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Abstract—The computer game is the Drosophila in the field 

of artificial intelligence. Recently, a series of computer game 
systems, such as AlphaGo and AlphaGo Zero, defeating the 
world human champion of Go, has greatly refreshed people's 
understanding of the creativity of machine. This paper applies 
the deep reinforcement learning method to the computer 
Chinese Chess. We are committed to decrease the demand for 
computing resources heavily from multi-perspectives, such as 
data augmentation and using more intermediate results as 
labels. The experiment shows that the level of our program is 
increased rapidly. 

Keywords- Computer Games, Deep Reinforcement Learning, 
Chinese Chess, Monte Carlo Tree Search, Residual Network 

I.  INTRODUCTION 
Recently, the most successful method to solve a complex 

chess-like board game should be deep reinforcement learning 
[1]. In 2016, being the first program that defeated the human 
master of Go in 19 19 board, AlphaGo [2] took advantage of 
the ability to approximate any function provided by deep 
learning and the decision-making ability of reinforcement 
learning. Then, an enhanced version, called AlphaGo Zero 
[3], easily defeated AlphaGo 100: 0.  

The ideal representation model for the problem of 
computer board games is a complete game tree containing all 
possible playing processes. Following the minimax principle, 
theoretically, the best action in each state can be obtained. 
Chinese Chess has the simple rules and the finite state space. 
However, constrained by limited computing resources and 
available time, the practical solution can only adopt greedy 
strategy, that is, only access a subtree, and must estimate the 
leaf nodes for the further reasoning based on the minimax 
principle. In this way, the difficulty of Computer Chess-Like 
Board Games focuses on two key aspects: search algorithm 
and estimation function. The traditional minimax algorithm 

and the pruning algorithm [4,5] have a large degree of 
limitations in extending the game tree. In addition, the 
evaluation of Chinese Chess board positions is relatively 
complex, and it is difficult to find reasonable evaluation 
criteria by hand, even for chess master. 

The methods of deep reinforcement learning can surpass 
Chess master, if you have supercomputing resources, which 
are difficult for most researchers to access. So, it is very 
important to end up the learning process with fewer resources 
[6]. To this end, this paper makes the following two 

improvements to the characteristics of chess on the basis of 
AlphaGo Zero: 

1) The action space is re-represented, which reduces the 
complexity of representation. We decompose the original 
action into 2 successive actions, thus reducing the action space 
from N2 to N. 

2) It re-represents the input of the network and improves 
the reuse ability of knowledge.  

The rest of this article is organized as follows. Section 2 
introduces the design of the Chinese Chess self-playing 
algorithm. Section 3 introduces the design of the game 
system: the process of the self-playing system, the data 
augmentation process, and the implementation of the system. 
Section 4 compares and analyzes the experimental results. 
Section 5 draws concluding remarks. 

II. TYPE STYLE ADESIGN OF CHINESE CHESS SELF-PLAYING 
ALGORITHM 

The Monte Carlo Tree Search (MCTS) [7-9] is an 
optimization method based on probability and statistics. The 
Upper Confidence Bound Apply to Tree (UCT) is the popular 
MCTS algorithm for Computer Chess-like Games so far.  

Deep Neural Network is the State-of-the-art for function 
fitting. It is used for implementing the value function and 
strategy function in deep reinforcement learning [10]. Given a 
state, the neural network should estimate its values and the 
distribution of actions to be played. At first, it will be 
impossible. However, we can train the neural network through 
self-playing. 

A. UCT 
This section introduces how to apply the Monte Carlo 

method to the Chinese Chess. 
The upper confidence of each child node Ni is calculated 

by Equation 1. 

             (1) 

In the formula, node N is the parent node of Ni.  is the 
upper limit confidence index value of the ith child.  is the 
simulated average reward value of child i, which is used to 
represent the existing reward.  is the number of 
simulations that the ith node is selected, and C  is the 

weighting coefficient.  represents the unknown 

reward that needs to be explored.  
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MCTS will gradually expand the game tree according to 
the upper bound confidence strategy value. Based on this 
upper bound confidence strategy, the game tree can more 
reasonably find a balance between exploration and utilization, 
to obtain better results. MCTS are implemented in four steps. 
The specific example is shown in Figure 1. 
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Figure 1. MCTS of Chinese Chess 

 
Selection: In the selection process of the MCTS, the neural 

network is used to guide the search. The input to this step is 
the current state of the board, including the position of each 
piece and which side it is the turn to play. Through the 
restriction of Chinese Chess rules, the legal position in the 
current state will be generated by the move generation 
function. For the first layer of the node, the position 
coordinates of the pieces that can be selected are first 
generated. After searching for the prior probability  of 
each edge, the number of visits  and the action value

, it is selected from all legal positions to make the 
position of the pawn with the largest value of the UCT 
formula. After the end of the selection stage of the first layer, 
for the selection stage of the second layer, the program will 
generate the legal moves of the selected piece, that is, the 
coordinates of the position where the piece can be moved. The 
UCT formula, further selects the position of the pawn in the 
legal position. The formula for UCT is as follows: 

                    (2) 

   (3) 

 is a constant that determines the weight of 
exploration, s represents the parent node, and a, b are actions 
leading to the corresponding child nodes. Each time the target 
action selected has the maximum value of UCT. By the 
formula, the size of  is negatively correlated with the 
number of times  that the current node is explored, that 
is, when the difference between the winning rate v  predicted 
by the neural network is small between all the candidate 
nodes, the difference between is small, and this The 
more times node a is selected, the smaller  will be, and 
the system will be more inclined to select nodes that have been 
explored less or have not been explored. Similarly, when the 
number of explorations between different nodes is not very 
different, the system will be more inclined to select the node 
with a larger probability  predicted by the neural network, 
thus making the UCT larger. UCT algorithm achieves a 
balance between exploration and exploitation. 

In the selection process, UCT algorithm will be used for 
each layer node, until the action selected by a certain layer 
node is not extended, and the second step of expansion is 
entered. 

Expansion and evaluation: In (1) process selection, after 
selecting and moving through the two layers of each node, it 
will explore a certain node along a certain path. At this time, 
the node should be expanded, and the chess pieces should be 
selected or moved for the action selected in the selection, that 
is, a new node is generated, representing a new state. Then use 
the neural network to predict the new node, and the output 
results are the prior probability  and the winning 
probability evaluation value  of the current situation. At 
the same time, the , , and  of each 
branch is initialized to zero, and  is initialized to , 
where  The prior probability  from the neural 
network prediction. 

Backtracking: After obtaining the winning probability 
evaluation value  predicted by the neural network, add 1 
to the number of visits  of the node, and backtrack this 
value and the number of visits of each node layer by layer, and 
pass it back to all parent nodes, to realize the transformation 
from Bottom-up is continuously updated until it reaches the 
root node. And the and  of each node and each 
branch is continuously calculated according to the following 
formula, to make a more reasonable choice in the next round 
of exploration. The number of visits backtracking formula 4.  

                (4) 

The total value of the node backtracking formula  

         (5) 

Node average value backtracking formula  

                           (6) 

After the (3) stage is over, the algorithm will return to the 
(1) selection stage and continue to repeat the process of (1) ~ 
(3) until the number of executions of the process reaches the 
specified threshold, and then enter (4) to execute the action. 
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Execute action: At the end of the search process, the 
system will generate a probability distribution  of 
action selection at the position of the root node, and its 
calculation formula is: 

                      (7) 

 is a constant that controls the exploration level and is 
called the temperature parameter. After the action is executed, 
the child node corresponding to the selected action is selected 
as the root node, the subtree under this node maintains the 
previous statistical characteristics unchanged, and the rest of 
the tree is discarded. When the value of the root node and the 
best child node are both less than the specified value 
threshold, the player to move resigns. 

B. Structure of deep neural network 
This paper uses the residual neural network that combines 

the strategy network and the value network as the deep 
learning model. Since each move in Chinese Chess needs to 
go through two stages of selection and movement, this system 
needs to train two neural networks, named select network and 
move network respectively, which are responsible for the 
combination of the strategic network and value network in the 
process of selecting pieces and moving pieces. 

In the process of self-play, the neural network is used to 
guide the MCTS for scoring. The input structure of the neural 
network needs to be able to express the current chessboard 
state. In the selection stage, the chessboard state specifically 
refers to the position of the chess piece and stage number 0; in 
the moving stage, the chessboard state specifically refers to 
the position of the chess piece, the coordinates of the selected 
chess piece, and stage number 1. The chessboard can be 
viewed as a 9 10 matrix, where each element of the matrix 

represents the intersection point corresponding to a coordinate 
on the chessboard. The state corresponding to each 
intersection can be empty, and it may also be king, assistant, 
bishop, knight, rook, and pawn of the black or red side. Any 
piece of these 7 types, that is, each element in the matrix has 
a total of 15 possible values. If the checkerboard intersection 
is empty, the corresponding element in the matrix is 
represented by 0; If the intersection points of the chessboard 
are pawns, cannons, rooks, knights, bishops, assistants, and 
king on the red side, the corresponding elements in the matrix 
are 1, 2, 3, 4, 5, 6, and 7 respectively; if the intersection points 
of the board are the corresponding pieces of the black side, the 
elements in the matrix are the opposite numbers of the 
corresponding number numbers of the red pieces. Table 1 
shows the correspondence among Chinese characters, letter 
codes, and digital codes of chess pieces.  

According to the above table, the position of the pieces in 
any chessboard state can be represented in one and only one 
way. Taking the opening game as an example, the 
corresponding representation of the chessboard is shown in 
Figure 2. 
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Figure 2. Representation of opening chessboard  
 

Table 1. Chinese Chess pieces  

Piece name King Assistant Bishop Knight Rook Cannon Pawn 
Piece name (In Chinese) /  /  /    /  /  

Red piece letters K A B N R C P 
Red piece ID 7 6 5 4 3 2 1 

Black piece letters k a b n r c p 
Black piece ID -7 -6 -5 -4 -3 -2 -1 

The neural network in this system is divided into two parts. 
The first part is called the select network, which is used to 
select the pieces to be moved after getting the state of the 
chessboard; the second part is the Move network, which is 
used to select the pieces determination of the mobile position. 
The general structure of the two parts of the network is the 
same, both are multi-layer deep residual networks. But the 
structure of the residual network in the first layer is different. 
This is because the input is different. The number of input 
channels of the first layer in the move network is 2, that is, 
two input matrices, while the select network only needs 1 
channel. 

The rest of the network structure is the same, and the 
network is divided into three parts: the feature extraction part, 
the strategy network part, and the value network part. There 
are four layers of the residual network in the feature extraction 
part, it will first convert the number of input channels to 32 
channels, which will further convert to 64 channels, and in the 
last layer of the residual network, the number of channels of 
the feature will be reduced to 32. Intuitively, in this structure 
from low-dimensional to high-dimensional and then to low-
dimensional, since the high-dimensional part has more model 
parameters, it is expected that the model can learn more 
knowledge in the high-dimensional part, while the final low-
dimensional part is expected to learn more knowledge. The 
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dimensional part compresses it to lower dimensions to 
generate embeddings that can be processed by downstream 
tasks. The network of the feature extraction part has the 
structure on the top part of the figure 3, and its input will be 
used as the input of the strategic network and the value 
network respectively. At this time, the output of the feature 
extraction network represents the chessboard. The embedding 
generated by the residual network learning, Represents the 
learned chessboard information, and the dimension of the 
vector is 32×9×10, because there are 32 channels in total, and 
each channel is a matrix equivalent to the size of the 
chessboard. 

The structure of the strategic network and the value 
network are similar. First, there will be a residual block to 
further process the embedding from the feature extraction 
network. However, because the final output vectors of the two 
networks are different, the fully connected layer after the 
residual block is quite different. As a policy network, the 
purpose of the final output is to give the probability of 
selection or movement of 90 points on the chessboard, that is, 
the output is a 90-dimensional vector, which contains more 
information. Therefore, in the fully connected layer, the 
hidden layer in the middle has a higher dimension of 512 
dimensions, and after a high-dimensional transformation, the 
final output is 90 dimensions. For the value network, the 
output target dimension is the winning or losing value in the 
current situation, so it is a one-dimensional vector. At this 
time, a high-dimensional hidden layer is not needed, so the 
dimension of the hidden layer is only 64 dimensions, which is 
used for Extracting the value information under the current 
chessboard, and finally outputting a one-dimensional vector 
after the dimension transformation. 

C. Neural network training process 
In the stage of self-play, the neural network will take the 

chessboard state as input, and output the predicted values of 
, and  through the feature extraction network part, 

the strategy network part, and the value network part. After 
the end of the self-game stage, the system obtains the result 
z of the current game process and records the output value  
of MCTS in the self-game process. At this time, the back-
propagation starts. According to the loss function, each 
corresponding  and  in the state are calculated by cross-
entropy, and  and  are calculated by the mean square errors. 
The specific calculation process is shown in Figure 3. 

III. DESIGN AND IMPLEMENTATION OF CHINESE CHESS 
COMPUTER GAME SYSTEM

A. Self-play process implementation 
To facilitate the prediction and training, the state of the 

board fed into the neural network are simply supposed to be 
the red side in our implementation. When it is the black’s turn 
to play, the position of chess pieces on the board should be 
flipped up and down symmetrically, and then the color of each 
chessman will be exchanged. As a result, the same neural 
network can be used on both the black player and red player.  

In the process of self-play, it often happens that some 
pieces on the board, such as king, rook, knight, and cannon, 

are chased, and the opponent have been unable to capture 
through the attack. more than 100 moves have not been 
captured. Because when the loss in the system returns a value 
of 1 for victory or -1 for defeat, it is more valuable to learn 
during training. The implementation of self-game process is 
shown as Figure 4. 
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Figure 3. Schematic diagram of neural network training process 
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Figure 4. Flow chart of self-playing process 

To facilitate the implementation of the algorithm, when 
the red side starts the game, the algorithm will perform the 
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operations of inverting the chessboard and changing the 
perspective. 

B. Enhancement 
The most resource-intensive part of deep reinforcement 

learning is self-learning. The slowest part of the self-playing 
is the MCTS, which invokes neural network to get value of a 
state and the strategy distribution of actions at each node in 
the tree. To save computation, we adopt the following 
measures: 

1) data augmentation. The data augmentation method 
generates new data and make it available as training data to 
the neural network. The specific data augmentation method 
incorporates a characteristic of the Chinese Chess board
symmetry. Since the position of the pieces is symmetrical with 
the vertical line where the king is located, that is, the five-way 
position, if you simply do a symmetrical transformation with 
the vertical line as the axis of symmetry, it will not affect the 
chess game. The state causes any effect, and the situation 
before and after the change is the same. The picture below 
shows the classic opening of the red side's central artillery 
rushing in seven pawns to deal with the black side's three-step 
tiger. It can be seen that after the chessboard is symmetrically 
transformed, the advance of the seventh pawn is changed to 
the advance of the third pawn, and the advance of the Knight 
on the eight line is changed to the advance of the Knight on 
the second line, in essence, two chess games are equivalent. 
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Figure 5. Data Augmentation 

 
2) The action space is re-represented, which reduces the 

complexity of representation. The discrete action space of 
Chinese Chess is too large, which is not conducive to the 
structural representation of neural network output and the 
numerical representation of the strategy distribution. For 
example, in the left board of Figure 5, the moving of the red 
rook at 2nd column from the 1st row to the 5th row can be 
separated into two steps: first, select the red rook at right 
among all the red chessmen; second, push forward the rook 4 
grids. Thus, we decompose the original action into 2 
successive actions, thus reducing the action space from N2 to 
N. 

3) re-representing the input of the network and improving 
the reuse ability of knowledge. To emphasize the importance 
of the order of the move sequence, the input of neural network 
is a state sequence fragment composed of 8 consecutive 
moments in AlphaGo Zero. In this paper, the input of the 

network is changed to the state of only one moment, which 
increases the hit rate of hash table, thus improving the 
knowledge reuse ability, and at the same time.  

IV. EXPERIMENTS AND RESULTS 
Our Chinese Chess computer game system generates 

training data through self-play using MCTS, trains neural 
networks with the obtained data, and then generates new data 
with new networks through self-play and so on... At present, 
100 generation models have been iteratively generated. 

A. Training process and experimental analysis 
The losses incurred during training are recorded and 

analyzed in this paper. From the form of the loss function 
mentioned above, it is not difficult to see that the loss function 
consists of three parts, namely the predicted probability p, the 
predicted winning rate  and the regular term. In the loss 
curve shown  in Figure 6, due to a large number of action 
branches and the probability distribution  obtained by 
MCTS is not necessarily the best action strategy, it is difficult 
to learn the action strategy probability distribution, even after 
100 rounds of iterations, there is still a loss close to 1, which 
further verifies the complexity of the Chinese Chess game and 
the diversity of moves. In Figure 7, both the win rate v and the 
loss of the regularization term are gradually decreasing. 
Combining the changes of the three in the learning process, it 
can be concluded that the learning of the model is indeed 
fruitful. 

 

 
Figure 6. Loss curve for  during training 

 

 
Figure 7. Loss curve of  and regularization term during training 

Table 2 shows that, from the initial model to the 100-round 
model, the average number of steps in a game increased first, 
and then decreased. It is found that the reason for the small 
number of steps in the initial model is that after random 
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movement because the opponent cannot well explore the state 
of the veteran being eaten. As the number of iterations of 
training increases, the model begins to gradually learn to avoid 
silly moves. At last, the model knows how to efficiently use 
rooks, knights and cannons, thus reducing unnecessary 
movement of sub-forces during the game, making the number 
of game moves tend to decrease. 

 
Table 2. Comparison of the number of moves in a single game in different 

stages of the Chinese Chess self-playing 

Models Avg(#moves) 
Initial Model 63 

After 5 iterations 319 
After 10 iterations 453 
After 50 iterations 284 

After 100 iterations 221 
 

Table 3 shows the comparison between the models trained 
at different rounds, which can see the progress of the model. 
However, due to the different styles of playing chess between 
different models, in the process of chess power comparison, 
even the model of 100th iteration will still lose chess. At the 
same time, too many draws still mean that the attack and kill 
the ability of the 100th iteration model still needs to be 
improved. But on the whole, with the increase of training 
rounds, the chess power of the model has been improved. 

 
Table 3. improvements of the models during the training 

Compared Models  Win : Draw : Loss 
100 iterations VS 5 iterations  14: 6: 0 

100 iterations VS 10 iterations  8: 11: 1 
100 iterations VS 50 iterations  4: 15: 1 
 
During the training process of the AlphaGo Zero system, 

it only took 3 days to generate up to 3.9 million chess data. 
For most researchers, this is nothing more than an 
astronomical amount. Because of the limitation of computing 
resources and time, the number of chess records generated by 
this system for training is quite small compared to it, so it has 
not been able to train the chess skills to be able to compete 
with human master. However, the experimental results show 
that our program have make significant progress. 

B. Detailed Explanations and Examples 
It seems to be playing randomly, during the first five 

rounds of training of the model. Here, the neural network is 
still in its initial stage, its parameters will basically guide the 
MCTS for more random exploration. Furthermore, both sides 
have not yet discovered that capturing is an important value 
factor to win, nor have they learned the characteristics of the 
chess pieces with the obvious high mobile value, such as 
rooks, knights, and cannons, etc. However, at this stage, the 
data generation speed, as well as training speed are very fast, 
because in the process of nearly random play, there is often a 
chance that a player will move its king to be threatened by the 
enemy's cannons, or rooks. There is a very high probability of 
directly ending the game early. Therefore, the first five rounds 
of training are more in the exploration stage. 

The model has gradually gained some cognition in the sub 
selection stage when the model is trained to 10 iterations. In 
order to facilitate model learning, the neural network simply 
considers that the player of current state of the board is red. 
When black chess moves, the positions of black chess and red 
chess will be exchanged. As a result, the model learned to give 
higher probability to chessmen above the boundary when 
selecting a position with a chess piece as the starting point of 
a move. But there are some typical problems in the model 
training at this stage. For example, the pieces located on the 
bottom two lines are difficult to be selected by the neural 
network, and the probabilities of them close to zero. This leads 
to the fact that if a pawn or a knight, gets to the position, even 
if it can threaten the enemy’s king within a few steps or even 
one step, it cannot be selected in the MCTS. Meanwhile, 
because it is easy to find that moving the king threatened by 
the enemy is an important strategy to avoid losing the game, 
so the probability of the king being selected is quite high after 
learning. Although this effectively avoids the failure of our 
side, frequently moving the king is the choice wasting attack 
opportunities. Furthermore, it is difficult to end the game, 
which will greatly prolong the steps of the self-play process, 
resulting in slow training speed. 

The model has preliminarily learned some basic 
knowledge after the training reaches 50 iterations. At this time, 
the probability of six pieces with the high value above the river 
boundary being selected becomes greater, as shown in Figure 
8. The chessboard on the left represents the current chessboard 
state, and the chessboard on the right represents the 
probability of selecting pieces.  
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Fig 8.  The probability distribution on selecting chess pieces for the state of 

the left-hand board (hints: red to move) after training the model 50 iterations 

 
It can be seen that the red side's rook at left has the highest 

probability of being selected, and the probability of the 
chessmen with high value in other positions is obviously 
higher than that of other types. The model has recognized that 
these chessmen pose a greater threat to the enemy's king, so it 
is more inclined to select these pieces to move at the opening 
stage, and in addition, the problem of ignoring the pieces that 
go deep into the enemy's rear has been alleviated. 

When the training reaches 100 rounds, as shown in Figure 
9, the model learned to use assistants and knights to conduct 
simple defense when the enemy's aggressive chess pieces 
threaten our king. It can be seen that the one with the highest 
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probability of selection in the figure is the assistant on column 
5. The model hopes to conduct defense through the assistant 
retreating from column 5 to column 4. The model knows that 
the pawn should move more laterally rather than blindly rush 
to the enemy’s bottom line after forward crossing the river 
boundary. More than this, the problem of the models that king 
being selected frequently and the neglect of selecting the chess 
pieces on enemy’s home will be further alleviated at the same 
time. 
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Fig 9.  The probability distribution on selecting chess pieces for a state of the 

left-hand board (hints: red to move) after training the model 100 iterations 

V. CONCLUSION 
This paper introduces a data-efficient Chinese Chess deep 

reinforcement learning method, which utilizes the closed-loop 
process of Chinese Chess self-play, and continuously updates 
the network by automatically generating chessboards and 
training. At present, 100 generations of models have been 
iteratively generated. Through the analysis of the probability 
distribution of the action strategy predicted by the system and 
the loss curve in the training process, it is proved that the chess 
power of the system has been significantly improved. 
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