
IRRT: An Automated Software Requirements Traceability Tool based on
Information Retrieval Model

Sen Zhang1, Hongyan Wan1,*, Yong Xiao1, and Ziruo Li2

1School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
2School of Information Engineering, Wuhan University of Technology, Wuhan, China

zhangsen7373@163.com, hywan@wtu.edu.cn, 634218476@qq.com, ziruo_l@whut.edu.cn
*corresponding author

Abstract—In the software development process,

requirements traceability is a key part for ensuring the success
of the entire project. It is very important to generate
requirements traceability links, which can promote the software
development and maintenance processes, such as software
requirements integrity analysis, software evaluation, software
testing, software validating, etc. However, the generation of the
requirements traceability links is usually time-consuming and
labor-intensive. In order to solve it, we designed and developed
an automated software requirements traceability tool based on
information retrieval (IR) model. The tool can not only
automatically generate trace links but also evaluate trace links.
It uses Vector Space Model (VSM) and the trace
recommendation-based code class structure (TRCCS) links to
generate trace links. We measure the performance in term of
Precision, Recall, and are used to evaluate the trace links.
The experimental results show that the tool can improve the
efficiency of requirements traceability links generation and
better support software development activities.

Keywords-requirements traceability tool; information
retrieval; vector space model; IRRT

I. INTRODUCTION
In the software development process, some requirements

are often omitted or unrealized, and the impact of
requirements modifications on software development is
regularly ignored. These small issues may lead to the failure
of the whole software development [1,2]. Requirements
traceability can act tracing analysis to decide whether or not
all low-level elements have parent elements. Furthermore,
completeness analysis is carried out to determine whether all
high-level requirements are absolutely satisfied, and test
coverage is assessed to determine whether test cases exist for
each requirement [3,4,5,6]. Therefore, requirements
traceability is an essential research direction in requirements
engineering, and has been the topic of active research by
academia and industry.

Manual generation of requirements traceability links has
many limitations. It requires a giant quantity of professionals
who are acquainted with the project, and a lot of time when
dealing with complicated software system. In addition, during
the actual software development process, the modification in
the requirements is inevitable. However, it is difficult to
maintain the update the trace links, and it is useless to not save
the latest links in time. Thus, it is meaningful to design and

develop a tool that can generate requirements traceability links
automatically. In this paper, we designed and developed an
IR-based requirements traceability (IRRT) tool, which can
automate the preprocessing of software artifacts ((e.g.,
requirements documents, source code) and generate links
between them, with the ability to modify trace links in real
time. The problem of time-consuming and labor-intensive
generation of requirements traceability links and untimely link
updates can be well solved with the tool. It also can reduce the
problem of multiple synonyms.

The IRRT tool realizes the generation of trace links
through the commonly used IR model Vector Space Model
(VSM) [7,8,9], and refines the links through the trace
recommendation-based code class structure (TRCCS). The
principal functions are reflected in the following three aspects.

 IRRT realizes the automatic generation of
requirements traceability links by using VSM.

 IRRT refines candidate links by adding TRCCS, and
significantly improves the precision while keeping
the general effect of trace links unchanged or
improving slightly.

 IRRT evaluates the generated trace links through
three metrics: Precision, Recall, and , and displays
them in the form of a line chart.

The remainder of the paper is organized as follows:
Section II introduces the background of requirements
traceability and IR based requirements traceability, as well as
some commonly used IR models. Section III introduces the
tool IRRT and the specific functions of the tool in detail.
Section IV validates the tool through a specific case study.
Section V discuss our results and related work. Section VI
summarizes this study and the outlook for future development.

II. BACKGROUND
Requirements traceability is a critical part of requirements

engineering. For decades, many requirements traceability
technologies have been widely studied [10]. Requirements
traceability is to describe and trace the lifecycle of
requirements, both in a forward and backward direction [11].
Requirements traceability generates links between
requirements documents and other software artifacts,
including requirements documents, source code, use cases,
test cases, design documents, and so on. It plays a significant
role in the software development process. The requirements
which defined in the early stage of software development are

525

2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

2693-9371/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS-C57518.2022.00084

frequently exchanged during the software lifecycle. It is
crucial to analyze the effects of requirement adjustments.
Requirements traceability links can be used to determine
which software artifacts need to be adjusted when
requirements change.

Pr
ep

ro
ce

ss
in

g
St

ag
e

Li
nk

s G
en

er
at

io
n

St
ag

e
Li

nk
s R

ef
in

em
en

t S
ta

ge

Document Preprocessing

Calculating Document
Similarity

Refine Links

Requirement
Artifacts

Software
Artifacts

Document
Vector

Candidate Trace
Links

Trace links

Figure 1. The general process of IR-based trace links generation

At present, there are various technologies used to generate
requirements traceability links, including IR-based
technology, machine learning-based technology, data mining-
based technology, etc. among which the IR-based technique
is most commonly used. As shown in Figure 1, the general
process of IR-based method is divided into three stages: First:
Preprocessing Stage, which converts requirements
documents, source code, test cases and other software artifacts
into vector form. Second: Links Generation Stage, the
relevance of two artefacts is determined by calculating their
similarity, and then the candidate trace links list is created to
generate links. Third: Links Refinement Stage, manual
selection or some other techniques are used to refine the
candidate trace links, producing higher quality trace links.

Representing documents as vectors in a vector space is
called VSM [12]. VSM represents documents as vectors by
terms and their corresponding weights, where term frequency-
inverse document frequency (TF-IDF) [13] is used to

calculate the weights of the terms. The weight of the terms
corresponding to is calculated by the following equation:

 (1)

VSM calculates the similarity of vectors to determine how
similar the documents are. Typical techniques for determining
document similarity include: Euclidean Distance, Manhattan
Distance and Cosine Distance, etc. Cosine distance is the most
frequently used, and VSM employs it to assess how similar
two documents are. The cosine distance is calculated using the
following equation:

(2)

By comparing the cosine distance between the documents, it
is possible to determine how relevant they are and generate a
trace link. The generation of requirements traceability links
uses a variety of IR models, the most popular of which are the
VSM and Jensen-Shannon (JS) models [14]. The tool uses
VSM to generate trace links and further refines the generated
links through TRCCS.

III. INTRODUCTION OF TOOLS

A. Overview
The major functions of IRRT include four parts:

generating trace links, refining trace links, evaluating trace
links and building dictionaries. The generation of the trace
links is divided into manual generation and automatic
generation. VSM is frequently employed in requirements
traceability field, is used for the automatic generation of trace
links. For the purpose of improving the trace links' quality,
TRCCS is used to further refine the links that VSM generated.
The evaluation of trace links uses Precision, Recall, and ,
which are the most commonly used evaluation metrics in the
requirements traceability field, and the statistical graphs of
results are displayed in the tool. By building a dictionary, the
problem of multiple synonyms that frequently occurs in
generating trace links is alleviated. We use a dictionary to
solve the problem of being unable to generate trace links
when two terms are semantically similar or identical. The
main interface of IRRT is shown in Figure 2, including six
parts: File, Manual Trace, Auto Trace, Evaluation, Tools and
Help. They are described in detail below.

Figure 2. The IRRT interface

526

B. Create project
The first step of IRRT is to create a new project. As shown

in Figure 3, it includes four project documents: test cases,
requirements documents, design documents, and source code.
After importing the documents, their details can be shown
from the tool.

Figure 3. Create project interface of IRRT

C. Manual Trace
IRRT supports manual generation of the trace links. The

user can select two documents and determine whether a link
can be generated. This function is necessary. For small
projects, it is more accurate and effective to generate trace
links manually. This function is also an improvement to the
automatic generation of the trace links. Figure 4 shows the
manual trace interface of IRRT. As shown in Figure 4, we can
choose two documents, click Build to create a link, click Save
to save it, and click Del to remove any unneeded or incorrect
links.

D. Auto Trace
As shown in Figure 5, the IRRT generates requirements

traceability links in two steps: at first, click VSM to begin the
automatic generation of trace links, and then click TRCCS to
refine the candidate trace links.

Figure 5. Auto trace interface of IRRT

1) Generate trace links: at first, pre-processing the
documents, including word segmentation, stop word removal,
part-of-speech tagging and stemming, etc. Then, in order to
generate trace links, VSM is used to calculate the similarity
between documents. The greater the similarity, stronger the
relevance. Documents are converted to vectors by VSM,
which are made up of terms and their related weights. VSM
uses the TF-IDF algorithm to calculate the weights of terms,
document D is expressed as and its vector
form is , the weight corresponding to term

 is calculated by (1). The similarity is calculated by using the

Figure 4. Manual trace interface of IRRT

527

1http://www.coest.org/

cosine distance between vectors of two documents. The cosine
distance is calculated by (2). The range of similarity values is
from 0 to 1. The higher the value, the more relevant the
document is, and vice versa.

2) Refine trace links: Refining candidate trace links by
TRCCS, which uses the existing code-class structure
relationship of trace links to recover more trace links. TRCCS
recovers the trace links that cannot be established correctly
due to the semantics mismatch, uncertain requirements or
annotations. Therefore, the quality of the trace links can be
improved. Based on the similarity calculated by VSM,
TRCCS calculates the similarity between the code artifacts
with the equation (3):

 (3)

According to the similarity value calculated by using TRCCS,
the candidate trace links list is reordered to refine the trace
links.

E. Evaluation
To evaluate the quality of the generated trace links, we

select three metrics which are commonly used in the
requirements traceability field: Precision, Recall, and .
Their calculation methods are shown in equation (4) (5)
(6), respectively.

 (4)

 (5)

where represents the set of correct trace links,
represents the set of all generated links, and

represents the intersection of two sets. is the weighted
harmonic mean of precision and recall. When , the
precision weight is small and the recall weight is large [15].
We choose to evaluate the quality of trace links.

 (6)

To evaluate the quality of the created links, click the
Evaluation button and then choose the path of the generated
links and the path of the true links. The evaluation results are
displayed on the tool's main interface, and the Add Data
button allows you to add additional results from other models
for comparison. Click the Details button to display detailed
results, it shows the results of evaluation for each requirement
use case and the complete average results. In addition, the
threshold can be adjusted by using the Change Threshold
button.

F. Tools
VSM is usually based on terms matching to calculate the

similarity between requirements documents and other

documents. The advantage of VSM is that a straightforward
linear algebraic model can be used to implement it. But there
is have a problem. When the semantics of two terms are
similar while the calculated similarity is low, the two terms
cannot be matched, which is inconsistent with the actual
situation. The likelihood of the multiple synonyms problem is
decreased through manually adding common words with
similar semantics to create a dictionary. As shown in Figure 6,
click the Tools button and select Thesaurus to enter the
dictionary creation interface.

Figure 6. Auto trace interface of IRRT

G. Help
This part is mainly for the detailed introduction of the two

technologies VSM and TRCCS used in the tool. Users can
learn more about the two technologies to better use the tool by
viewing a comprehensive description of them in the tool's
primary interface.

IV. CASE STUDY

A. Datasets
IRRT is validated for all datasets on the Center of

Excellence for Software and Systems Traceability (CoEST1).
The open source datasets above CoEST are widely used in the
research of requirements traceability [16,17,18,19]. Table 1
shows the types and number of source artifacts and target
artifacts for each dataset, along with the number of true links
for each dataset. In this paper, we select iTrust [20,21,22] to
demonstrate how the tool works specifically. iTrust is a java-
based medical record web system that includes 50
requirements use cases and 299 Java classes, with a total of
314 true links. The case study focuses on generating links
between the requirements documents and the source code.

528

2http://www.oracle.com/java/technologies/javase/javadoc-tool.html
3http://opennlp.apache.org/

Table 1. Applicable datasets for IRRT

Name Source Artifacts (Number) Target Artifacts (Number) Size True Links

iTrust Requirements (50) Code Classes (299) 14950 314

eTour Use Cases (63) Code Classes (101) 6363 365

EasyClinic

Use Cases (30) Code Classes (47) 1410 93

UML Interaction Diagram (20)

Code Classes (47 940 69

Test Cases (63) 1260 83

Use Cases (30) 600 26

Test Cases (63)
Code Classes (47) 2961 204

Use Cases (30) 1890 63

CM-1 NASA High-level Requirements (22) Low-level Requirements (53) 1166 45

EBT Requirements (40) Test Cases (25) 1000 51

GANNT High-level Requirements (17) Low-level Requirements (69) 1173 68

Albergate Requirements (55) Code Classes (17) 935 53

WARC
Non-functional Requirements (21) Software Requirements

Specification (89)
1869 58

Functional Requirements (43) 3827 78

GANNT High-level Requirements (17) Low-level Requirements (69) 1173 68

SMOS Use Cases (56) Code Classes (101) 5656 1044

eAnci Use Cases (140) Code Classes (55) 7700 554

HIPAA Requirements (1889) Regulatory Codes (10) 18890 244

Ice Breaker Requirements (unclear) UML classes (unclear) unclear unclear

Infusion Pump Requirements (unclear) Components (unclear) unclear unclear

Kiosk Requirements (unclear) Process-Specifications (unclear) unclear unclear

B. Generate Trace Links
1) Preprocessing: After clicking the VSM in Auto Trace,

documents are preprocessed. For source code, the tool uses
Javadoc2 technology to extract the annotation information of
class and method names, generating help files in HTML
format to obtain information strongly relevant to system
functions. The Apache OpenNLP3 toolkit is used to perform
preprocessing operations on natural language texts such as
requirements documents and design documents.

2) VSM: After preprocessing, the VSM calculates the
similarity between the requirements document and the source
code to generate trace links. The results of the experiment
generation links are shown in Figure 7, with the Score value
on the right showing the relevance between the source artifact
and the target artifact. As shown in Figure 8, in order to
generate better trace links, you can manually modify the
generated links tags by clicking the Confirm Tags button.

Figure 8. Confirm tags interface of IRRT

529

Figure 7. Results for VSM technique

Figure 9. Refine links results via TRCCS

530

3) TRCCS: In order to recover more trace links,
reordering the candidate list of links according to calculating
the similarity between code artifacts. The refined results are

shown in Figure 9. The left side represents the results before
refinement, while the right side is the value after refinement.
You can see that a number of trace links are recovered.

Figure 10. Evaluation results for generated trace links

C. Evaluation Trace Links
We select three metrics: Precision, Recall, and to

evaluate the generated trace links. The results are shown by
line graphs. Figure 10 displays the evaluation results. In
figure 10, the horizontal axis represents the threshold, and the
vertical axis represents the value of the three corresponding
metrics. The highest precision is 0.58, and the highest recall
is 0.53. It can be seen that recall falls as precision rises. When
the threshold is 0.7, reaches its highest value of 0.37. In
comparison to VSM, TRCCS has higher precision and
slightly higher recall, because it uses relationships in the code
class structures to recover more trace links. The improvement
in is limited because the improvement in recall is not
significant. In general, IRRT achieves good effects in
generating trace links between requirements and source code.

V. DISCUSSION
Some scholars have also done some work in the field of

developing automatic requirements traceability tool. Yoshino
et al. [23] proposed a tool for automatically generating initial
sequence diagrams from activity diagrams to establish trace
links between model elements. The tool uses UML diagrams
for requirements analysis, but it is not validated by case study.
In contrast, this paper uses document format for requirements
analysis and is validated with a case study.

Garcia et al. [24] proposed a prototype of a tool that
requires an analyst to manually create a trace link between

functional requirements and the implemented functionality of
a website. Our tool automatically generate links between
requirements-code, requirements-design and requirements-
test.

The results of the case study demonstrate that IRRT
facilitates the automatic generation of requirements
traceability links, but there have two drawbacks.

First, it only uses one model VSM to generate links. For
example, when dealing with some documents that focus on
semantics, the VSM model does not work well. The VSM
performs poorly when utilized to documents that emphasize
semantics.

Second, the trace links generated by the numerical display
are not intuitive, and the visualization of the trace links is not
realized.

VI. CONCLUSION
In this paper, we developed a tool IRRT to generate the

requirements traceability links by using VSM. Specifically, it
uses TRCCS to refine the candidate trace links generated by
VSM. The automatic generation of the links between
requirements-code, requirements-design and requirements-
test is realized. In addition, IRRT allows to evaluate the
quality of trace links, and reduce the multiple synonyms by
building a dictionary. Through the case study, we verified and
demonstrated the functions. IRRT aids in the generation of
requirements trace links, and improves the efficiency of
generating links while ensuring better quality.

531

The work of this paper can further improve as follows: 1)
investigate additional IR models, add more methods for
IRRT so that it can be applied to a broader set of software
systems. 2) research Machine Learning based requirements
traceability recovery, added to IRRT.

ACKNOWLEDGMENT
This work is supported by the Opening Foundation of

Engineering Research Center of Hubei Province for Clothing
Information (No. 2022HBCI05, No. 2022HBCI02), the
National Natural Science Foundation of China Project (No.
62102291) and the Young Talents Programme of Scientific
Research Program of the Hubei Education Department
(Project No. Q20211711).

REFERENCES
[1] Jarke, Matthias. "Requirements tracing." Communications of the ACM

41.12 (1998): 32-36.
[2] Maza, Sofiane, and Oussama Megouas. “Framework for

trustworthiness in software development.” International Journal of
Performability Engineering 17.2 (2021): 241–252.

[3] Hayes, Jane Huffman, Alex Dekhtyar, and Senthil Karthikeyan
Sundaram. "Improving after-the-fact tracing and mapping: Supporting
software quality predictions." IEEE software 22.6 (2005): 30-37.

[4] Li, Dongcheng, W. Eric Wong, et al. “Automatic test case generation
using many-objective search and principal component analysis.” IEEE
Access 10 (2022): 85518–85529.

[5] Lee, Chen-Hua, and Chin-Yu Huang. “Applying cluster-based
approach to improve the effectiveness of test suite reduction,”
International Journal of Performability Engineering 18.1 (2022): 1–10.

[6] Li, Dongcheng, W. Eric Wong, et al. “Improving search-based test case
generation with local search using adaptive simulated annealing and
dynamic symbolic execution.” 2022 9th International Conference on
Dependable Systems and Their Applications (DSA). IEEE, 2022.

[7] Rodriguez, Danissa V., and Doris L. Carver. "Multi-objective
information retrieval-based NSGA-II optimization for requirements
traceability recovery." 2020 IEEE International Conference on Electro
Information Technology (EIT). IEEE, 2020.

[8] Wang, Bangchao, et al. "An Automated Hybrid Approach for
Generating Requirements Trace Links." International Journal of
Software Engineering and Knowledge Engineering 30.07 (2020):
1005-1048.

[9] Rodriguez, Danissa V., and Doris L. Carver. "An IR-based artificial
bee colony approach for traceability link recovery." 2020 IEEE 32nd
International Conference on Tools with Artificial Intelligence (ICTAI).
IEEE, 2020.

[10] Wang, Bangchao, et al. "Requirements traceability technologies and
technology transfer decision support: A systematic review." Journal of
Systems and Software 146 (2018): 59-79.

[11] Gotel, Orlena CZ, and C. W. Finkelstein. "An analysis of the
requirements traceability problem." Proceedings of ieee international
conference on requirements engineering. IEEE, 1994.

[12] Schütze, Hinrich, Christopher D. Manning, and Prabhakar Raghavan.
Introduction to information retrieval. Vol. 39. Cambridge: Cambridge
University Press, 2008.

[13] Ponte, Jay M., and W. Bruce Croft. "A language modeling approach to
information retrieval." ACM SIGIR Forum. Vol. 51. No. 2. New York,
NY, USA: ACM, 2017.

[14] Wang, Bangchao, et al. "A Systematic Mapping Study of Information
Retrieval Approaches Applied to Requirements Trace Recovery."
SEKE. 2022

[15] Hayes, Jane Huffman, Alex Dekhtyar, and Senthil Karthikeyan
Sundaram. "Advancing candidate link generation for requirements

tracing: The study of methods." IEEE Transactions on Software
Engineering 32.1 (2006): 4-19.

[16] Kuang, Hongyu, et al. "Using frugal user feedback with closeness
analysis on code to improve IR-based traceability recovery." 2019
IEEE/ACM 27th International Conference on Program Comprehension
(ICPC). IEEE, 2019.

[17] Ali, Nasir, et al. "Exploiting Parts-of-Speech for effective automated
requirements traceability." Information and Software Technology 106
(2019): 126-141.

[18] Li, Tong, et al. "Combining machine learning and logical reasoning to
improve requirements traceability recovery." Applied Sciences 10.20
(2020): 7253.

[19] Chen, Lei, et al. "Enhancing unsupervised requirements traceability
with sequential semantics." 2019 26th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 2019.

[20] Hammoudi, Mouna, et al. "On the effect of incompleteness to check
requirement-to-method traces." Proceedings of the 36th Annual ACM
Symposium on Applied Computing. 2021.

[21] Wang, Wentao, et al. "Complementarity in requirements tracing."
IEEE Transactions on Cybernetics 50.4 (2019): 1395-1404.

[22] Wang, Haijuan, et al. "Analyzing close relations between target
artifacts for improving IR-based requirement traceability recovery."
Frontiers of Information Technology & Electronic Engineering 22.7
(2021): 957-968.

[23] Yoshino, Kaito, and Saeko Matsuura. "Requirements Traceability
Management Support Tool for UML Models." Proceedings of the 2020
9th International Conference on Software and Computer Applications.
2020.

[24] Garcia, Jorge Esparteiro, and Ana CR Paiva. "A Requirements-to-
Implementation Mapping Tool for Requirements Traceability." J.
Softw. 11.2 (2016): 193-200.

532

