% 93.0% 95.0% 91.0% 12.39% 1.06%

TABLE III
TOP TOKENS WITH HIGHEST PMI SCORES FOR EACH LABEL.

Label Token PMI

Vuln.

##ad 0.98
bad 0.88

##hor 0.61
http 0.60
good 1
#BS 1Non-

##GS 1Vuln
false 1

Label Token PMI

CWE-134 ##13 1
#4 1

CWE-15 ##15 1
CWE-23 ##23 1

CWE-400 ##40 1
CWE-470 ##47 1
CWE-643 ##64 1
CWE-80 ##47 1

Finding 5. Models trained on synthetic data have
a tendency to identify true vulnerable samples as
non-vulnerable.

RQ5: To what extent BERT-based models can predict un-
known vulnerabilities?

Detecting unknown real-world vulnerabilities is paramount
for vulnerability detection models. With this research question,
we investigate if synthetic code’s syntactic and semantic char-
acteristics that the models learned are adequate for predicting
unknown vulnerabilities.

Although the models cannot output labels they have not
seen before (like other CWEs), we hypothesize they can still
pinpoint “Vulnerable” and “Non Vulnerable” patterns. Hence,
we focus on these last two labels, recalling the models are
fine-tuned for multi-label classification and, consequently, the
labels are not mutually exclusive (i.e., probabilities do not sum
up to 1).

Table V lists the performance results of all models for
the three test sets. For ds 611 79, the CodeBERT model
suffers a considerable drop in the performance metrics for
both configurations. The low accuracy and high FN/FP rates
indicate that fine-tuning CodeBERT models with synthetic and
vulnerable code do not suit vulnerability detection. In contrast,
JavaBERT manages to maintain a relatively good accuracy
with tolerable FN/FP rates. For ds 22, CodeBERT models
once again perform poorly. On the contrary, JavaBERT drops
performance, but it can still deliver accuracy values above
50%. We believe this decline is because the original training
set had fewer examples of vulnerabilities related to the Path
Traversal SFP. Consequently, models have not learnt enough
to make a better prediction.

Finding 6. JavaBERT fine-tuned on synthetic and
vulnerable data can successfully predict unknown
and relatable vulnerability types.

On the other hand, for ds 287, all models achieve low-
performance metrics, which indicates their inability to detect
unknown and unrelatable vulnerabilities with patterns different
from the ones learned.

Finding 7. BERT-based models fine-tuned on syn-
thetic and vulnerable data are unable to predict
unknown and unrelatable vulnerability types.

V. DISCUSSION

Considering the results for the models tested in realistic
contexts, reported in Table IV, we observe that all of them
suffer from high FNR.

Although both are risky, FP are only annoying as reviewers
have to filter them to identify the relevant ones. Instead, FN
are more dangerous as they lead to a false sense of security
and can be neglected [27], [3]. Thus, vulnerability detection
systems with high false-positive rates may not be usable.
Similarly, systems with high false-negative rates may not be
useful [21].

Therefore, it is essential to lower the FNR so that any
of these models can be integrated into a future tool. This
could be accomplished by introducing more training samples
that could be either synthetic or realistic. On the one hand,
synthetic samples make it possible to generate vulnerabilities
that rarely occur and are hard to find. On the other hand,
models trained on this kind of data are usually used to a
specific code structure/pattern, which could severely impact
how models learn and reduce performance [2], [30].

A. Threats to validity

Despite the positive results, it is important to approach them
with some reservations as there are some threats to the validity
of the model. They are:

1) Reduced sample size and imbalanced training
data: All DL models highly rely on the quality and
quantity of a dataset. The training samples are all syn-
thetic and single-sourced, with 70% of them being non-
vulnerable and only 30% vulnerable. As Chakraborty et
al. [2] mentioned, a model trained on such an uneven
dataset is most likely biased towards the majority class.

50

TABLE IV
PERFORMANCE RESULTS FOR THE MODELS TESTED WITH REAL-WORLD SAMPLES

Model Acc. wF1 wPrecision wRecall FNR FPR

JavaBERT 4HS 90.06% (-8.87%) 44.0% (-50%) 68.0% (-27%) 35.0% (-58%) 36.03% (+28.91%) 4.12% (+3.14%)
CodeBERT 4HS 86.88% (-11.8%) 23.0% (-70%) 82.0% (-13%) 23.0% (-68%) 37.74% (+24.46%) 5.39% (+4.37%)
CodeBERT PO 85.86% (-12.81%) 20.0% (-73%) 59.0% (-36%) 12.0% (-79%) 39.52% (+27.13%) 9.85% (+8.79%)

TABLE V
PERFORMANCE RESULTS FOR ALL MODELS TESTED WITH UNKNOWN VULNERABILITIES.

Class “Vulnerable” Class “Non Vulnerable”
Model Dataset #Samples Acc. FNR FPR F1 Prec. Recall Acc. FNR FPR F1

JavaBERT 4HS
ds 611 79 239 74.47% 25.52% 0% 85.37% 100% 74.48% 75.73% 0% 24.26% undef.

ds 22 179 55.86% 44.13% 0% 71.69% 100% 55.87% 60.89% 0% 39.10% undef.
ds 287 159 38.36% 61.63% 0% 55.45% 100% 38.36% 44.03% 0% 55.97% undef.

CodeBERT 4HS
ds 611 79 239 17.57% 82.4% 0% 29.89% 100% 17.57% 18.82% 0% 81.17% undef.

ds 22 179 12.85% 87.15% 0% 22.77% 100% 12.85% 15.08% 0% 84.92% undef.
ds 287 159 4.40% 95.60% 0% 8.43% 100% 4.40% 4.40% 0% 95.60% undef.

CodeBERT PO
ds 611 79 239 18.41% 81.59% 0% 31.10% 100% 18.41% 15.89% 0% 84.1% undef.

ds 22 179 19.55% 80.45% 0% 32.71% 100% 19.55% 20.67% 0% 79.33% undef.
ds 287 159 13.21% 86.79% 0% 23.33% 100% 13.20% 13.84% 0% 86.13% undef.

Prec. - Precision; undef. - undefined;

2) Use cross-validation: Although we use a validation set
to analyse the learning curves of the models, we do not
perform cross-validation. It would permit the analysis of
each fold in-depth and give more insights into how well
the model would perform with unseen data.

3) Preprocessing: In this work, we identified problematic
tokens that added bias and removed them to improve
performance. Other preprocessing techniques, such as
sampling, massaging, reweighing and optimized data
transformation, may be applied to the dataset to improve
results [15].

4) Current machine-learning based software vulnerabil-
ity detection methods are primarily conducted at the
function-level. However, a key limitation of these meth-
ods is that they do not indicate the specific lines of code
contributing to vulnerabilities [12].

VI. CONCLUSIONS AND FUTURE WORK

In this work we leveraged the transformer architecture to
address the shortcomings of current vulnerability detection
systems. We explore multi-label classification in this context as
it provides more information regarding the security conditions
of software code compared to other mutually exclusive strate-
gies. For this, we built four multi-label classification systems,
using the JavaBERT and CodeBERT architectures and altering
their configuration. We evaluated their performance with a
synthetic test set and all models performed well, achieving
high performance metrics, up to 94% (f1-score).

Then, we searched with PMI for problematic tokens in
the dataset and remove them as bias promote models with
high accuracy because of features specific to that dataset. By
normalizing the dataset and repeating training, we verified
that there was a reduction of 13% in the f1-scores, which

demonstrates that the dataset was, in fact, adding bias to the
models.

Lastly, we evaluated the performance of the models under
more realistic contexts. We concluded that, JavaBERT 4HS,
a model employing the 4HS configuration, is more stable
and capable of performing well over synthetic and real-
world samples. On the contrary, CodeBERT models performed
poorly in realist contexts. Moreover, we assessed their ability
to generalize and predict other unknown vulnerabilities. We
found that only JavaBERT 4HS could predict unknown and
related vulnerabilities with and accuracy of 74.47% and better
than random chance.

We identify the following potential directions for future
researchers:

1) A potential strategy to improve model performance
includes mixing real and synthetic data collected through
known vulnerability databases and open-source reposi-
tories to generate a more extensive training set [31].

2) Currently, the distribution of samples per CWE is highly
imbalanced, as illustrated in Figure 2. In addition,
around 80% of the training samples are vulnerable which
also impacts model knowledge. To improve results, the
dataset must be balanced.

3) All real-world samples from the test sets are vulnerable.
Non vulnerable data should be collected so that a more
complete analysis of the models can be conducted.

4) Explore the ability of the models to identify more than
one CWE per code sample. Although we expect the
model to perform well under these scenarios, we still
need to assess the veracity of this claim. Hence, a test
set containing the proper information should be curated
for this purpose.

5) As mentioned in Section III-C1, we could not use the

51

concatenation of the last four hidden states as explained
by BERT authors due to computational constraints.
Considering the good performance of JavaBERT 4HS,
it would be interesting to evaluate a model using the
“complete” configuration.

6) Evaluate the performance of the models with other test
sets, e.g. the OWASP benchmark7.

ACKNOWLEDGMENTS

This work was supported by FCT under the
PRT/BD/152197/2021 scholarship (funded by the CMU
Portugal Program) and by the LASIGE Research Unit, ref.
UIDB/00408/2020 and ref. UIDP/00408/2020.

REFERENCES

[1] Michel Jose Anzanello and Flavio Sanson Fogliatto. Learning curve
models and applications: Literature review and research directions.
International Journal of Industrial Ergonomics, 41(5):573–583, 2011.

[2] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray.
Deep learning based vulnerability detection: Are we there yet? 9 2020.

[3] B. Chess and G. McGraw. Static analysis for security. IEEE Security
and Privacy Magazine, 2:76–79, 11 2004.

[4] Nelson Tavares de Sousa and Wilhelm Hasselbring. Javabert: Training
a transformer-based model for the java programming language, 2021.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding, 2018.

[6] Haytame Fallah, Patrice Bellot, Emmanuel Bruno, and Elisabeth
Murisasco. Adapting transformers for multi-label text classification. In
CIRCLE (Joint Conference of the Information Retrieval Communities in
Europe) 2022, 2022.

[7] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. Codebert: A pre-trained model for programming and natural
languages, 2020.

[8] Michael Fu and Chakkrit Tantithamthavorn. Linevul: A transformer-
based line-level vulnerability prediction. In 2022 IEEE/ACM 19th
International Conference on Mining Software Repositories (MSR), pages
608–620, 2022.

[9] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. Software
vulnerability analysis and discovery using machine-learning and data-
mining techniques. ACM Computing Surveys (CSUR), 50:1 – 36, 2017.

[10] Hazim Hanif and Sergio Maffeis. Vulberta: Simplified source code pre-
training for vulnerability detection, 2022.

[11] Hazim Hanif, Mohd Hairul Nizam Bin Md Nasir, Mohd Faizal Ab
Razak, Ahmad Firdaus, and Nor Badrul Anuar. The rise of software
vulnerability: Taxonomy of software vulnerabilities detection and ma-
chine learning approaches. J. Netw. Comput. Appl., 179:103009, 2021.

[12] David Hin, Andrey Kan, Huaming Chen, and M. Ali Babar. Linevd:
Statement-level vulnerability detection using graph neural networks,
2022.

[13] Thomas Hirsch and Birgit Hofer. A systematic literature review on
benchmarks for evaluating debugging approaches. J. Syst. Softw.,
192:111423, 2022.

[14] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and
Marc Brockschmidt. Codesearchnet challenge: Evaluating the state of
semantic code search, 2019.

[15] Faisal Kamiran and Toon Calders. Data preprocessing techniques
for classification without discrimination. Knowledge and information
systems, 33(1):1–33, 2012.

[16] Seokmo Kim, R. Kim, and Young Park. Software vulnerability detection
methodology combined with static and dynamic analysis. Wireless
Personal Communications, 89:1–17, 08 2016.

[17] Gakuto Kurata, Bing Xiang, and Bowen Zhou. Improved neural
network-based multi-label classification with better initialization lever-
aging label co-occurrence. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 521–526, 2016.

7https://owasp.org/www-project-benchmark/

[18] Triet H. M. Le, Huaming Chen, and M. Ali Babar. A survey on data-
driven software vulnerability assessment and prioritization. 7 2021.

[19] Triet Huynh Minh Le and M. Ali Babar. On the use of fine-grained vul-
nerable code statements for software vulnerability assessment models.
In 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR), pages 621–633, 2022.

[20] Triet Huynh Minh Le and M. Ali Babar. On the use of fine-grained
vulnerable code statements for software vulnerability assessment mod-
els. 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR), pages 621–633, 2022.

[21] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang,
Zhijun Deng, and Yuyi Zhong. Vuldeepecker: A deep learning-based
system for vulnerability detection. Internet Society, 2018.

[22] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang Xiang.
Software vulnerability detection using deep neural networks: a survey.
Proceedings of the IEEE, 108(10):1825–1848, 2020.

[23] Cláudia R. Mamede. A transformer-based ide plugin for vulnerability
detection. Master’s thesis, Faculty of Engineering of University of Porto,
Porto, Portugal, 2022.

[24] Nikolai Mansourov and Djenana Campara. System Assurance: Beyond
Detecting Vulnerabilities. Morgan Kaufmann, First edition, 2010.

[25] Ehsan Mashhadi and Hadi Hemmati. Applying codebert for automated
program repair of java simple bugs, 2021.

[26] Cong Pan, Minyan Lu, and Biao Xu. An empirical study on software
defect prediction using codebert model. Applied Sciences, 11(11):4793,
2021.

[27] Frank Piessens. The Cyber Security Body of Knowledge v1.0, 2019,
chapter Software Security. University of Bristol, 2019. KA Version 1.0.

[28] Abigail Rai and Samarjeet Borah. Study of various methods for
tokenization. In Applications of Internet of Things, pages 193–200.
Springer, 2021.

[29] Francois Role and Mohamed Nadif. Handling the impact of low
frequency events on co-occurrence based measures of word similarity.
In Proceedings of the international conference on Knowledge Discovery
and Information Retrieval (KDIR-2011). Scitepress, pages 218–223,
2011.

[30] Rebecca L. Russell, Louis Kim, Lei H. Hamilton, Tomo Lazovich,
Jacob A. Harer, Onur Ozdemir, Paul M. Ellingwood, and Marc W.
McConley. Automated vulnerability detection in source code using deep
representation learning. 7 2018.

[31] Tim Sonnekalb, Thomas S. Heinze, and Patrick Mäder. Deep security
analysis of program code: A systematic literature review. Empirical
Softw. Engg., 27(1), jan 2022.

[32] Tim Sonnekalb, Thomas S. Heinze, and Patrick Mäder. Deep security
analysis of program code. Empirical Software Engineering, 27:2, 1
2022.

[33] Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit
Camtepe, Josef Pieprzyk, and Surya Nepal. Transformer-based language
models for software vulnerability detection: Performance, model’s secu-
rity and platforms, 2022.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. 6 2017.

[35] Tom Viering and Marco Loog. The shape of learning curves: a review,
2021.

[36] Laurie Williams. The Cyber Security Body of Knowledge v1.0, 2019,
chapter Secure Software Lifecycle. University of Bristol, 2019. KA
Version 1.0.

[37] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers:
State-of-the-art natural language processing. pages 38–45. Association
for Computational Linguistics, 2020.

[38] Yan Wu, Irena Bojanova, and Yaacov Yesha. They know your
weaknesses–do you?: Reintroducing common weakness enumeration.
CrossTalk, 45, 2015.

[39] Noah Ziems and Shaoen Wu. Security vulnerability detection using deep
learning natural language processing. 5 2021.

[40] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin.
µvuldeepecker: A deep learning-based system for multiclass vulnerabil-
ity detection. IEEE Transactions on Dependable and Secure Computing,
page 1–1, 2019.

52

