
Automatic Labeling of SDN Controller Defect Text based on Neural Topic Model

Bing Zheng1,2 and Hua Li1,*
1 Department of Computer Science Inner Mongolia University, Hohhot, Inner Mongolia, China

2 Inner Mongolia Technical College of Construction, Hohhot, Inner Mongolia, China
zhengbing@mail.imu.edu.cn, cslihua@imu.edu.cn

*corresponding author

Abstract—Software defined networking controller defects
may cause unexpected failures and reduce network reliability.
The historical defect texts provide information on defecting
symptoms and fixing strategies, but they are not sufficiently
labeled. An approach based on a neural topic model is
proposed to automatically assign phrase labels to the defect
text. First, five types of information that can be extracted from
the defect text are provided to guide the generation of
candidate phrases. Second, contextualized embedding
representations are extracted by the pre-training
BERTOverflow model and input to the contextualized topic
model to extract a more coherent topic distribution. Third, the
accuracy of the unsupervised assignment of labels is improved
by filtering candidate phrases through two-level label filtering.
Finally, FastText is applied to train a multi-label classifier to
assign labels to the new defect text. The experimental results
demonstrate that the proposed approach can effectively assign
interpretable labels to the defect text.

Keywords- SDN controller; defect; text mining; neural topic
model; phrase label

I. INTRODUCTION

Software defined networking (SDN) is a popular
technology in cloud data centers. The SDN controller is the
core component responsible for managing the network and is
crucial to operating an SDN. Currently, many open-source
controllers such as OpenDaylight (ODL) and Open Network
Operating System (ONOS) play an important role in the
production environment of SDN networks[1]. If there is a
defect in the SDN controller, the reliability of the network is
reduced, and the operation of the network is unexpected.
Therefore, it is necessary to fully analyze SDN controller
defects using data mining technology.

Software repositories such as issue tracking system (ITS)
help researchers in studying and examining the different
factors that influence and impact the quality of a software
system[2]. In the information stored in the historical ITS
repositories, the problems reported are not necessarily
failures, errors, or defects but anomalies that include any
deviation from the desired behavior of the system[3]. It can
detect the defect types in the SDN controller through the
guidance of historical information.

Research Motivation–A real historical defect report text
(Issue ID ONOS-705) from SDN controller project ONOS is
chosen as an example of motivation, where the ITS tool of

ONOS is Jira1. The defect text consists of three parts: title,
description and comments, the information contained in it is
presented in Table 1.

Table 1. Examples of text and information contained in defect report of
SDN controller

Title Description Comments

Text

Exception
while
running
ONOS
(master) -
against
Pica8
switch …

After ONOS starts,
I'm not able to see the
switch connected. …
The exception is
triggered with ONOS
master and with the
switch either in OF
1.0 or 1.3 mode. …

This issue seems to be a
race condition with the
order events are written
to the device store.
Sometimes device added
events are added by the
startup thread because
they can be triggered by
…

Infor-
mation

observed
behavior

detailed observed
behavior
steps to reproduce
root cause

root cause
fix strategy and link.

Table 1 shows that the historical defect text contains
ample useful information, and the underlined text represents
the entities and activities associated with the defect. The
defect text records observed behavior, steps to reproduce,
root cause, and fix strategies. Existing ITS tools provide
information to users and categorize issues through labels;
however, the labels provided are based on general purposes
and are often missing. A survey on ITS GitHub in 2018
found that 72% of the 1,656,937 issue reports had no
labels[4]. Our pilot study found a similar situation in Jira.
Therefore, the defect text could provide useful historical
defect information and the labels provided by the existing
ITS tools are insufficient to meet the requirements of in-
depth SDN controller defect analysis.

Effective mining and reuse of knowledge gained during
the reporting and fixing of defect issues can reduce
production costs and increases the efficiency of defect
fixes[5]. Therefore, we aim to mine SDN controller defect
texts to make sense of historical defect text. A defect text
generally describes events with specific topics[6], and an
intuitive idea is to classify defects with similar topics to
guide defect detection and fix. In addition, more hints of
defect information are provided to developers and users in
the form of labels. With these considerations in mind, we
propose a method to automatically provide users with
interpretable labels using text-mining technology, which

1 https://jira.onosproject.org/

402

2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

2693-9371/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS-C57518.2022.00065

help users effectively identify entities and activities related
to defects.

According to our investigation, there are insufficient
labeled defect texts, so unsupervised and supervised text-
mining technologies were combined in this study. We
assign the same labels to texts with similar latent topic
semantics through neural topic model clustering.
Furthermore, the problem that should be addressed for the
labels of the clustered topics is how to make the labels
contain the expected information and ensure that they can be
assigned as accurately as possible to the defect texts. Finally,
a supervised multi-label text classification technique is
applied to automatically label new defect text.

The contributions of this study are listed as follows:
The characteristics of SDN controller defect texts are
analyzed. Four phrase extraction methods are
combined to ensure that the provided labels contain
defect-related entities and activities.
An automatic labeling approach for SDN controller
defects is proposed. The unsupervised neural
contextualized topic model (CTM) is applied for
topic clustering; the clustered documents are labeled
by two-level label filtering, and the new defect text
is automatically assigned multiple labels by the
supervised classifier FastText.

The remainder of this study is organized as follows.
Section II provides related work by discussing the current
state of research on defect analysis of SDN controllers and
topic-modeling techniques. Section III focuses on the
methodology for designing and constructing the proposed
approach. Section IV discusses the results obtained from the
experiments with the proposed framework on an SDN
controller. Finally, Section V provides concluding remarks.

II. RELATED WORK

The SDN controller is the core component responsible
for managing the network. Several studies have focused on
SDN controller defects [7]. In the work of development,
operation, and maintenance, SDN controller defects are often
described in natural language text. By mining and analyzing
SDN controller defects text in defect reports, information can
be provided to support for defect analysis. Vizareta et al.
presented the change law of the learning curve mode and
error detection rate of the number of reported defects through
a statistical analysis method[8]. Bhardwaj et al. focused on
the “critical” defects caused by the SDN controller and
presented classification and root cause analysis of critical”
defects[9]. The defect text could provide useful historical
defect information. However, existing studies have not
conducted in-depth semantic mining of text in an SDN
controller historical defect report.

With the development of SDN technology, defect texts
gradually accumulate, and it becomes difficult to mine and
reuse knowledge in defect texts. We aim to mine historical
defect information by clustering and automatically labeling
defect text. The topic modeling technique is widely used in
the field of defect text mining [4, 6, 10, 11]. Schopf et al.
found topic modeling to be a promising approach for defect

report classification and explored automated classification of
defect reports into a predefined set of categories[12].
Focusing on the security issues posted in GitHub
repositories, Althar et al. applied topic modeling to identify
and understand common security issues[13]. Xia et al.
improved automated bug triaging with specialized topic
model[5]. Treude et al. applies topic models to corpora from
GitHub and Stack Overflow to make sense of this textual
data[14].Therefore, the topic model is adopted for clustering
latent semantic defect texts in our paper.

Topic models can divide the words in a corpus according
to semantics to obtain a topic generated by a fixed number of
semantically related words. The corpus in this paper consists
of all defect texts from issue reports. Documents (i.e. issue
reports in the corpus) can be clustered based on these topics.
Topic models can be divided into non-LDA(latent Dirichlet
allocation)-based topic models and LDA-based topic
models[15]. Non-negative Matrix Factorization(NMF) is a
representative non-LDA-based topic model, which is simple
but unable to deal with complex topic learning problems[16].
LDA-based techniques are the most frequently used topic-
modeling techniques for identifying topics and clustering
documents with similar topics[15]. There are two types of
LDA-based topic models: topic models based on
probabilistic statistical methods and topic models based on
neural networks.

Topic models based on probabilistic statistical methods,
such as LDA, employ word frequencies and co-occurrence of
words in the documents in a corpus to build a model of
related words[17]. Such methods extract meaningful word
distributions from unstructured text, for example, bag-of-
words (BoW) representations, and the order of words in the
document is ignored. However, unsupervised topic models
do not often correlate well with human judgment, and its
semantic coherence is not ideal [18].The topic model can use
the pre-trained word vector to enrich the text feature space
expression, such that texts and words with similar semantics
can be assigned to the same topic, thus improving the
semantic coherence of the topic words and the accuracy of
text clustering [19]. Gaussian LDA uses Word2Vec pre-
training to improve semantic coherence [15].

Topic models based on a neural network can be applied
to reconstruct the generation process of the topic model. The
deep neural network helps to learn topics with better
interpretability[15]. Owing to the flexibility of deep neural
networks, inference networks can learn complicated non-
linear distributions and process structured inputs such as
word sequences [10]. The ProdLDA model mainly uses the
variational autoencoder (VAE) framework to reconstruct the
text generation process of a topic model and adds sparse
constraints of topic vocabulary to generate more expressive
topic words[20]. The feature extraction ability of the
ProdLDA topic model is stronger than that of the LDA. The
CTM introduces a bidirectional encoder representation from
a transformer (BERT) pre-trained model in the embedding
layer representation of ProdLDA to improve the semantic
coherence of topics [20]. Continuous space word
embeddings learned from large unstructured corpora can
effectively capture semantic regularities.

403

Topic models based on probabilistic statistical methods
cannot obtain features related to word order and higher-level
semantics. Various extensions of topic models incorporate
several types of information that are convenient for defect
analysis and fix. The neural topic model CTM extends VAE
framework, and the pre-trained representations are
introduced in the embedding layer. It can capture semantic
relationships and help advance feature extraction and cluster
tasks [20]. Therefore, in this study, an approach for
automatic labeling SDN defect text was established based on
the CTM neural topic model.

III. APPROACH

A. Approach Overview
We propose a hybrid approach, as shown in Figure 1.

The overall workflow is divided into four steps:
Step 1. Data preparation and text preprocessing. The

dataset is extracted from Jira and GitHub. A detailed analysis
of the defect information that can be obtained is provided,
and preprocessing for the characteristics of the SDN
controller defect text is also implemented.

Step 2. Topic modeling. This is an important step. To
obtain a more coherent representation of labels,
contextualized embedding semantic features are extracted
through the in-domain pre-training model, BERTOverflow.
CTM is applied to topic modeling. The contextualized
document representation and BoW representation are
concatenated as the input of the CTM, and the document-
topic distribution and word topic distribution with better
semantic coherence are extracted through the VAE
framework. Documents are assigned to two topics based on
the maximum posteriori principle.

Step 3. Two-level label filtering. Candidate phrases are
extracted using named entities, bigrams and trigrams, phrase
chunks, and custom in-domain terms. At the topic level,
the top-3 phrases are selected as topic labels for each topic.
Through the document-topic and topic-word distributions
outputted by the CTM model, topics and candidate phrases
are compared for similarity by KL (Kullback-Leibler)
divergence and sorted based on the result calculated by the
similarity score function. At the document level, cosine
similarity calculation is performed using the context
embedding representation of the document and topic label.
Labels are reordered and top-3 topic labels are selected as the
labels for each document. After two-level label filtering, the
remaining labels not assigned to any document are
eliminated, and a label set is built for the multiple-label
classifiers. To ensure the accuracy of the results, validation
was performed using manual sampling.

Step 4. Multi-label classification. We use the labeled
dataset obtained in Step 3 to train a multi-label classifier. To
automatically assign interpretable labels to new defect text,
we train a classification model with FastText on an already
labeled multi-label dataset.

Figure 1. Overall workflow of the proposed approach.

B. Data Preparation and Preprocessing
Several studies have tested their methods on cross-

projects or combined data from all projects, which would be
better in the scope of their validity[4, 14]. Our dataset is
extracted from two different ITSs, including Jira and GitHub,
and contained 10 open-source SDN controller projects. From
the perspective of natural language processing (NLP)
technology research, we use a specific non-standard dataset.
The crawler Beautiful Soup is used to obtain the raw dataset
and perform specific preprocessing and feature extraction for
input to the topic model to consist of various types of defect
information.

For the collected raw dataset, it is necessary to determine
the portion of defect text that is included. As listed in Table 1,
the defect text consists of three parts: title, description and
comments. Our pilot study shows that “title” and
“description” contain more defect information. However, the
reporter is likely not fully aware of the defect. It is often in
the follow-up discussion with the developer that more
observed behavior become clear, and a more reliable root
cause analysis can be provided. Also, fix strategies are often
given in the comments. Therefore, in order to provide more
detailed defect information, the defect text in our dataset
includes all the three parts.

Mining defect text requires prior knowledge of the
information contained in the text. In reference[3], three types
of information exist in defect reports, namely, observed
behavior (OB), expected behavior (EB), and steps to
reproduce (S2R). According to our additional analysis, five
types of information can be obtained through historical
defect text mining: OB, EB, S2R, root cause, and fixed
strategy. It is also the most important in the process of defect
analysis and fix, and therefore, is expected to be reflected as
labels in this study. The entities and activities associated with
the defect are contained in five types of information.
Through the analysis, it is found that the Part of Speech
(POS) of the words contained in this information is mainly

Data
preparation

BERTOverflow
Contextualized

embeddings

Topic labels
(Top-3 phrases)

Tokenization

Defect text
Top-2 topics

Topic word
distribution

 Topic modeling

Text
preprocessing

BoW

CTM neural topic model

Document topic
distribution

Candidate phrases

Two-level label filtering

1.Named entities
2.Bigrams and trigrams
3.Phrase chunks
4.custom in-domain terms

Labeled defect text
(Top-3 topic labels)

Trained FastText
model

scoring
function

cosine
similarity

404

nouns and verbs. Therefore, in the two-level label filtering
step, we mainly extract phrases containing nouns and verbs,
thus trying to make the provided labels contain defect
information

Defect text obtained from ITS is often noisy and greatly
differs in its quality of information. Text preprocessing
significantly affects the reliability of semantic modeling, and
the poor quality of data leads to unexpected negative details
in the classification results. In addition to the common NLP
processing flow, each text-mining approach (including topic
modeling) may require specific preprocessing steps. The
following preprocessing techniques are applied:

1) Regular expression matching is used to eliminate
irrelevant information, including URLs, IP addresses, and
special characters. The predefined stop words are eliminated
together with the stop words provided by NLTK. The digits
are not simply removed; for example, the deployment
environment of the SDN controller includes k8s, and the
l2switch is an important component of the ODL, including
layer 2 switch functions. These terms are added to the
reserved list.

2) There is an OOV(out-of-vocabulary) problem; many
unknown words are contractions; therefore, contractions
should be expanded. For example, for distributed deployed
controllers, the term "async" often appear and should be
converted into "asynchronous." After processing, the
proportion of OOV is reduced. Therefore, some terms
specific to SDN controller items are added as reserved and
rule lists based on studying the software engineering term list
provided by[21].

3) Descriptions and comments sometimes include code
snippets, trace entries, configurations, and operation
commands. Structured information is typically a good
indicator of the main functionality of an entity, and the
words used in commands often reflect the purpose of the task
being resolved. For example, in SDN controller Cord,
“flowRuleCount” indicates the number of flow rules in the
device, which should be divided into “flow,” “Rule,” and
“Count.” Split tokens are based on several naming
conventions, including SnakeCase, CamelCase, and
underscores.

4) Elimination of infrequent and most frequent words
(according to a specified frequency threshold) to limit
vocabulary size. Less frequent words are typically special
names or typos. Based on the experiments, using these
tokens had less or no impact on the topic model.

We do not perform stemming and lemmatization filters
because some important words become meaningless after
processing. Moreover, some of our methods (e.g.,
BERTOverflow) have their preprocessing techniques.
Because the pre-training model has specific requirements for
the length of the input text, more dataset text information is
presented in Table 2.

After preprocessing, the corpus C for automatic labeling
is obtained, where C is composed of documents d, that is,

. Document d is regarded as a simple
collection of tokenized words, that is, .
A unified dictionary, V, is established for subsequent feature
extraction, topic labeling, and classification. The dictionary

is a list of all unique words from corpus C, along with
indices. Our corpus contained 17,414 documents (35,984
unique words in total) with a mean length of 312 words. The
average number of input tokens per SDN controller ITS
repository is 312. Although the title text has less noise, it can
be seen from Table 2 that the title become a typical short text
after preprocessing, and there will be a sparse problem after
topic clustering. Therefore, our corpus contains all three
parts of defect text, which can get better topic clustering
effect and obtain labels containing more defect information.

Table 2. Defect text from SDN controller ITS*

SDN controller ITS #docs #w/dt #w/d
OpenDaylight jira 10,117 7.42 333.22

ONOS jira 2,241 7.18 570.53
TungSten Jira 1,739 6.96 351.50

Open-Kilda github 1,486 7.16 129.85

CORD jira 796 6.22 90.15
Faucet github 616 6.20 116.65
Pox github 180 5.35 113.90
FloodLight github 167 5.32 143.50
Ryu github 46 4.72 133.43
Nox github 26 4.73 117.77
*#docs: number of issue reports; #w/dt: average number of words per document title; #w/d:

average number of words per document.

C.Topic Modeling
The tokenized word list obtained after preprocessing

constitutes a high-dimensional word space that is not
interpretable. Our goal is to automatically assign labels to the
SDN controller defect text, that is, to label each document. A
good set of labels should be understandable to user text[22].
The keyword-extraction algorithm can be directly applied to
a preprocessed corpus. However, the granularity of the labels
extracted in this manner is more meaningful than the title.

In the topic model, a topic is essentially a cluster of
words of a given vocabulary ranked by the probability of
belonging to such a cluster. The topic model captures the
topic distributions of each document. Since typically k n,
topic model is mapping the document from the space of
words (n) into a smaller space of topics (k). Therefore, the
topic model is trained to cluster documents such that we can
assign interpretable topic labels to documents.

To cluster documents with similar topics, it is necessary
to choose topic modeling methods with better topic
consistency. The first step is to extract the vector
representation. Documents and words can be represented as
vectors. A richer representation that captures semantics has a
significant effect on improving topic modeling coherence
and classification accuracy and facilitates semantic similarity
calculation for labeling. In our approach, two types of vector
representations are extracted: BoW representation and
contextualized embedding representation.

The BoW model uses a set of unordered words to express
sentences or documents and regards the document as a
simple collection of words. The vector representation does
not consider the order in which the words appear in the text;

405

only the frequency of each word in the dictionary appearing
in the text. The information that can be provided by the BoW
is mainly word frequency information, which can be
considered as words with a multinomial distribution. A few
additional steps are applied here to generate bigrams and
trigrams and to eliminate all words except nouns, adjectives,
verbs, and adverbs. Bigrams and trigrams are used in the
candidate phrase extraction process. The BoW represents the
input in an inherently incoherent manner. Since grammar and
word order are ignored, the consistency of the latent topic
distributions obtained by the BoW is often unsatisfactory.

Contextualized embedding representation is a type of
word-embedding method[20, 23]. Word embedding is the
representation of words in the form of a dense vector of
floating-point values that encode the meaning of the word
such that, the words that are closer in the vector space are
expected to be similar in meaning. This characteristic can
also be used to compare the semantic similarities between
phrases and documents. Classical embedding methods such
as Word2Vec, FastText, and GloVe generate fixed vectors
for polysemous words irrespective of the context in which
they occur[4]. Moreover, many words in the SDN controller
defect text have different meanings from those in the general
corpus, and it is necessary to solve the problem of polysemy
in embedding representations to more accurately represent
documents. For example, SDN manages network traffic
based on the flow. "Flow" has important and specific
meanings in the corpus. Contextualized embeddings capture
the context of word usage and, hence, produce different
vector representations for the same word depending on the
context. Therefore, the problem of polysemy can be resolved.
The state-of-the-art model that can extract contextual
embedding representations is BERT.

BERT is based on the encoder module in the transformer
architecture and uses an attention mechanism [24]. This type
of embedding contains position, sequence, and context
information, which are token, segment, and position
embeddings. BERT employs learnable position-encoding
information. The attention mechanism helps encode a word
using other positions in the input sequence that would lead to
a better representation of the word. To incorporate the rich
information from very large domain datasets, pre-trained
word (document) embedding vectors trained on external
corpora are utilized. BERT is trained in the general domain,
which has a different data distribution from that of the target
domain. Therefore, it is necessary to further pre-train BERT
with the target domain data. There are two existing strategies
for applying pre-trained representations: feature-based and
fine-tuning [24]. In our approach, we adopt the pre-training
model of fine-tuning based on Stack Overflow, because this
Q&A website mainly reports and solves problems
encountered in software development and use, and our defect
text mining task has the same goal. Embedding trained on a
domain corpus performs better than embedding on the
general corpus. The pre-trained BERTOverflow model from
Huggingface is fine-tuned on the Stack Overflow dataset[25].

After extracting the vector representation of the defect
text, it is necessary to establish a topic model to cluster the
text that needs to be labeled. A crucial issue with topic

modeling is the quality of the topics they discover. The
neural topic model CTM produces more meaningful and
coherent topics than traditional LDA[20]. In the CTM, the
probability vector of each document topic provides the latent
topic semantic distribution characteristics at the document
level. CTM combines contextualized representations with
neural topic models and implements black-box variational
inference using VAE. The VAE framework explicitly
approximates a Dirichlet prior to using Gaussian
distributions. The latent semantic space is constructed after
matrix dimensionality reduction, and the word document
matrix is reconstructed. In our approach, we introduce the in-
domain pre-training model. The topic generation process of
the neural topic model CTM that introduces the in-domain
pre-training model is shown in Figure 2.

Figure 2. Neural topic model CTM with in-domain pretraining model.

In Figure 2, document d is represented by contextualized
embedding and BoW(xBoW). The two representations are
used as the input of the topic model in a concatenated
manner to obtain more consistent topics. VAE aims to
model the true posterior distribution of the latent
variable , which is the probability distribution of the topic
of document d and is a k-dimensional vector. The neural
variational framework trains a neural inference network to
directly map the concatenation of contextualized document
representations and BoW into a continuous latent
representation The latent document representation is
sampled from a Gaussian distribution parameterized by μ
and σ, which are parts of the variational inference
framework, where . A reparameterization trick is
used in this process[26]. A decoder network is then used to
reconstruct the representation by generating its words using
the latent document representation , where is
the reconstructed representation. The latent topics
reconstruct the words in their respective documents to the
maximum extent possible. This means that the words in a
document lie roughly on the plane formed by their

Contextualized Embeddings
(BERTOverflow)

Hidden xBoW

Concat

Hidden

μ

Sampled representation

x

sampling

d

=μ+
 ~

x

406

corresponding topic vectors. Text similarity comparison can
be performed with the help of topic distribution.

The output of CTM training is a topic model that
contains the following information:

 topics, where each topic is a distribution of words;
 Document-topic matrix , probability of topic to occur

in documents;
 Topic-word matrix , topic assigned to word w in a

document.
In the CTM topic model, a document is a probability

distribution over topics and a topic is a probability
distribution over words. Therefore, a single document
contains one or more topics. We estimate the dominant topic
members for documents in each cluster using the maximum
posteriori principle:

 (1)
Particularly, we use the top two topics for each document,

as they usually provide sufficient detail to convey the
information of a document and distinguish one document
from another[27]. Therefore, document d belongs to the ith
cluster if and only if ti is among the top two topics of d.

D. Two-level Label Filtering
After topic clustering, labels with better interpretability

and defect-related information are assigned to the clustered
documents. The motivation behind document labeling is that
topics are time-consuming to interpret and are faster to
reason about if they are labeled, particularly in the activities
of detecting and fixing defects. One problem with using topic
model clustering documents is that the generated
representative labels are often insufficiently interpretable
[20]. Topics can be simply represented by their top-N terms,
that is, by words with the highest probability in a topic
distribution[6]. A good set of labels should capture as much
semantic information as the text. Unfortunately, such labels
in words may not be helpful in accurately capturing the
semantics of topics. Therefore, we use phrases as labels, and
propose a two-level label filtering method to make the labels
of defect text more representative.

To assign labels, the method is as follows: first, the
candidate phrase label set is selected by combining four
phrase extraction methods; then, the two-level label filtering
method is adopted, that is, the topic label is selected from the
candidate phrase label set, the filtered topic labels are
reordered by similarity calculation, and document labels are
assigned to documents.

1) Entities can be extracted as named entities from the
title by NLTK NER (named entity recognition) tools. The
extracted named entities are often words that distinguish
topics and have specific marking meanings, such as proper
nouns. Named entities are extracted from the title text
because the title contains more entity information, whereas
the description and comments contain a lot of noise.

2) Subject-predicate and verb-object phrases should be
selected to determine the activities performed by or on
entities that may exist in the corpus. We construct a syntax
tree and extract phrases with specific regular expression rules
<NN. *>{1,2}<VB.*>, <VB.*><NN.*>{1,2}. This task is

implemented by applying the NLTK POS tools. This tagging
technique analyzes the grammatical role of words in the text
and helps eliminate undesired material.

3) The most significant bigrams and trigrams are extracted
using NLTK. Because of noise, it is necessary to filter the
phrases generated by the bigram and trigram.

4) SDN related terms (e.g., related protocol OpenFlow)
are merged into a phrase set. The terms are crawled from
websites such as ODL official documentation. Introducing
in-domain terms significantly improves label accuracy [28].

For phrases obtained using methods 3), PMI (Pointwise
Mutual Information) should be calculated to ensure that
meaningful phrases are obtained. Higher PMI values indicate
that the combination of two words is more likely to be a
meaningful phrase. We extract meaningful phrases by
experimentally setting a threshold for the PMI. Phrases with
PMIs greater than the threshold are extracted.

 (2)

where indicates the co-occurrence probability of
the phrase, and represents the probability of
the words and in the whole corpus C. Higher PMI
values indicate that the combination of the two words is
more likely to be a meaningful phrase.

We combined the results of the four methods to extract a
set of candidate phrases. To ensure the accuracy of the
results, we completed the manual validation process
independently. Finally, the candidate phrase sets are obtained.

Based on the candidate phrase sets, a two-level filtering
method is applied to assign labels to documents. At the topic
level, the similarity between candidate phrases and topics is
calculated, and the topic labels are obtained by sorting and
filtering using the scoring function. At the document level,
the similarity between the topic label embedding
representation and the document embedding representation is
calculated, and the document labels are obtained by sorting
and filtering.

At the topic level, a good set of labels should have high
semantic relevance to the target topic , and low relevance to
other topics. Topic labeling is the process of determining or
generating appropriate labels for topics derived from topic
distributions over words inferred from the topic model CTM.
We rank the candidate phrases using a scoring function. The
topic-word matrix is extracted from the output of the CTM
in Section III-C. KL(Kullback-Leibler) divergence is
employed, as in [27] to measure the semantic similarity
between one candidate phrase and the target topic ,
defined as:

(3)
where w is the word in the entire corpus C. is the
probability of w in the topic distribution . and

 denote the percentages of words w and a in corpus C.
p(a,w|C) indicates the probability of co-occurrence of a and
w in C.

The scoring function is then defined by combining
with similarity scores to other topics,

407

 is the sum of similarity scores of
other topics. The combined similarity scores mean that
should be semantically close to the topic distribution and
discriminate from other topics.

where the parameter is used to adjust the penalty for
semantic similarities to other topics. A larger signifies that
the candidates are more different from the other topics.

For a topic, candidate phrases are ranked using a scoring
function[27]. Based on the survey, three labels are moderate
choices for users to comprehend the topics. Therefore, for
each topic, we chose the top 3 phrases as topic labels. Since
each document is assigned two topics, each topic has three
topic labels, and each document has six topic labels.

At the document level, it is necessary to compare the
semantic similarity of topic labels and documents and ensure
the accuracy of document labels through the filtering of
document-level semantic similarity. Since our topic label
was a 2-3-word phrase, its semantic similarity comparison
with the document is a typical comparison of short and long
texts. We use the contextualized embeddings obtained from
the fine-tuned pre-trained BERTOverflow model for both
phrases and documents to perform label filtering. The
embedding of a phrase is approximately the sum of the
embeddings of its component words. Since all learned
embeddings share the same feature space, their distances can
be considered their semantic similarity. The cosine similarity
of the contextualized embeddings of phrases and documents
is calculated, and the phrases are sorted in descending order.
We choose the top 3 phrases for each document. After two-
level label filtering, the remaining labels that are not
assigned to any document are eliminated.

Unsupervised clustering is adopted to select labels for
documents, and manual validation is applied through
sampling to ensure that more accurate labels are assigned to
documents as possible. Domain experts are required to
accurately label documents. We rely on the domain
knowledge of the two authors and a graduate student, and
randomly select a statistically representative sample of 4,354
labeled documents from the dataset. This sample allows us to
generalize the conclusions with a confidence level of 95%
and a confidence interval of 1%. Through two-level label
filtering, the number of labels is significantly reduced, a
small number of key phrases could be used to label texts, and
defect texts could be classified. An SDN controller defect-
text dataset with interpretable labels was obtained.

E. Multi-label Classification
The final step of our approach is to build a classifier that

assigns multiple labels to new defect text. The accurate
classification of new defects and more understandable labels
is a multi-label classification problem. The model should be
trained to label new defect text as accurately as possible. The
CTM is a full generative model, and the inference is not
sufficiently fast [10]. Generally, supervised methods are a
good approach when time is limited. Furthermore, from the
perspective of accuracy, supervised methods are preferred.

FastText is a lightweight supervised learning method that
can be used for text classification, particularly in the case of
rare words, by exploiting character-level information.
FastText proposes a method of subword embedding that
extracts n-gram features for each word, where n-gram is the
character level. FastText uses character-level n-grams to
represent words. We use FastText to train the supervised text
classifier.

The input of the FastText model is the sequence of words
and the output is the probability that the sequence of words
belongs to each category. During model training, we use
titles, comments, and descriptions from the corpus as input,
which could cover the content that may be missing in the
title. For labels, we transform these phrase labels into multi-
hot-encoded vectors and use them in multi-label classifiers.
When using the classifier for multi-label classification of
new defect text, the title can only be used as an input. The
FastText model is illustrated in Figure 3.

Figure 3. FastText model .

IV. EVALUATION
In order to verify the effectiveness of our proposed

approach, this section has carried out various confirmatory
experiments. The operating system in this paper is Ubuntu
18.04 LTS, the hardware configuration is Intel(R) Xeon(R)
CPU @ 2.20GHz, 16G RAM, NVIDIA-SMI 460.32.03,
CUDA 11.2, development language is python 3.7.13,
development framework includes scikit-learn 0.24.2, pytorch
1.12.1. All evaluations will be performed on our specific
SDN controller defect text dataset (Section III-B).

In order to ensure that the neural topic model with the
contextual embedding representation as input has good
consistency and can reflect the content of the defect text, the
semantic coherence and the topic diversity are evaluated.
The evaluation metrics are from the reference[16]. To ensure
the accuracy of automatic classification, the classification
accuracy and loss values are presented as evaluation content.
The evaluation metrics are from the reference[21].

A. Optimal Evaluation of Topic Models
The word embedding layer of the neural topic model

adopts the BERT pre-trained language model. A strategy to
address the maximum length limitation needs to be given.
BERTOverflow model takes an input of a sequence of no
more than 512 tokens [24]. The part of the document that

Defect Text Tile

Pre-process Layer

BoWBigram
(subword)

Hidden Layer

Output Layer

Decision Layer

Trigram
(subword)

408

exceeds the maximum length is often the information about
root causes and fix strategies in descriptions and comments.
After preprocessing, we have 13.5% (2347) documents with
more than 510 characters length (L) and adopt hierarchical
methods in order not to lose information as much as possible
[21]. The input text is divided into S=L/510 fractions, which
is fed into BERT. The representation of each fraction is the
hidden state of the [CLS] tokens of the last layer. The mean
pooling is used to combine the representations of all the
fractions. By fine tuning BERTOverflow, we get the word
contextualized representation and document contextualized
representation.

The hyperparameter k has a significant impact on topic
consistency. In the parameter optimization process of CTM,
2000 iterations are selected, and the optimal number of
topics k is found by perplexity and coherence values, 5-200,
5 is the step size. For topic model optimization, two metrics
are used for evaluation, including coherence value and the
perplexity, as shown in Figure 4.

Figure 4. The perplexity and coherence values .

When there are 20 topics, the coherence value and
perplexity are ideal, but for the consideration of label
richness, we choose 60 as the topic number, which also has a
good metric value. Because of the defect text we use, it is
generally believed that the topics reflected in a defect text are
concentrated, and the experimental results are also the same.

For comparison with other topic models, we choose the
most commonly used benchmark model, LDA, and the non-
LDA-based topic model NMF. Furthermore, to evaluate the
effect of in-domain embedding representation, BERT-Base
and BERTOverflow are used as the contextualized
embedding representation layer of CTM respectively. The
results are listed in Table 3.

Table 3. Topic coherence&diversity on different topic model

Model
Coherences Diversity

T(20) T(60) T(20) T(60)

BoW+LDA 0.1629 0.1161 0.6450 0.5983
BoW+NMF 0.1633 0.1270 0.5351 0.3767
BERT-Base+CTM 0.1632 0.1381 0.8220 0.7701
BERTOverflow +CTM 0.1651 0.1464 0.7552 0.6703

From the results listed in Table 3, it can be found that
the coherence value of the neural topic model is better than
that of the two baseline topic models. Although the in-
domain embedding contextualized representation is slightly

worse than general BERT in topic diversity, it can improve
topic semantic coherence, which is the focus of our
approach.

B. Effectiveness of Multi-label Classification
We divided our preprocessed dataset of GitHub

repositories (Section III-D) to three subsets of training,
validation, and testing datasets. We first split the data into
train and test sets with ratios of 80%, and 20%, respectively.
Then we split the train set to two subsets to have a
validation set as well (with ratios 90% to 10%).

In the evaluation of multi-label classification effect,
GLoVe+LSTM is selected as the model for comparison[13].
The learning rate is set to 3e-5, the number of epochs to 4
and the batch size to 32. We set the remaining parameters to
default values. Precision and loss values are chosen as
evaluation metrics. The training and evaluation loss values
for 4 epochs are shown in Figure 5.

Figure 5. Comparison of FastText model and GloVe model .

As shown in Figure 5, on our dataset, the loss value of
FastText model is less than GLoVe+LSTM, and the
accuracy of the two after 4 epochs is 0.8817 and 0.8768,
respectively. Such accuracy results are acceptable due to our
custom dataset. FastText model is better than our chosen
baseline model, proving that our method is effective.

V. CONCLUSION
Defects in the SDN controller can affect the reliability of

the network. Historical defect text can guide a good
understanding of the cause of triggering defects and develop
a better fixing strategy. Giving meaningful labels to SDN
controller defect text is important for controller defect
comprehension. Further, it is very helpful for classifying,
locating and repairing defects. In this paper, we present a
method to automatically assign labels to SDN controller
defect texts. The characteristics of the unlabeled text dataset
are analyzed in detail. Based on neural topic modeling, the
dataset is assigned phrase labels through a two-layer filtering
method, and the assigned labels are related to entities and
activities that contain defects. Based on the custom labeled
dataset, the FastText model is applied as a classifier for
automatic multi-label classification of new defect texts. The
effectiveness of our method is verified by evaluation. The
research can help developers understand the defects, better
locate and repair defects in SDN controller software, and

409

also provide convenience for controller deployment and later
maintenance.

Although with the help of neural topic models with
contextual information, we obtain better consistent topics
and better interpretable labels. Yet understanding defect text
composed of human natural language remains difficult and
subjective. Future studies should explore ways to apply
different approaches to automatically label the defect text.

ACKNOWLEDGMENT

We do appreciate the great support of National Natural
Science Foundation of China (No.61862047, 62066034),
Inner Mongolia Science & Technology Plan (No.
2020GG0186), Inner Mongolia discipline inspection and
supervision big data laboratory open project
fund(No.IMDBD2020011), Research Program of science
and technology at Universities of Inner Mongolia
Autonomous Region(No. NJZY22425)

REFERENCES

[1] S. Ahmad and A. H. Mir, "Scalability, consistency, reliability and
security in SDN controllers: a survey of diverse SDN controllers,"
Journal of Network and Systems Management, vol. 29, no. 1, pp. 1-
59, 2021.

[2] S. Davies and M. Roper, "What's in a bug report?," in Proceedings of
the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measuremen, Italy, 2014: ACM, pp. 1-10.

[3] O. Chaparro et al., "Detecting missing information in bug
descriptions," in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 396-407.

[4] X. Xie, Y. Su, S. Chen, L. Chen, J. Xuan, and B. Xu, "MULA: A
just-in-time multi-labeling system for issue reports," IEEE
Transactions on Reliability, vol. 71, no. 1, pp. 250-263, 2021.

[5] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X.
Wang, "Improving automated bug triaging with specialized topic
model," IEEE Transactions on Software Engineering, vol. 43, no. 3,
pp. 272-297, 2016.

[6] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshynanyk, and
A. De Lucia, "How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms," in 2013
35th International conference on software engineering (ICSE), 2013:
IEEE, pp. 522-531.

[7] Y. Yu et al., "Fault management in software-defined networking: A
survey," IEEE Communications Surveys & Tutorials, vol. 21, no. 1,
pp. 349-392, 2018.

[8] P. Vizarreta, K. Trivedi, V. Mendiratta, W. Kellerer, and C. Mas-
Machuca, "Dason: Dependability assessment framework for
imperfect distributed sdn implementations," IEEE Transactions on
Network and Service Management, vol. 17, no. 2, pp. 652-667, 2020.

[9] A. Bhardwaj, Z. Zhou, and T. A. Benson, "A Comprehensive Study
of Bugs in Software Defined Networks," in 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2021: IEEE pp. 101-115.

[10] X. Song, J. Petrak, Y. Jiang, I. Singh, D. Maynard, and K. Bontcheva,
"Classification aware neural topic model for COVID-19
disinformation categorisation," PloS one, vol. 16, no. 2, p. e0247086,
2021.

[11] M. Pettinato, J. P. Gil, P. Galeas, and B. Russo, "Log mining to re-
construct system behavior: An exploratory study on a large telescope
system," Information and Software Technology, vol. 114, pp. 121-
136, 2019.

[12] T. Schopf, D. Braun, and F. Matthes, "Lbl2Vec: An Embedding-
based Approach for Unsupervised Document Retrieval on Predefined
Topics," in WEBIST, 2021, pp. 124-132.

[13] R. R. Althar, D. Samanta, M. Kaur, A. A. Alnuaim, N. Aljaffan, and
M. Aman Ullah, "Software systems security vulnerabilities
management by exploring the capabilities of language models using
NLP," Computational Intelligence and Neuroscience, pp. 1-19, 2021.

[14] C. Treude and M. Wagner, "Predicting good configurations for
github and stack overflow topic models," in 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR),
2019: IEEE, pp. 84-95.

[15] U. Chauhan and A. Shah, "Topic modeling using latent Dirichlet
allocation: A survey," ACM Computing Surveys (CSUR), vol. 54, no.
7, pp. 1-35, 2021.

[16] S. Terragni, E. Fersini, B. G. Galuzzi, P. Tropeano, and A.
Candelieri, "Octis: comparing and optimizing topic models is
simple!," in Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: System
Demonstrations, 2021, pp. 263-270.

[17] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation,"
Journal of machine Learning research, vol. 3, no. Jan, pp. 993-1022,
2003.

[18] D. Q. Nguyen, R. Billingsley, L. Du, and M. Johnson, "Improving
topic models with latent feature word representations," Transactions
of the Association for Computational Linguistics, vol. 3, pp. 299-313,
2015.

[19] S. Bhatia, J. H. Lau, and T. Baldwin, "Automatic labelling of topics
with neural embeddings," arXiv preprint arXiv:1612.05340, 2016.

[20] F. Bianchi, S. Terragni, and D. Hovy, "Pre-training is a hot topic:
Contextualized document embeddings improve topic coherence,"
arXiv preprint arXiv:2004.03974, 2020.

[21] M. Izadi, A. Heydarnoori, and G. Gousios, "Topic recommendation
for software repositories using multi-label classification algorithms,"
Empirical Software Engineering, vol. 26, no. 5, pp. 1-33, 2021.

[22] Q. Mei, X. Shen, and C. Zhai, "Automatic labeling of multinomial
topic models," in Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2007, pp. 490-499.

[23] V. Venktesh, M. Mohania, and V. Goyal, "Topic Aware
Contextualized Embeddings for High Quality Phrase Extraction," in
European Conference on Information Retrieval, 2022: Springer, pp.
457-471.

[24] C. Sun, X. Qiu, Y. Xu, and X. Huang, "How to fine-tune bert for text
classification?," in China national conference on Chinese
computational linguistics, 2019: Springer, pp. 194-206.

[25] J. Tabassum, M. Maddela, W. Xu, and A. Ritter, "Code and named
entity recognition in stackoverflow," arXiv preprint
arXiv:2005.01634, 2020.

[26] A. Srivastava and C. Sutton, "Autoencoding variational inference for
topic models," arXiv preprint arXiv:1703.01488, 2017.

[27] C. Gao, J. Zeng, M. R. Lyu, and I. King, "Online app review analysis
for identifying emerging issues," in Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 48-58.

[28] Z. Haj-Yahia, A. Sieg, and L. A. Deleris, "Towards unsupervised text
classification leveraging experts and word embeddings," in
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019, pp. 371-379.

410

