
A Data-Efficient Method of Deep Reinforcement Learning for Chinese Chess

Changming Xu1, 2, *, Hengfeng Ding1, Xuejian Zhang1, Cong Wang1, 2, and Hongji Yang2
1Northeastern University at Qinhuangdao, Qinhuangdao, Hebei Province, China

2University of Leicester, Leicester, United Kingdom
ChangmingXu@neuq.edu.cn, 1774777097@qq.com, 709257084@qq.com, CongW@neuq.edu.cn,

Hongji,Yang@Leicester.ac.uk
* corresponding author

Abstract—The computer game is the Drosophila in the field

of artificial intelligence. Recently, a series of computer game
systems, such as AlphaGo and AlphaGo Zero, defeating the
world human champion of Go, has greatly refreshed people's
understanding of the creativity of machine. This paper applies
the deep reinforcement learning method to the computer
Chinese Chess. We are committed to decrease the demand for
computing resources heavily from multi-perspectives, such as
data augmentation and using more intermediate results as
labels. The experiment shows that the level of our program is
increased rapidly.

Keywords- Computer Games, Deep Reinforcement Learning,
Chinese Chess, Monte Carlo Tree Search, Residual Network

I. INTRODUCTION
Recently, the most successful method to solve a complex

chess-like board game should be deep reinforcement learning
[1]. In 2016, being the first program that defeated the human
master of Go in 19 19 board, AlphaGo [2] took advantage of
the ability to approximate any function provided by deep
learning and the decision-making ability of reinforcement
learning. Then, an enhanced version, called AlphaGo Zero
[3], easily defeated AlphaGo 100: 0.

The ideal representation model for the problem of
computer board games is a complete game tree containing all
possible playing processes. Following the minimax principle,
theoretically, the best action in each state can be obtained.
Chinese Chess has the simple rules and the finite state space.
However, constrained by limited computing resources and
available time, the practical solution can only adopt greedy
strategy, that is, only access a subtree, and must estimate the
leaf nodes for the further reasoning based on the minimax
principle. In this way, the difficulty of Computer Chess-Like
Board Games focuses on two key aspects: search algorithm
and estimation function. The traditional minimax algorithm

and the pruning algorithm [4,5] have a large degree of
limitations in extending the game tree. In addition, the
evaluation of Chinese Chess board positions is relatively
complex, and it is difficult to find reasonable evaluation
criteria by hand, even for chess master.

The methods of deep reinforcement learning can surpass
Chess master, if you have supercomputing resources, which
are difficult for most researchers to access. So, it is very
important to end up the learning process with fewer resources
[6]. To this end, this paper makes the following two

improvements to the characteristics of chess on the basis of
AlphaGo Zero:

1) The action space is re-represented, which reduces the
complexity of representation. We decompose the original
action into 2 successive actions, thus reducing the action space
from N2 to N.

2) It re-represents the input of the network and improves
the reuse ability of knowledge.

The rest of this article is organized as follows. Section 2
introduces the design of the Chinese Chess self-playing
algorithm. Section 3 introduces the design of the game
system: the process of the self-playing system, the data
augmentation process, and the implementation of the system.
Section 4 compares and analyzes the experimental results.
Section 5 draws concluding remarks.

II. TYPE STYLE ADESIGN OF CHINESE CHESS SELF-PLAYING
ALGORITHM

The Monte Carlo Tree Search (MCTS) [7-9] is an
optimization method based on probability and statistics. The
Upper Confidence Bound Apply to Tree (UCT) is the popular
MCTS algorithm for Computer Chess-like Games so far.

Deep Neural Network is the State-of-the-art for function
fitting. It is used for implementing the value function and
strategy function in deep reinforcement learning [10]. Given a
state, the neural network should estimate its values and the
distribution of actions to be played. At first, it will be
impossible. However, we can train the neural network through
self-playing.

A. UCT
This section introduces how to apply the Monte Carlo

method to the Chinese Chess.
The upper confidence of each child node Ni is calculated

by Equation 1.

 (1)

In the formula, node N is the parent node of Ni. is the
upper limit confidence index value of the ith child. is the
simulated average reward value of child i, which is used to
represent the existing reward. is the number of
simulations that the ith node is selected, and C is the

weighting coefficient. represents the unknown

reward that needs to be explored.

687

2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

2693-9371/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS-C57518.2022.00109

MCTS will gradually expand the game tree according to
the upper bound confidence strategy value. Based on this
upper bound confidence strategy, the game tree can more
reasonably find a balance between exploration and utilization,
to obtain better results. MCTS are implemented in four steps.
The specific example is shown in Figure 1.

n

cB

A A

K

n c

N

A A

K n

cB

A A

K

n

cB

A A

K n

cB

A A

K

Q+U

Q+U Q+U

Q+U

n

cB

A A

K

n c

B

A A

K

n

cB

A A

K n

cB

A A

K

P

P P

P

P P

Select Expand and evaluate

(P,v)=
f

n

cB

A A

K

n

cB

A A

K

n c

B

A A

K

n

cB

A A

K n

cB

A A

K

Q

Q Q

Q

Backup

V V

V V

n

cB

A A

K

Play

Figure 1. MCTS of Chinese Chess

Selection: In the selection process of the MCTS, the neural

network is used to guide the search. The input to this step is
the current state of the board, including the position of each
piece and which side it is the turn to play. Through the
restriction of Chinese Chess rules, the legal position in the
current state will be generated by the move generation
function. For the first layer of the node, the position
coordinates of the pieces that can be selected are first
generated. After searching for the prior probability of
each edge, the number of visits and the action value

, it is selected from all legal positions to make the
position of the pawn with the largest value of the UCT
formula. After the end of the selection stage of the first layer,
for the selection stage of the second layer, the program will
generate the legal moves of the selected piece, that is, the
coordinates of the position where the piece can be moved. The
UCT formula, further selects the position of the pawn in the
legal position. The formula for UCT is as follows:

 (2)

 (3)

 is a constant that determines the weight of
exploration, s represents the parent node, and a, b are actions
leading to the corresponding child nodes. Each time the target
action selected has the maximum value of UCT. By the
formula, the size of is negatively correlated with the
number of times that the current node is explored, that
is, when the difference between the winning rate v predicted
by the neural network is small between all the candidate
nodes, the difference between is small, and this The
more times node a is selected, the smaller will be, and
the system will be more inclined to select nodes that have been
explored less or have not been explored. Similarly, when the
number of explorations between different nodes is not very
different, the system will be more inclined to select the node
with a larger probability predicted by the neural network,
thus making the UCT larger. UCT algorithm achieves a
balance between exploration and exploitation.

In the selection process, UCT algorithm will be used for
each layer node, until the action selected by a certain layer
node is not extended, and the second step of expansion is
entered.

Expansion and evaluation: In (1) process selection, after
selecting and moving through the two layers of each node, it
will explore a certain node along a certain path. At this time,
the node should be expanded, and the chess pieces should be
selected or moved for the action selected in the selection, that
is, a new node is generated, representing a new state. Then use
the neural network to predict the new node, and the output
results are the prior probability and the winning
probability evaluation value of the current situation. At
the same time, the , , and of each
branch is initialized to zero, and is initialized to ,
where The prior probability from the neural
network prediction.

Backtracking: After obtaining the winning probability
evaluation value predicted by the neural network, add 1
to the number of visits of the node, and backtrack this
value and the number of visits of each node layer by layer, and
pass it back to all parent nodes, to realize the transformation
from Bottom-up is continuously updated until it reaches the
root node. And the and of each node and each
branch is continuously calculated according to the following
formula, to make a more reasonable choice in the next round
of exploration. The number of visits backtracking formula 4.

 (4)

The total value of the node backtracking formula

 (5)

Node average value backtracking formula

 (6)

After the (3) stage is over, the algorithm will return to the
(1) selection stage and continue to repeat the process of (1) ~
(3) until the number of executions of the process reaches the
specified threshold, and then enter (4) to execute the action.

688

Execute action: At the end of the search process, the
system will generate a probability distribution of
action selection at the position of the root node, and its
calculation formula is:

 (7)

 is a constant that controls the exploration level and is
called the temperature parameter. After the action is executed,
the child node corresponding to the selected action is selected
as the root node, the subtree under this node maintains the
previous statistical characteristics unchanged, and the rest of
the tree is discarded. When the value of the root node and the
best child node are both less than the specified value
threshold, the player to move resigns.

B. Structure of deep neural network
This paper uses the residual neural network that combines

the strategy network and the value network as the deep
learning model. Since each move in Chinese Chess needs to
go through two stages of selection and movement, this system
needs to train two neural networks, named select network and
move network respectively, which are responsible for the
combination of the strategic network and value network in the
process of selecting pieces and moving pieces.

In the process of self-play, the neural network is used to
guide the MCTS for scoring. The input structure of the neural
network needs to be able to express the current chessboard
state. In the selection stage, the chessboard state specifically
refers to the position of the chess piece and stage number 0; in
the moving stage, the chessboard state specifically refers to
the position of the chess piece, the coordinates of the selected
chess piece, and stage number 1. The chessboard can be
viewed as a 9 10 matrix, where each element of the matrix

represents the intersection point corresponding to a coordinate
on the chessboard. The state corresponding to each
intersection can be empty, and it may also be king, assistant,
bishop, knight, rook, and pawn of the black or red side. Any
piece of these 7 types, that is, each element in the matrix has
a total of 15 possible values. If the checkerboard intersection
is empty, the corresponding element in the matrix is
represented by 0; If the intersection points of the chessboard
are pawns, cannons, rooks, knights, bishops, assistants, and
king on the red side, the corresponding elements in the matrix
are 1, 2, 3, 4, 5, 6, and 7 respectively; if the intersection points
of the board are the corresponding pieces of the black side, the
elements in the matrix are the opposite numbers of the
corresponding number numbers of the red pieces. Table 1
shows the correspondence among Chinese characters, letter
codes, and digital codes of chess pieces.

According to the above table, the position of the pieces in
any chessboard state can be represented in one and only one
way. Taking the opening game as an example, the
corresponding representation of the chessboard is shown in
Figure 2.

C

R RBAKAB

c

r bakabn

ppppp

PPPP

C

n

P

r

N

c

N

Figure 2. Representation of opening chessboard

Table 1. Chinese Chess pieces

Piece name King Assistant Bishop Knight Rook Cannon Pawn
Piece name (In Chinese) / / / / /

Red piece letters K A B N R C P
Red piece ID 7 6 5 4 3 2 1

Black piece letters k a b n r c p
Black piece ID -7 -6 -5 -4 -3 -2 -1

The neural network in this system is divided into two parts.
The first part is called the select network, which is used to
select the pieces to be moved after getting the state of the
chessboard; the second part is the Move network, which is
used to select the pieces determination of the mobile position.
The general structure of the two parts of the network is the
same, both are multi-layer deep residual networks. But the
structure of the residual network in the first layer is different.
This is because the input is different. The number of input
channels of the first layer in the move network is 2, that is,
two input matrices, while the select network only needs 1
channel.

The rest of the network structure is the same, and the
network is divided into three parts: the feature extraction part,
the strategy network part, and the value network part. There
are four layers of the residual network in the feature extraction
part, it will first convert the number of input channels to 32
channels, which will further convert to 64 channels, and in the
last layer of the residual network, the number of channels of
the feature will be reduced to 32. Intuitively, in this structure
from low-dimensional to high-dimensional and then to low-
dimensional, since the high-dimensional part has more model
parameters, it is expected that the model can learn more
knowledge in the high-dimensional part, while the final low-
dimensional part is expected to learn more knowledge. The

689

dimensional part compresses it to lower dimensions to
generate embeddings that can be processed by downstream
tasks. The network of the feature extraction part has the
structure on the top part of the figure 3, and its input will be
used as the input of the strategic network and the value
network respectively. At this time, the output of the feature
extraction network represents the chessboard. The embedding
generated by the residual network learning, Represents the
learned chessboard information, and the dimension of the
vector is 32×9×10, because there are 32 channels in total, and
each channel is a matrix equivalent to the size of the
chessboard.

The structure of the strategic network and the value
network are similar. First, there will be a residual block to
further process the embedding from the feature extraction
network. However, because the final output vectors of the two
networks are different, the fully connected layer after the
residual block is quite different. As a policy network, the
purpose of the final output is to give the probability of
selection or movement of 90 points on the chessboard, that is,
the output is a 90-dimensional vector, which contains more
information. Therefore, in the fully connected layer, the
hidden layer in the middle has a higher dimension of 512
dimensions, and after a high-dimensional transformation, the
final output is 90 dimensions. For the value network, the
output target dimension is the winning or losing value in the
current situation, so it is a one-dimensional vector. At this
time, a high-dimensional hidden layer is not needed, so the
dimension of the hidden layer is only 64 dimensions, which is
used for Extracting the value information under the current
chessboard, and finally outputting a one-dimensional vector
after the dimension transformation.

C. Neural network training process
In the stage of self-play, the neural network will take the

chessboard state as input, and output the predicted values of
, and through the feature extraction network part,

the strategy network part, and the value network part. After
the end of the self-game stage, the system obtains the result
z of the current game process and records the output value
of MCTS in the self-game process. At this time, the back-
propagation starts. According to the loss function, each
corresponding and in the state are calculated by cross-
entropy, and and are calculated by the mean square errors.
The specific calculation process is shown in Figure 3.

III. DESIGN AND IMPLEMENTATION OF CHINESE CHESS
COMPUTER GAME SYSTEM

A. Self-play process implementation
To facilitate the prediction and training, the state of the

board fed into the neural network are simply supposed to be
the red side in our implementation. When it is the black’s turn
to play, the position of chess pieces on the board should be
flipped up and down symmetrically, and then the color of each
chessman will be exchanged. As a result, the same neural
network can be used on both the black player and red player.

In the process of self-play, it often happens that some
pieces on the board, such as king, rook, knight, and cannon,

are chased, and the opponent have been unable to capture
through the attack. more than 100 moves have not been
captured. Because when the loss in the system returns a value
of 1 for victory or -1 for defeat, it is more valuable to learn
during training. The implementation of self-game process is
shown as Figure 4.

AK

c

B

r

N C AK

c

B

r

N C K

c

B

r

N C

A

K

c

B

r

N C

A

ff f f

pt pt+1 pt+2 pt+3

Cross
Entropy

Cross
Entropy

Cross
Entropy

Cross
Entropy

vt vt+1 vt+2 vt+3

Mean
Square
Error

Mean
Square
Error

Mean
Square
Error

Mean
Square
Error

Figure 3. Schematic diagram of neural network training process

Self-play starts

Initialize the
checkerboard

Stalemate
yes

no

Flip the board and change
perspectives

Select actions by MCTS

Update the board state

Game over
no

yes

Self-play over

Change the player

Figure 4. Flow chart of self-playing process

To facilitate the implementation of the algorithm, when
the red side starts the game, the algorithm will perform the

690

operations of inverting the chessboard and changing the
perspective.

B. Enhancement
The most resource-intensive part of deep reinforcement

learning is self-learning. The slowest part of the self-playing
is the MCTS, which invokes neural network to get value of a
state and the strategy distribution of actions at each node in
the tree. To save computation, we adopt the following
measures:

1) data augmentation. The data augmentation method
generates new data and make it available as training data to
the neural network. The specific data augmentation method
incorporates a characteristic of the Chinese Chess board
symmetry. Since the position of the pieces is symmetrical with
the vertical line where the king is located, that is, the five-way
position, if you simply do a symmetrical transformation with
the vertical line as the axis of symmetry, it will not affect the
chess game. The state causes any effect, and the situation
before and after the change is the same. The picture below
shows the classic opening of the red side's central artillery
rushing in seven pawns to deal with the black side's three-step
tiger. It can be seen that after the chessboard is symmetrically
transformed, the advance of the seventh pawn is changed to
the advance of the third pawn, and the advance of the Knight
on the eight line is changed to the advance of the Knight on
the second line, in essence, two chess games are equivalent.

C

R RBAKAB

c

r bakabn

ppppp

PPPP

C

n

P

r

N

c

N

R KBAKAB

r bakab

ppppp

PPP

C

n

P

r

N

c

NC

P

c n

Figure 5. Data Augmentation

2) The action space is re-represented, which reduces the

complexity of representation. The discrete action space of
Chinese Chess is too large, which is not conducive to the
structural representation of neural network output and the
numerical representation of the strategy distribution. For
example, in the left board of Figure 5, the moving of the red
rook at 2nd column from the 1st row to the 5th row can be
separated into two steps: first, select the red rook at right
among all the red chessmen; second, push forward the rook 4
grids. Thus, we decompose the original action into 2
successive actions, thus reducing the action space from N2 to
N.

3) re-representing the input of the network and improving
the reuse ability of knowledge. To emphasize the importance
of the order of the move sequence, the input of neural network
is a state sequence fragment composed of 8 consecutive
moments in AlphaGo Zero. In this paper, the input of the

network is changed to the state of only one moment, which
increases the hit rate of hash table, thus improving the
knowledge reuse ability, and at the same time.

IV. EXPERIMENTS AND RESULTS
Our Chinese Chess computer game system generates

training data through self-play using MCTS, trains neural
networks with the obtained data, and then generates new data
with new networks through self-play and so on... At present,
100 generation models have been iteratively generated.

A. Training process and experimental analysis
The losses incurred during training are recorded and

analyzed in this paper. From the form of the loss function
mentioned above, it is not difficult to see that the loss function
consists of three parts, namely the predicted probability p, the
predicted winning rate and the regular term. In the loss
curve shown in Figure 6, due to a large number of action
branches and the probability distribution obtained by
MCTS is not necessarily the best action strategy, it is difficult
to learn the action strategy probability distribution, even after
100 rounds of iterations, there is still a loss close to 1, which
further verifies the complexity of the Chinese Chess game and
the diversity of moves. In Figure 7, both the win rate v and the
loss of the regularization term are gradually decreasing.
Combining the changes of the three in the learning process, it
can be concluded that the learning of the model is indeed
fruitful.

Figure 6. Loss curve for during training

Figure 7. Loss curve of and regularization term during training

Table 2 shows that, from the initial model to the 100-round
model, the average number of steps in a game increased first,
and then decreased. It is found that the reason for the small
number of steps in the initial model is that after random

691

movement because the opponent cannot well explore the state
of the veteran being eaten. As the number of iterations of
training increases, the model begins to gradually learn to avoid
silly moves. At last, the model knows how to efficiently use
rooks, knights and cannons, thus reducing unnecessary
movement of sub-forces during the game, making the number
of game moves tend to decrease.

Table 2. Comparison of the number of moves in a single game in different

stages of the Chinese Chess self-playing

Models Avg(#moves)
Initial Model 63

After 5 iterations 319
After 10 iterations 453
After 50 iterations 284

After 100 iterations 221

Table 3 shows the comparison between the models trained
at different rounds, which can see the progress of the model.
However, due to the different styles of playing chess between
different models, in the process of chess power comparison,
even the model of 100th iteration will still lose chess. At the
same time, too many draws still mean that the attack and kill
the ability of the 100th iteration model still needs to be
improved. But on the whole, with the increase of training
rounds, the chess power of the model has been improved.

Table 3. improvements of the models during the training

Compared Models Win : Draw : Loss
100 iterations VS 5 iterations 14: 6: 0

100 iterations VS 10 iterations 8: 11: 1
100 iterations VS 50 iterations 4: 15: 1

During the training process of the AlphaGo Zero system,

it only took 3 days to generate up to 3.9 million chess data.
For most researchers, this is nothing more than an
astronomical amount. Because of the limitation of computing
resources and time, the number of chess records generated by
this system for training is quite small compared to it, so it has
not been able to train the chess skills to be able to compete
with human master. However, the experimental results show
that our program have make significant progress.

B. Detailed Explanations and Examples
It seems to be playing randomly, during the first five

rounds of training of the model. Here, the neural network is
still in its initial stage, its parameters will basically guide the
MCTS for more random exploration. Furthermore, both sides
have not yet discovered that capturing is an important value
factor to win, nor have they learned the characteristics of the
chess pieces with the obvious high mobile value, such as
rooks, knights, and cannons, etc. However, at this stage, the
data generation speed, as well as training speed are very fast,
because in the process of nearly random play, there is often a
chance that a player will move its king to be threatened by the
enemy's cannons, or rooks. There is a very high probability of
directly ending the game early. Therefore, the first five rounds
of training are more in the exploration stage.

The model has gradually gained some cognition in the sub
selection stage when the model is trained to 10 iterations. In
order to facilitate model learning, the neural network simply
considers that the player of current state of the board is red.
When black chess moves, the positions of black chess and red
chess will be exchanged. As a result, the model learned to give
higher probability to chessmen above the boundary when
selecting a position with a chess piece as the starting point of
a move. But there are some typical problems in the model
training at this stage. For example, the pieces located on the
bottom two lines are difficult to be selected by the neural
network, and the probabilities of them close to zero. This leads
to the fact that if a pawn or a knight, gets to the position, even
if it can threaten the enemy’s king within a few steps or even
one step, it cannot be selected in the MCTS. Meanwhile,
because it is easy to find that moving the king threatened by
the enemy is an important strategy to avoid losing the game,
so the probability of the king being selected is quite high after
learning. Although this effectively avoids the failure of our
side, frequently moving the king is the choice wasting attack
opportunities. Furthermore, it is difficult to end the game,
which will greatly prolong the steps of the self-play process,
resulting in slow training speed.

The model has preliminarily learned some basic
knowledge after the training reaches 50 iterations. At this time,
the probability of six pieces with the high value above the river
boundary being selected becomes greater, as shown in Figure
8. The chessboard on the left represents the current chessboard
state, and the chessboard on the right represents the
probability of selecting pieces.

R RBAK

A

B

r

b

ak

a

b

ppp

p

PPP

C

n

P

r

c

NC

P

c n

0.15 0.08 0.130

0.06

0

0.08

0.09

0.07

0.03

0.04

0.02 0.03 0.01

0.080.13

N

Fig 8. The probability distribution on selecting chess pieces for the state of

the left-hand board (hints: red to move) after training the model 50 iterations

It can be seen that the red side's rook at left has the highest

probability of being selected, and the probability of the
chessmen with high value in other positions is obviously
higher than that of other types. The model has recognized that
these chessmen pose a greater threat to the enemy's king, so it
is more inclined to select these pieces to move at the opening
stage, and in addition, the problem of ignoring the pieces that
go deep into the enemy's rear has been alleviated.

When the training reaches 100 rounds, as shown in Figure
9, the model learned to use assistants and knights to conduct
simple defense when the enemy's aggressive chess pieces
threaten our king. It can be seen that the one with the highest

692

probability of selection in the figure is the assistant on column
5. The model hopes to conduct defense through the assistant
retreating from column 5 to column 4. The model knows that
the pawn should move more laterally rather than blindly rush
to the enemy’s bottom line after forward crossing the river
boundary. More than this, the problem of the models that king
being selected frequently and the neglect of selecting the chess
pieces on enemy’s home will be further alleviated at the same
time.

R

B

AK

A

B

r

b

ak

a

b

ppp

P

P

C

n

P

r

c

N

C

P

c n

0.45

0.08 0

0.03

0.09

0.16

0.04

0.01

0.01 0.01

0.01

0.08

0.02

N

p

0.01

Fig 9. The probability distribution on selecting chess pieces for a state of the

left-hand board (hints: red to move) after training the model 100 iterations

V. CONCLUSION
This paper introduces a data-efficient Chinese Chess deep

reinforcement learning method, which utilizes the closed-loop
process of Chinese Chess self-play, and continuously updates
the network by automatically generating chessboards and
training. At present, 100 generations of models have been
iteratively generated. Through the analysis of the probability
distribution of the action strategy predicted by the system and
the loss curve in the training process, it is proved that the chess
power of the system has been significantly improved.

REFERENCES
[1] Y. Li, “Deep reinforcement learning: An overview”, arXiv preprint

arXiv:1701.07274, 2017.
[2] D. Silver, A. Huang, C. Maddison, A. Guez , L. Sifre, et al., “Mastering

the game of Go with deep neural networks and tree search”, Nature,
London, UK, 2016, 529(7587), pp. 484-489.

[3] D. Silver, J. Schrittwieser, K.Simonyan, I. Antonoglou, A. Huang, A.
Guez, et al., “Mastering the game of go without human knowledge”,
Nature, London, UK, 2017, 550(7676), pp. 354-359.

[4] D. Knuth, R. Moore, “An analysis of alpha-beta pruning”, Artificial
intelligence, Elsevier, 1975, 6(4), 293-326.

[5] T. Marsland, “A review of game-tree pruning”, ICGA Journal, IOS
press, Amsterdam, The Netherlands, 1986, 9(1), pp. 3-19.

[6] H. Li, D. Li, W. E. Wong, D. Zeng, and M. Zhao, “Kubernetes Virtual
Warehouse Placement based on Reinforcement Learning”,
International Journal of Performability Engineering, 2021, 17(7), pp.
579–588.

[7] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search”, International conference on computers and games,
Springer, Berlin, Germany, 2006, pp. 72-83.

[8] G. Chaslot, S. Bakkes, I. Szita, P Spronck, “Monte-carlo tree search: A
new framework for game ai”, Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment, Chicago,
US, 2008, 4(1), pp. 216-217.

[9] S. Gelly, D. Silver, “Monte-Carlo tree search and rapid action value
estimation in computer Go”, Artificial Intelligence, Elsevier, 2011,
175(11), pp. 1856-1875.

[10] Y. Cheng, D. Li, W. E. Wong, M. Zhao, D. Mo, “Multi-UAV
collaborative path planning using hierarchical reinforcement learning
and simulated annealing”, International Journal of Performability
Engineering, 2022, 18(7), pp. 463–474.

693

