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Abstract—The rule selection problem, aiming at selecting a
subset of rule candidates, is important in credit risk assessment.
In reality, we hope these selected rules can identify as many
high-risk users as possible while fulfilling the business constraint
simultaneously. In such cases, the rule selection problem can
be seen as a typical constrained combinatorial optimization
problem and can be solved by evolutionary algorithms (EAs).
However, how to deal with the constraint dramatically affects the
performance of our EAs since the feasible and infeasible solutions
both affect the convergence and direction of the EAs. This paper
conducts a comparative study to explore the performance of six
constraint-handling techniques on the rule selection problem.
Experimental results indicate the importance of the way we
handle the constraints: 1) ϵ-Constrained Method finds the most
high-risk users and Constrained-Domination Principle obtains
the most diversified solutions. 2) dominance-based techniques
outperform penalty function-based techniques in our real-world
applications.
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I. INTRODUCTION

In financial institutions or banking systems, credit risk (e.g.,
default and fraud) is one of the most vital risks and may
induce economic loss as well as reputational damage to the
enterprise [1][2][3]. To avoid such losses, companies must
conduct the Credit Risk Assessment before making any critical
decisions. Generally speaking, credit risk assessment is a task
to identify the high-risk users from the whole users based on
their historical behaviors and features. In industry, we usually
construct a rule-based model to process this task. We first
select a set of rules from the rule candidates and then use the
selected rules to predict whether or not the user is risky.

Consequently, choosing a suitable rules is important in
credit risk assessment, which we call the Rule Selection
Problem. Since our target is to identify the most high-risk
users while fulfilling the business constraints. We consider
the rule selection problem as a constrained combinatorial
optimization problem and utilize the Evolutionary Algorithms
(EAs) to solve it. Based on the Darwinian evolution theory,
EAs can find a (near-)optimal solution by repeatedly updating
the population with the crossover, mutation, and selection
operations. Popular EAs includes GA (Genetic Algorithm [4]),
DE (Differential Evolution [5]), SA (Simulated Annealing [6]),
and PSO (Particle Swarm Optimization [7]). In industry, due
to large-scale and non-convex features of the optimization
problems, sometimes it is infeasible to directly use the exact

algorithms to solve the problem. In such cases, we concern
more about the feasibility than the optimality of solutions,
GAs become a good choice and can often give an alternative
near-optimal solution.

The traditional GAs are designed for unconstrained opti-
mization problems and cannot be directly applied on Con-
strained Optimization Problem. To make GAs more general
and flexible on constrained problems, many popular constraint-
handling techniques are proposed [8][9][10][11][12]. The core
problem of constraint-handling techniques is how to balance
the trade-offs between optimality and feasibility during the
evolution [13][14]. Since too strict constraint penalty results
in the deterioration of objectives while too loose constraint
penalty may lead to no feasible solutions.

For instances, Kramer et al. discussed the Death Penalty
Function (DPF [15]), a straightforward method to give the
maximum penalty to the infeasible solutions. Joines and
Houch designed the Dynamic Penalty Function (DyPF [16]),
a dynamic way to tune the punishment of infeasible so-
lutions through iterations. Woldesenbet proposed the Self-
adaptive Penalty Functions (SPF [17]), which flexibly tunes
the punishment according to the feasibility information of
the current populations. Deb Constrained-domination Prin-
ciple gave the Constrained-domination Principle (CDP) to
determine which solution is better when comparing infeasible
and feasible solutions in the same generations. Runarsson
and Yao proposed the Stochastic Ranking (SR [18]) to assist
to rank the populations based on both constraint violation
and objective values. Takahama and Sakai designed the ϵ-
Constrained Method (ECM [19]), which induces a constraint
relaxation parameter ϵ to divide the whole space into regions
and then uses different domination principles to compare
individuals.

DPF, DyPF, and SPF are penalty function-based techniques,
which try to construct a penalty function consisting of the
objective and constraint violation together, transforming the
constrained problem into an unconstrained problem. CDP,
SR, and ECM are dominance-based techniques, which de-
sign the comparison rules between two individuals in the
population. These rules determines which individual is better
in the selection process. However, the above techniques are
widely compared in experimental environments (usually the
artificial competition functions) and rarely analyzed in real-
world datasets.
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Figure 1. The details in solving the credit risk assessment in real-world applications. (a) depicts the overview of the credit risk assessment. (b) shows the
chromosome encoding in the genetic algorithm. (c) presents the rule selection optimization problem in a mathematical format.

In this paper, to explore the impact of constraint-handling
techniques on the credit risk assessment scenario, we conduct
a comparative analysis of six techniques, namely the DPF,
DyPF, SPF, CDP, SR, and ECM. We hope this preliminary
study can assist to find a suitable constraint-handling technique
for our real-world applications and further provides inspiration
for how to use such techniques to improve the objectives.

Overall, this paper makes the following contributions:
• We conducted a comparative analysis of six typical

constraint-handling techniques on a real-world applica-
tion, which gave an industrial view on how to effectively
handle the constraints.

• Experiments showed that ϵ-Constrained Method found
the most high-risk users and Constrained-domination
Principle achieved the most diversified solutions. Besides,
dominance-based techniques outperforms the penalty
function-based methods in our experiments.

This remaining paper is organized as follows, Section II
presents the basic backgrounds about the credit risk as-
sessment. Section III introduces the six constraint-handling
techniques we used in our experiment. Experimental setup
and results are discussed in Section IV. Finally, Section V
concludes the paper and gives future work.

II. BACKGROUNDS

This section presents the basic information about the credit
risk assessment and then formulates the optimization problem
we solve in this paper.

A. Credit Risk Assessment

Credit risk assessment can be seen as a classification prob-
lem that aims to categorize all users into high-risk and non-risk
ones. In industry, we prefer to build a rule-based model (see
Figure I (a)) to solve this problem due to its explainability
and comprehensibility. To build such a model, a set of rules
are selected from the rule candidates. Such rule candidates
are exacted from the historical data and can assist to identify
high-risk users in certain aspects. The rules perform in the
”IF-THEN” format. An example rule is ”IF Debt=True and
Fraud=True THEN high-risk”, which means a user will be

predicted as a high-risk user if this user owns some debt and
also has credit fraud records. After that, we use the selected
rules to build the model, i.e., the rule subset, to predict whether
an unknown user is a high-risk user or a non-risk one.

B. Rule Selection Problem

Rule selection problem is a core part of credit risk assess-
ment, which studies how to select suitable rules from the rule
candidates. In this paper, we concentrate on using evolutionary
algorithm to solve the rule selection problem. In our study,
we use the Elite Genetic Algorithms (EGA [20]) to find the
optimal solutions. EGA records the global optimal solution
in every iteration and updates it if there exists a better local
optimal solution in the current generation.

The chromosome encoding is depicted in Figure I (b).
Suppose that there are 5 rules (r1, r2, ..., r5) in the rule
candidates, then we construct a 5-bit binary chromosome x
to display the selection result. For instance, the chromosome
x = {0, 0, 1, 1, 0} indicates that we select rules r3 and r4 to
build the rule-based model. Furthermore, the above selected
rules identify three users u3, u4, u5 , where u4, u5 are high-
risk users and u3 is a non-risk user. In this case, the selected
rule can identify 2 high-risk users. The transactions evolved
with a high-risk user are considered as the illegal transactions,
otherwise, the transactions are called the legal transactions.

Rule select problem is considered as a optimization prob-
lem which aims to maximize the number of identified high-
risk users (user num(x)) while the ratio of illegal transac-
tions (illegal rate(x)) is greater than the threshold r. The
inner implementation and structure of user num(x) and
illegal rate(x) are high-order and time-consuming functions
Here we omit their implementations due to the enterprise’s
secret and data security. We only consider these two functions
as complex, non-convex, black-box functions. Let objective
f(x) = −user num(x) and g(x) = −illegal rate(x) + r,
the rule selection problem can be formulated as,

min f(x)

s.t., g(x) ≤ 0,

xi ∈ {0, 1}, ∀i = 1, 2, ..., N

(1)
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III. CONSTRAINT-HANDLING TECHNIQUES

This section introduces six constraint-handling techniques
discussed in this paper. Different techniques reveal various
insights on dealing with constraints in the evolution process.
DPF, DyPF, and SPF are penalty function-based methods,
which aim to construct a fitness value by individuals’ ob-
jective value and constraint violation. CDP, SR, and ECM
are dominance-based methods, which prefer to design the
comparison criteria among individuals.

A. Death Penalty Function (DPF)

Death Penalty Function [8] is the most naive method for
handling the constraints and often serves as the baseline
method. The core idea is to let the fitness value f̂(x) of the
feasible individual be its objective value f(x) and let that of
the infeasible individual be infinity (+∞).

f̂(x) =

{
f(x), if g(x) ≤ 0

+∞, otherwise
(2)

where g(x) ≤ 0 denotes that x is feasible, and otherwise that
x is infeasible. DPF assigns the wort fitness value (+∞) for
the infeasible solution, which ignores the potential information
of the infeasible solution in the evolution.

B. Dynamic Penalty Function (DyPF)

Dynamic Penalty Function [16] designs the constraint viola-
tion G(x) of each individual and lets the penalty factor (C ·t)α
vary from the iteration time. DyPF relaxes the punishment
of infeasible individual in the early generations and then
gradually increase the punishment of infeasible individuals in
the subsequent generations.

f̂(x) = f(x) + (C · t)α ·G(x) (3)

where t is the number of iterations. C = 0.5 and α = 1 are the
two hyper-parameters. The constraint violations function G(x)
is defined as G(x) = max{0, g(x)}. The bigger the G(x) is,
the more severely the constraint will be violated.

C. Self-adaptive Penalty Function (SPF)

Self-adaptive Penalty Function [17] can dynamically tune
the penalty factor according to the feasible ratio rf of the
current population. Specifically, the fitness value consists of
the distance d(x) and penalty p(x).

f̂(x) = d(x) + p(x) (4)

The calculation of d(x) and p(x) both rely on the ratio
rf . Note that rf = 0 denotes all individuals are infeasible in
the current population, while rf ̸= 0 indicates some of the
individuals are feasible.

d(x) =

{
G(x), if rf = 0√

f(x)2 +G(x)2, if rf ̸= 0
(5)

p(x) = (1− rf)×X(x) + rf × Y (x) (6)

where

X(x) =

{
0, if rf = 0

G(x), if rf ̸= 0
(7)

Y (x) =

{
0, if x is feasible
f(x), if x is infeasible

(8)

D. Constrained-Domination Principle (CDP)

Constrained-Domination principle [21] defines the compar-
ing criteria between two individuals xi and xj . We consider
that xi dominates xj , which are marked as xi ≺ xj , in the
following three conditions,

xi ≺ xj ⇔


if xi, xj are both feasible ∧ f(xi) < f(xj),

if xi, xj are both infeasible ∧ g(xi) < g(xj),

if xi is feasible and xj is infeasible
(9)

CDP is a standard constraint-handling technique, which
is widely employed in several genetic algorithm toolboxes,
such as GeatPy1. Compare with the penalty function-based
techniques, CDP performs more flexibly in the comparison
between feasible and infeasible individuals.

E. Stochastic Ranking (SR)

Stochastic Ranking [18] combines the Bubble Sort with
its comparison criteria to rank individuals. Specifically, when
comparing two individuals we generate a random number
u ∈ [0, 1]. If two individuals are both feasible or the random
number u is less than the given threshold pf , the domination
relationship relies on their objectives, otherwise relies on their
constraint violations. We set pf = 0.475 in this paper. The
details of SR are listed in the following pseudo-code,

Algorithm 1: Stochastic Ranking
Input: Population P = {x1, x2, ..., xNP }, probability pf ,

objective f, constraint violation G
Output: Sorted Population P

1 for i in range(NP) do
2 for j in range(NP-i-1) do
3 u = randn(0, 1);
4 if (xj and xj+1 are feasible) or (u ≤ pf ) then
5 if f(xj) > f(xj+1) then
6 swap(xj , xj+1);

7 else
8 if G(xj) > G(xj+1) then
9 swap(xj , xj+1);

F. ϵ-constrained (ECM)

ϵ-Constrained Method [19] induces the violation tolerance
ϵ when comparing two individuals, where ϵ is varying from
iterations in Equation (10).

ϵ(t) =

{
ϵ(0) (1− t/Tc)

cp, 0 < t < Tc

0, t ≥ Tc
(10)

1Geatpy, http://geatpy.com/index.php/home/
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TABLE I
BASIC INFORMATION OF THE USED DATASETS

Dataset # Rule candidates # Total users
A 1,001 100,000
B 1,001 200,000
C 1,001 500,000
D 1,001 1,000,000
E 1,001 2,000,000

where ϵ(t) denotes the value of ϵ in the t-th iteration. We
set ϵ(0) = G(xθ). xθ is the θ-th individual according to
constraints violations in ascending order. We set θ = 0.05NP ,
Tc = 0.1Tmax, anc cp = 2 in this paper. NP is the population
size and Tmax is the maximum iteration times.

After that, the ϵ-Constrained Method compares two individ-
uals by the following criteria,

xi ≺ xj ⇔


f(xi) < f(xj), if g(xi), g(xj) < ϵ

f(xi) < f(xj), if g(xi) = g(xj)

g(xi) < g(xj), otherwise
(11)

IV. EXPERIMENTS

This sections list the experimental setup and the preliminary
results on the real-world applications.

A. Experimental Setup

1) Dataset: We collect four datasets with different scales
sampled from the real-world transactions in our company (see
Table I). Column ‘# Rule candidates’ presents the number of
rule candidates whom we select from. Column ‘# Total users’
presents the number of total users (high-risk users and non-
risk users). More number of users indicates more complex
mapping relationships, making the optimization problem more
sophisticated Note that the data set is only used for academic
research, it does not represent any real business situation.

2) Implementations: For the Elite Genetic Algorithm, we
set the population size to 100. The ratio of crossover and
mutation operations are 0.9 and 1/100, respectively. All experi-
ments are developed on the basis of an Evolutionary Algorithm
toolkit GeatPy.

B. Experimental Results

To explore the impact of constraint-handling techniques on
the credit risk assessment task, we combine the above six
techniques with the standard Genetic Algorithms to solve the
rule selection problem. We use the identified high-risk users,
i.e., the user num(x) in Section II, as the objective and try
to answer the following two research questions.

RQ-1: Which technique identifies the most high-risk
users?

We run each technique 20 times and record their mean
value, standard deviation, the best and worst values. The
number of identified high-risk users on six constraint-handling
techniques are listed in Table II.

As we can see, ECM performs the best and achieves the
highest mean value in datasets B and E with relatively small
standard deviations, which indicates that ECM is effective and
robust. In addition, ECM can find the highest high-risk users
in datasets A, B, and E. CDP and SR perform well, obtaining
the highest mean value in datasets C and D, respectively. SR
can find the highest high-risk users in datasets B and D. CDP
can find the highest high-risk users in dataset C.

As for the penalty function-based method, DPF finds the
least high-risk users and also has the most unstable perfor-
mance, obtaining the largest standard deviations in datasets
A, C, D, and E. SPF performs well in dataset A, which has
relatively good results compared to DPF and DyPF.

Overall, the dominance-based methods (CDP, SR, and
ECM) perform better than the penalty function-based methods
(DPF, DyPf, and SPF). This result reveals the fact that we
should concern more about the feasible and infeasible
solutions during evolution and adjust the comparison criteria
according to the current population automatically.

Answer to RQ-1: ECM performs the best and identifies
the most high-risk users. Dominance-based methods achieve
better results than penalty function-based methods.

RQ-2: Which technique finds more diversified solutions?
Besides the number of identified users, we also concern

about the diversity of solutions provided by different tech-
niques. In reality, we not only expect to identify more high-risk
users but also hope the algorithms can provide us with more
diversified solutions, that is, the rule combinations. Thus, we
can select the most suitable one from the outputted solutions
based on the factual business requirements. In other words,
diversified solutions make it more flexible for decision-makers
to select rules.

For each constraint-handling technique, we record the
number of distinct output solutions which identify the most
high-risk users. Higher numbers mean more choices to select
rules. The results are listed in Table III, it is obvious that CDP
has more diversified solutions than others, which obtain 62,
57, and 13 solutions in datasets A, B, and E. Dominance-based
methods can obtain more diversified solutions. On contrary,
DPF, DyPF, and SPF have the least diversified solutions,
which indicates we can have only fewer choices to select
rules. The main reason may be the penalty function fail to
make use of the potential information of infeasible individuals
and only focus on the feasible individuals. However, some
‘good’ bits or patterns in the infeasible individuals can also
be used in evolution.

Answer to RQ-2: CDP obtains the most diverse solutions
to achieve the same optimal objective. Dominance-based
methods can provide more diversified solutions than penalty
function-based methods.

V. CONCLUSION AND FUTURE WORK

In this paper, we consider the rule selection problem in
credit risk assessment as a constrained optimization problem.
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TABLE II
NUMBER OF IDENTIFIED HIGH-RISK USERS OF SIX CONSTRAINT-HANDLING TECHNIQUES ON FIVE REAL-WORLD DATASETS. THE ‘MEAN’, ‘STD’,

‘BEST’, AND ‘WORST’ DENOTES THE MEAN VALUE, STANDARD DEVIATION, BEST OBJECTIVE, AND WORST OBJECTIVES IN 20 RUNS.

Dataset
DPF DyPF SPF CDP SR ECM

Mean Std Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std Best Worst

A 55,291.61 12.65 55,310 55,269 56,334.48 11.56 56,362 56,311 56,386.47 10.18 56,400 56,371 56,379.49 12.29 56,400 56,355 56,383.90 5.14 56,397 56,371 56,382.01 10.53 56,403 56,351

B 93,672.99 24.67 93,721 93,635 93,855.39 33.59 93,923 93,796 93,859.04 36.70 93,920 93,785 93,930.20 23.92 93,986 93,874 93,774.30 86.48 94,043 93,180 93,978.27 31.30 94,043 93,897

C 232,089.31 70.36 232,224 231,979 227,974.68 58.76 228,133 227,889 233,024.94 66.03 233,120 232,902 233,096.12 24.10 233,136 233,051 233,093.98 15.39 233,127 233,071 232,791.64 47.70 232,924 232,679

D 447,055.33 75.19 447,420 446,993 447,072.04 54.86 447,151 446,983 446,870.27 40.84 446,951 446,794 445,848.29 40.06 445,912 445,783 447,772.57 37.28 447,823 447,699 447,721.77 34.41 447,821 447,725

E 758,089.69 165.33 758,421 757,782 762,101.69 134.43 762,322 761,893 762,184.26 100.57 763,307 762,942 763,310.69 83.26 763,415 763,122 763,280.48 86.03 763,412 763,099 763,319.63 48.53 763,418 763,235

TABLE III
NUMBER OF DIVERSITY SOLUTIONS OBTAINED BY EACH

CONSTRAINT-HANDLING TECHNIQUE

Dataset DPF DyPF SPF CDP SR ECM
A 1 1 6 62 1 61
B 36 1 1 57 1 54
C 1 1 1 32 1 33
D 1 1 1 19 51 2
E 1 1 1 13 2 11

To solve it, we try six specific constraint-handling techniques
with the standard Genetic Algorithm. Our work is based on
real-world datasets and can bridge the gap between academics
and industry. Experiments show that different constraint-
handling techniques affect the results to varying degrees. ϵ-
Constrained Method identifies the most high-risk users and
Constrained-Domination Principle obtains the most diversified
solutions. Dominance-based techniques outperform the penalty
function-based methods in our real-world situations. Since this
is preliminary work about the rule selection problem, promis-
ing future work involves adding more constraint-handling
techniques and using more evolutionary algorithms.
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