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Abstract—Software defined networking controller defects
may cause unexpected failures and reduce network reliability. 
The historical defect texts provide information on defecting 
symptoms and fixing strategies, but they are not sufficiently 
labeled. An approach based on a neural topic model is
proposed to automatically assign phrase labels to the defect 
text. First, five types of information that can be extracted from 
the defect text are provided to guide the generation of 
candidate phrases. Second, contextualized embedding 
representations are extracted by the pre-training 
BERTOverflow model and input to the contextualized topic 
model to extract a more coherent topic distribution. Third, the 
accuracy of the unsupervised assignment of labels is improved 
by filtering candidate phrases through two-level label filtering.
Finally, FastText is applied to train a multi-label classifier to 
assign labels to the new defect text. The experimental results 
demonstrate that the proposed approach can effectively assign 
interpretable labels to the defect text.

Keywords- SDN controller; defect; text mining; neural topic 
model; phrase label

I. INTRODUCTION

Software defined networking (SDN) is a popular 
technology in cloud data centers. The SDN controller is the 
core component responsible for managing the network and is 
crucial to operating an SDN. Currently, many open-source 
controllers such as OpenDaylight (ODL) and Open Network 
Operating System (ONOS) play an important role in the 
production environment of SDN networks[1]. If there is a
defect in the SDN controller, the reliability of the network is 
reduced, and the operation of the network is unexpected.
Therefore, it is necessary to fully analyze SDN controller 
defects using data mining technology.

Software repositories such as issue tracking system (ITS)
help researchers in studying and examining the different 
factors that influence and impact the quality of a software 
system[2]. In the information stored in the historical ITS
repositories, the problems reported are not necessarily 
failures, errors, or defects but anomalies that include any 
deviation from the desired behavior of the system[3]. It can 
detect the defect types in the SDN controller through the 
guidance of historical information.

Research Motivation–A real historical defect report text
(Issue ID ONOS-705) from SDN controller project ONOS is
chosen as an example of motivation, where the ITS tool of 

ONOS is Jira1. The defect text consists of three parts: title, 
description and comments, the information contained in it is 
presented in Table 1.

Table 1. Examples of text and information contained in defect report of 
SDN controller

Title Description Comments

Text

Exception
while 
running
ONOS 
(master) -
against 
Pica8 
switch …

After ONOS starts,
I'm not able to see the 
switch connected. …
The exception is 
triggered with ONOS 
master and with the 
switch either in OF 
1.0 or 1.3 mode. …

This issue seems to be a 
race condition with the 
order events are written 
to the device store. 
Sometimes device added 
events are added by the 
startup thread because 
they can be triggered by
…

Infor-
mation

observed
behavior

detailed observed 
behavior
steps to reproduce
root cause

root cause 
fix strategy and link.

Table 1 shows that the historical defect text contains 
ample useful information, and the underlined text represents 
the entities and activities associated with the defect. The 
defect text records observed behavior, steps to reproduce,
root cause, and fix strategies. Existing ITS tools provide 
information to users and categorize issues through labels;
however, the labels provided are based on general purposes 
and are often missing. A survey on ITS GitHub in 2018
found that 72% of the 1,656,937 issue reports had no 
labels[4]. Our pilot study found a similar situation in Jira.
Therefore, the defect text could provide useful historical 
defect information and the labels provided by the existing 
ITS tools are insufficient to meet the requirements of in-
depth SDN controller defect analysis.

Effective mining and reuse of knowledge gained during 
the reporting and fixing of defect issues can reduce 
production costs and increases the efficiency of defect
fixes[5]. Therefore, we aim to mine SDN controller defect 
texts to make sense of historical defect text. A defect text 
generally describes events with specific topics[6], and an 
intuitive idea is to classify defects with similar topics to 
guide defect detection and fix. In addition, more hints of 
defect information are provided to developers and users in 
the form of labels. With these considerations in mind, we
propose a method to automatically provide users with 
interpretable labels using text-mining technology, which 

1 https://jira.onosproject.org/
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help users effectively identify entities and activities related 
to defects.

According to our investigation, there are insufficient 
labeled defect texts, so unsupervised and supervised text-
mining technologies were combined in this study. We
assign the same labels to texts with similar latent topic 
semantics through neural topic model clustering.
Furthermore, the problem that should be addressed for the 
labels of the clustered topics is how to make the labels 
contain the expected information and ensure that they can be 
assigned as accurately as possible to the defect texts. Finally, 
a supervised multi-label text classification technique is
applied to automatically label new defect text.

The contributions of this study are listed as follows:
The characteristics of SDN controller defect texts are
analyzed. Four phrase extraction methods are
combined to ensure that the provided labels contain
defect-related entities and activities.
An automatic labeling approach for SDN controller
defects is proposed. The unsupervised neural
contextualized topic model (CTM) is applied for
topic clustering; the clustered documents are labeled
by two-level label filtering, and the new defect text
is automatically assigned multiple labels by the
supervised classifier FastText.

The remainder of this study is organized as follows. 
Section II provides related work by discussing the current 
state of research on defect analysis of SDN controllers and 
topic-modeling techniques. Section III focuses on the 
methodology for designing and constructing the proposed
approach. Section IV discusses the results obtained from the 
experiments with the proposed framework on an SDN 
controller. Finally, Section V provides concluding remarks.

II. RELATED WORK

The SDN controller is the core component responsible 
for managing the network. Several studies have focused on 
SDN controller defects [7]. In the work of development, 
operation, and maintenance, SDN controller defects are often 
described in natural language text. By mining and analyzing 
SDN controller defects text in defect reports, information can
be provided to support for defect analysis. Vizareta et al.
presented the change law of the learning curve mode and 
error detection rate of the number of reported defects through 
a statistical analysis method[8]. Bhardwaj et al. focused on 
the “critical” defects caused by the SDN controller and 
presented classification and root cause analysis of critical”
defects[9]. The defect text could provide useful historical 
defect information. However, existing studies have not 
conducted in-depth semantic mining of text in an SDN 
controller historical defect report. 

With the development of SDN technology, defect texts 
gradually accumulate, and it becomes difficult to mine and 
reuse knowledge in defect texts. We aim to mine historical 
defect information by clustering and automatically labeling 
defect text. The topic modeling technique is widely used in 
the field of defect text mining [4, 6, 10, 11]. Schopf et al.
found topic modeling to be a promising approach for defect

report classification and explored automated classification of 
defect reports into a predefined set of categories[12].
Focusing on the security issues posted in GitHub 
repositories, Althar et al. applied topic modeling to identify 
and understand common security issues[13]. Xia et al.
improved automated bug triaging with specialized topic 
model[5]. Treude et al. applies topic models to corpora from
GitHub and Stack Overflow to make sense of this textual 
data[14].Therefore, the topic model is adopted for clustering 
latent semantic defect texts in our paper.

Topic models can divide the words in a corpus according 
to semantics to obtain a topic generated by a fixed number of 
semantically related words. The corpus in this paper consists 
of all defect texts from issue reports. Documents (i.e. issue
reports in the corpus) can be clustered based on these topics. 
Topic models can be divided into non-LDA(latent Dirichlet 
allocation)-based topic models and LDA-based topic 
models[15]. Non-negative Matrix Factorization(NMF) is a 
representative non-LDA-based topic model, which is simple 
but unable to deal with complex topic learning problems[16].
LDA-based techniques are the most frequently used topic-
modeling techniques for identifying topics and clustering 
documents with similar topics[15]. There are two types of 
LDA-based topic models: topic models based on 
probabilistic statistical methods and topic models based on 
neural networks.

Topic models based on probabilistic statistical methods,
such as LDA, employ word frequencies and co-occurrence of 
words in the documents in a corpus to build a model of 
related words[17]. Such methods extract meaningful word 
distributions from unstructured text, for example, bag-of-
words (BoW) representations, and the order of words in the 
document is ignored. However, unsupervised topic models 
do not often correlate well with human judgment, and its 
semantic coherence is not ideal [18].The topic model can use 
the pre-trained word vector to enrich the text feature space 
expression, such that texts and words with similar semantics 
can be assigned to the same topic, thus improving the 
semantic coherence of the topic words and the accuracy of 
text clustering [19]. Gaussian LDA uses Word2Vec pre-
training to improve semantic coherence [15].

Topic models based on a neural network can be applied
to reconstruct the generation process of the topic model. The 
deep neural network helps to learn topics with better 
interpretability[15]. Owing to the flexibility of deep neural 
networks, inference networks can learn complicated non-
linear distributions and process structured inputs such as 
word sequences [10]. The ProdLDA model mainly uses the 
variational autoencoder (VAE) framework to reconstruct the 
text generation process of a topic model and adds sparse 
constraints of topic vocabulary to generate more expressive 
topic words[20]. The feature extraction ability of the 
ProdLDA topic model is stronger than that of the LDA. The 
CTM introduces a bidirectional encoder representation from 
a transformer (BERT) pre-trained model in the embedding 
layer representation of ProdLDA to improve the semantic 
coherence of topics [20]. Continuous space word 
embeddings learned from large unstructured corpora can 
effectively capture semantic regularities.
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Topic models based on probabilistic statistical methods
cannot obtain features related to word order and higher-level 
semantics. Various extensions of topic models incorporate 
several types of information that are convenient for defect 
analysis and fix. The neural topic model CTM extends VAE 
framework, and the pre-trained representations are 
introduced in the embedding layer. It can capture semantic 
relationships and help advance feature extraction and cluster 
tasks [20]. Therefore, in this study, an approach for 
automatic labeling SDN defect text was established based on 
the CTM neural topic model.

III. APPROACH

A. Approach Overview
We propose a hybrid approach, as shown in Figure 1.

The overall workflow is divided into four steps:
Step 1. Data preparation and text preprocessing. The 

dataset is extracted from Jira and GitHub. A detailed analysis 
of the defect information that can be obtained is provided, 
and preprocessing for the characteristics of the SDN 
controller defect text is also implemented.

Step 2. Topic modeling. This is an important step. To 
obtain a more coherent representation of labels, 
contextualized embedding semantic features are extracted
through the in-domain pre-training model, BERTOverflow.
CTM is applied to topic modeling. The contextualized
document representation and BoW representation are 
concatenated as the input of the CTM, and the document-
topic distribution and word topic distribution with better 
semantic coherence are extracted through the VAE 
framework. Documents are assigned to two topics based on 
the maximum posteriori principle.

Step 3. Two-level label filtering. Candidate phrases are 
extracted using named entities, bigrams and trigrams, phrase 
chunks, and custom in-domain terms. At the topic level, 
the top-3 phrases are selected as topic labels for each topic. 
Through the document-topic and topic-word distributions
outputted by the CTM model, topics and candidate phrases 
are compared for similarity by KL (Kullback-Leibler)
divergence and sorted based on the result calculated by the 
similarity score function. At the document level, cosine 
similarity calculation is performed using the context 
embedding representation of the document and topic label.
Labels are reordered and top-3 topic labels are selected as the 
labels for each document. After two-level label filtering, the 
remaining labels not assigned to any document are
eliminated, and a label set is built for the multiple-label
classifiers. To ensure the accuracy of the results, validation 
was performed using manual sampling.

Step 4. Multi-label classification. We use the labeled 
dataset obtained in Step 3 to train a multi-label classifier. To 
automatically assign interpretable labels to new defect text,
we train a classification model with FastText on an already 
labeled multi-label dataset.

Figure 1. Overall workflow of the proposed approach.

B. Data Preparation and Preprocessing
Several studies have tested their methods on cross-

projects or combined data from all projects, which would be 
better in the scope of their validity[4, 14]. Our dataset is 
extracted from two different ITSs, including Jira and GitHub,
and contained 10 open-source SDN controller projects. From 
the perspective of natural language processing (NLP)
technology research, we use a specific non-standard dataset. 
The crawler Beautiful Soup is used to obtain the raw dataset 
and perform specific preprocessing and feature extraction for
input to the topic model to consist of various types of defect 
information.

For the collected raw dataset, it is necessary to determine 
the portion of defect text that is included. As listed in Table 1, 
the defect text consists of three parts: title, description and 
comments. Our pilot study shows that “title” and 
“description” contain more defect information. However, the 
reporter is likely not fully aware of the defect. It is often in 
the follow-up discussion with the developer that more 
observed behavior become clear, and a more reliable root 
cause analysis can be provided. Also, fix strategies are often 
given in the comments. Therefore, in order to provide more 
detailed defect information, the defect text in our dataset 
includes all the three parts.

Mining defect text requires prior knowledge of the 
information contained in the text. In reference[3], three types 
of information exist in defect reports, namely, observed 
behavior (OB), expected behavior (EB), and steps to 
reproduce (S2R). According to our additional analysis, five 
types of information can be obtained through historical 
defect text mining: OB, EB, S2R, root cause, and fixed 
strategy. It is also the most important in the process of defect 
analysis and fix, and therefore, is expected to be reflected as 
labels in this study. The entities and activities associated with 
the defect are contained in five types of information.
Through the analysis, it is found that the Part of Speech 
(POS) of the words contained in this information is mainly 

Data 
preparation

BERTOverflow
Contextualized

embeddings

Topic labels
(Top-3 phrases)

Tokenization

Defect text 
Top-2 topics

Topic word
distribution

 Topic modeling

Text 
preprocessing

BoW

CTM  neural topic model

Document topic 
distribution

Candidate phrases

Two-level label filtering

1.Named entities
2.Bigrams and trigrams
3.Phrase chunks
4.custom in-domain terms

Labeled defect text
(Top-3  topic labels)

Trained FastText 
model

scoring 
function

cosine 
similarity 
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nouns and verbs. Therefore, in the two-level label filtering 
step, we mainly extract phrases containing nouns and verbs, 
thus trying to make the provided labels contain defect 
information

Defect text obtained from ITS is often noisy and greatly 
differs in its quality of information. Text preprocessing 
significantly affects the reliability of semantic modeling, and 
the poor quality of data leads to unexpected negative details 
in the classification results. In addition to the common NLP 
processing flow, each text-mining approach (including topic 
modeling) may require specific preprocessing steps. The 
following preprocessing techniques are applied:

1) Regular expression matching is used to eliminate
irrelevant information, including URLs, IP addresses, and 
special characters. The predefined stop words are eliminated
together with the stop words provided by NLTK. The digits 
are not simply removed; for example, the deployment 
environment of the SDN controller includes k8s, and the 
l2switch is an important component of the ODL, including 
layer 2 switch functions. These terms are added to the 
reserved list.

2) There is an OOV(out-of-vocabulary) problem; many
unknown words are contractions; therefore, contractions
should be expanded. For example, for distributed deployed 
controllers, the term "async" often appear and should be 
converted into "asynchronous." After processing, the 
proportion of OOV is reduced. Therefore, some terms 
specific to SDN controller items are added as reserved and 
rule lists based on studying the software engineering term list 
provided by[21].

3) Descriptions and comments sometimes include code
snippets, trace entries, configurations, and operation 
commands. Structured information is typically a good 
indicator of the main functionality of an entity, and the 
words used in commands often reflect the purpose of the task 
being resolved. For example, in SDN controller Cord, 
“flowRuleCount” indicates the number of flow rules in the 
device, which should be divided into “flow,” “Rule,” and 
“Count.” Split tokens are based on several naming 
conventions, including SnakeCase, CamelCase, and 
underscores.

4) Elimination of infrequent and most frequent words
(according to a specified frequency threshold) to limit 
vocabulary size. Less frequent words are typically special 
names or typos. Based on the experiments, using these 
tokens had less or no impact on the topic model.

We do not perform stemming and lemmatization filters
because some important words become meaningless after 
processing. Moreover, some of our methods (e.g.,
BERTOverflow) have their preprocessing techniques.
Because the pre-training model has specific requirements for 
the length of the input text, more dataset text information is
presented in Table 2.

After preprocessing, the corpus C for automatic labeling
is obtained, where C is composed of documents d, that is,

. Document d is regarded as a simple 
collection of tokenized words, that is, .
A unified dictionary, V, is established for subsequent feature 
extraction, topic labeling, and classification. The dictionary 

is a list of all unique words from corpus C, along with 
indices. Our corpus contained 17,414 documents (35,984 
unique words in total) with a mean length of 312 words. The
average number of input tokens per SDN controller ITS 
repository is 312. Although the title text has less noise, it can 
be seen from Table 2 that the title become a typical short text 
after preprocessing, and there will be a sparse problem after 
topic clustering. Therefore, our corpus contains all three 
parts of defect text, which can get better topic clustering 
effect and obtain labels containing more defect information.

Table 2. Defect text from SDN controller ITS*

SDN controller ITS #docs #w/dt #w/d
OpenDaylight jira 10,117 7.42 333.22

ONOS jira 2,241 7.18 570.53
TungSten Jira 1,739 6.96 351.50

Open-Kilda github 1,486 7.16 129.85

CORD jira 796 6.22 90.15
Faucet github 616 6.20 116.65
Pox github 180 5.35 113.90
FloodLight github 167 5.32 143.50
Ryu github 46 4.72 133.43
Nox github 26 4.73 117.77
*#docs: number of issue reports; #w/dt: average number of words per document title; #w/d: 

average number of words per document.  

C.Topic Modeling
The tokenized word list obtained after preprocessing

constitutes a high-dimensional word space that is not 
interpretable. Our goal is to automatically assign labels to the 
SDN controller defect text, that is, to label each document. A
good set of labels should be understandable to user text[22].
The keyword-extraction algorithm can be directly applied to 
a preprocessed corpus. However, the granularity of the labels 
extracted in this manner is more meaningful than the title.

In the topic model, a topic is essentially a cluster of 
words of a given vocabulary ranked by the probability of 
belonging to such a cluster. The topic model captures the 
topic distributions of each document. Since typically k n,
topic model is mapping the document from the space of 
words (n) into a smaller space of topics (k). Therefore, the 
topic model is trained to cluster documents such that we can 
assign interpretable topic labels to documents.

To cluster documents with similar topics, it is necessary 
to choose topic modeling methods with better topic 
consistency. The first step is to extract the vector 
representation. Documents and words can be represented as 
vectors. A richer representation that captures semantics has a 
significant effect on improving topic modeling coherence
and classification accuracy and facilitates semantic similarity 
calculation for labeling. In our approach, two types of vector 
representations are extracted: BoW representation and 
contextualized embedding representation.

The BoW model uses a set of unordered words to express 
sentences or documents and regards the document as a 
simple collection of words. The vector representation does 
not consider the order in which the words appear in the text; 
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only the frequency of each word in the dictionary appearing 
in the text. The information that can be provided by the BoW 
is mainly word frequency information, which can be 
considered as words with a multinomial distribution. A few 
additional steps are applied here to generate bigrams and 
trigrams and to eliminate all words except nouns, adjectives, 
verbs, and adverbs. Bigrams and trigrams are used in the 
candidate phrase extraction process. The BoW represents the 
input in an inherently incoherent manner. Since grammar and 
word order are ignored, the consistency of the latent topic 
distributions obtained by the BoW is often unsatisfactory. 

Contextualized embedding representation is a type of 
word-embedding method[20, 23]. Word embedding is the 
representation of words in the form of a dense vector of 
floating-point values that encode the meaning of the word 
such that, the words that are closer in the vector space are 
expected to be similar in meaning. This characteristic can 
also be used to compare the semantic similarities between 
phrases and documents. Classical embedding methods such 
as Word2Vec, FastText, and GloVe generate fixed vectors 
for polysemous words irrespective of the context in which 
they occur[4]. Moreover, many words in the SDN controller 
defect text have different meanings from those in the general 
corpus, and it is necessary to solve the problem of polysemy 
in embedding representations to more accurately represent 
documents. For example, SDN manages network traffic 
based on the flow. "Flow" has important and specific 
meanings in the corpus. Contextualized embeddings capture 
the context of word usage and, hence, produce different 
vector representations for the same word depending on the 
context. Therefore, the problem of polysemy can be resolved. 
The state-of-the-art model that can extract contextual 
embedding representations is BERT. 

BERT is based on the encoder module in the transformer 
architecture and uses an attention mechanism [24]. This type 
of embedding contains position, sequence, and context 
information, which are token, segment, and position 
embeddings. BERT employs learnable position-encoding 
information. The attention mechanism helps encode a word 
using other positions in the input sequence that would lead to 
a better representation of the word. To incorporate the rich 
information from very large domain datasets, pre-trained 
word (document) embedding vectors trained on external 
corpora are utilized. BERT is trained in the general domain, 
which has a different data distribution from that of the target 
domain. Therefore, it is necessary to further pre-train BERT 
with the target domain data. There are two existing strategies 
for applying pre-trained representations: feature-based and 
fine-tuning [24]. In our approach, we adopt the pre-training 
model of fine-tuning based on Stack Overflow, because this 
Q&A website mainly reports and solves problems 
encountered in software development and use, and our defect 
text mining task has the same goal. Embedding trained on a 
domain corpus performs better than embedding on the 
general corpus. The pre-trained BERTOverflow model from 
Huggingface is fine-tuned on the Stack Overflow dataset[25].   

After extracting the vector representation of the defect 
text, it is necessary to establish a topic model to cluster the 
text that needs to be labeled. A crucial issue with topic 

modeling is the quality of the topics they discover. The 
neural topic model CTM produces more meaningful and 
coherent topics than traditional LDA[20]. In the CTM, the 
probability vector of each document topic provides the latent 
topic semantic distribution characteristics at the document 
level. CTM combines contextualized representations with 
neural topic models and implements black-box variational 
inference using VAE. The VAE framework explicitly 
approximates a Dirichlet prior to using Gaussian 
distributions. The latent semantic space is constructed after 
matrix dimensionality reduction, and the word document 
matrix is reconstructed. In our approach, we introduce the in-
domain pre-training model. The topic generation process of 
the neural topic model CTM that introduces the in-domain 
pre-training model is shown in Figure 2.  

 
Figure 2.  Neural topic model CTM with in-domain pretraining model. 

In Figure 2, document d is represented by contextualized 
embedding and BoW(xBoW). The two representations are 
used as the input of the topic model in a concatenated 
manner to obtain more consistent topics. VAE aims to 
model the true posterior distribution  of the latent 
variable , which is the probability distribution of the topic 
of document d and is a k-dimensional vector. The neural 
variational framework trains a neural inference network to 
directly map the concatenation of contextualized document 
representations and BoW into a continuous latent 
representation  The latent document representation is 
sampled from a Gaussian distribution parameterized by μ 
and σ, which are parts of the variational inference 
framework, where . A reparameterization trick is 
used in this process[26]. A decoder network is then used to 
reconstruct the representation by generating its words using 
the latent document representation , where  is 
the reconstructed representation. The latent topics 
reconstruct the words in their respective documents to the 
maximum extent possible. This means that the words in a 
document lie roughly on the plane formed by their 

Contextualized Embeddings
(BERTOverflow)

Hidden xBoW
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Hidden
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corresponding topic vectors. Text similarity comparison can 
be performed with the help of topic distribution. 

The output of CTM training is a topic model that 
contains the following information: 

 topics, where each topic is a distribution of words; 
 Document-topic matrix , probability of topic to occur 

in documents; 
 Topic-word matrix , topic assigned to word w in a 

document. 
In the CTM topic model, a document is a probability 

distribution over topics and a topic is a probability 
distribution over words. Therefore, a single document 
contains one or more topics. We estimate the dominant topic 
members for documents in each cluster using the maximum 
posteriori principle: 

   (1) 
Particularly, we use the top two topics for each document, 

as they usually provide sufficient detail to convey the 
information of a document and distinguish one document 
from another[27]. Therefore, document d belongs to the ith 
cluster if and only if ti is among the top two topics of d.  

D. Two-level Label Filtering 
After topic clustering, labels with better interpretability 

and defect-related information are assigned to the clustered 
documents. The motivation behind document labeling is that 
topics are time-consuming to interpret and are faster to 
reason about if they are labeled, particularly in the activities 
of detecting and fixing defects. One problem with using topic 
model clustering documents is that the generated 
representative labels are often insufficiently interpretable 
[20]. Topics can be simply represented by their top-N terms, 
that is, by words with the highest probability in a topic 
distribution[6]. A good set of labels should capture as much 
semantic information as the text. Unfortunately, such labels 
in words may not be helpful in accurately capturing the 
semantics of topics. Therefore, we use phrases as labels, and 
propose a two-level label filtering method to make the labels 
of defect text more representative. 

To assign labels, the method is as follows: first, the 
candidate phrase label set is selected by combining four 
phrase extraction methods; then, the two-level label filtering 
method is adopted, that is, the topic label is selected from the 
candidate phrase label set, the filtered topic labels are 
reordered by similarity calculation, and document labels are 
assigned to documents. 

1) Entities can be extracted as named entities from the 
title by NLTK NER (named entity recognition) tools. The 
extracted named entities are often words that distinguish 
topics and have specific marking meanings, such as proper 
nouns. Named entities are extracted from the title text 
because the title contains more entity information, whereas 
the description and comments contain a lot of noise. 

2) Subject-predicate and verb-object phrases should be 
selected to determine the activities performed by or on 
entities that may exist in the corpus. We construct a syntax 
tree and extract phrases with specific regular expression rules 
<NN. *>{1,2}<VB.*>, <VB.*><NN.*>{1,2}. This task is 

implemented by applying the NLTK POS tools. This tagging 
technique analyzes the grammatical role of words in the text 
and helps eliminate undesired material. 

3) The most significant bigrams and trigrams are extracted 
using NLTK. Because of noise, it is necessary to filter the 
phrases generated by the bigram and trigram. 

4) SDN related terms (e.g., related protocol OpenFlow) 
are merged into a phrase set. The terms are crawled from 
websites such as ODL official documentation. Introducing 
in-domain terms significantly improves label accuracy [28]. 

For phrases obtained using methods 3), PMI (Pointwise 
Mutual Information) should be calculated to ensure that 
meaningful phrases are obtained. Higher PMI values indicate 
that the combination of two words is more likely to be a 
meaningful phrase. We extract meaningful phrases by 
experimentally setting a threshold for the PMI. Phrases with 
PMIs greater than the threshold are extracted.  

        (2) 

where  indicates the co-occurrence probability of 
the phrase,  and  represents the probability of 
the words and  in the whole corpus C. Higher PMI 
values indicate that the combination of the two words is 
more likely to be a meaningful phrase. 

We combined the results of the four methods to extract a 
set of candidate phrases. To ensure the accuracy of the 
results, we completed the manual validation process 
independently. Finally, the candidate phrase sets are obtained.  

Based on the candidate phrase sets, a two-level filtering 
method is applied to assign labels to documents. At the topic 
level, the similarity between candidate phrases and topics is 
calculated, and the topic labels are obtained by sorting and 
filtering using the scoring function. At the document level, 
the similarity between the topic label embedding 
representation and the document embedding representation is 
calculated, and the document labels are obtained by sorting 
and filtering.  

At the topic level, a good set of labels should have high 
semantic relevance to the target topic , and low relevance to 
other topics. Topic labeling is the process of determining or 
generating appropriate labels for topics derived from topic 
distributions over words inferred from the topic model CTM. 
We rank the candidate phrases using a scoring function. The 
topic-word matrix  is extracted from the output of the CTM 
in Section III-C. KL(Kullback-Leibler) divergence is 
employed, as in [27] to measure the semantic similarity 
between one candidate phrase  and the target topic , 
defined as: 

 

(3) 
where w is the word in the entire corpus C.  is the 
probability of w in the topic distribution .  and 

 denote the percentages of words w and a in corpus C. 
p(a,w|C) indicates the probability of co-occurrence of a and 
w in C. 

The scoring function is then defined by combining 
with similarity scores to other topics, 
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 is the sum of similarity scores of 
other topics. The combined similarity scores mean that  
should be semantically close to the topic distribution and 
discriminate from other topics. 

 
where the parameter  is used to adjust the penalty for 
semantic similarities to other topics. A larger  signifies that 
the candidates are more different from the other topics.  

For a topic, candidate phrases are ranked using a scoring 
function[27]. Based on the survey, three labels are moderate 
choices for users to comprehend the topics. Therefore, for 
each topic, we chose the top 3 phrases as topic labels. Since 
each document is assigned two topics, each topic has three 
topic labels, and each document has six topic labels. 

At the document level, it is necessary to compare the 
semantic similarity of topic labels and documents and ensure 
the accuracy of document labels through the filtering of 
document-level semantic similarity. Since our topic label 
was a 2-3-word phrase, its semantic similarity comparison 
with the document is a typical comparison of short and long 
texts. We use the contextualized embeddings obtained from 
the fine-tuned pre-trained BERTOverflow model for both 
phrases and documents to perform label filtering. The 
embedding of a phrase is approximately the sum of the 
embeddings of its component words. Since all learned 
embeddings share the same feature space, their distances can 
be considered their semantic similarity. The cosine similarity 
of the contextualized embeddings of phrases and documents 
is calculated, and the phrases are sorted in descending order. 
We choose the top 3 phrases for each document. After two-
level label filtering, the remaining labels that are not 
assigned to any document are eliminated. 

Unsupervised clustering is adopted to select labels for 
documents, and manual validation is applied through 
sampling to ensure that more accurate labels are assigned to 
documents as possible. Domain experts are required to 
accurately label documents. We rely on the domain 
knowledge of the two authors and a graduate student, and 
randomly select a statistically representative sample of 4,354 
labeled documents from the dataset. This sample allows us to 
generalize the conclusions with a confidence level of 95% 
and a confidence interval of 1%. Through two-level label 
filtering, the number of labels is significantly reduced, a 
small number of key phrases could be used to label texts, and 
defect texts could be classified. An SDN controller defect-
text dataset with interpretable labels was obtained. 

E. Multi-label Classification 
The final step of our approach is to build a classifier that 

assigns multiple labels to new defect text. The accurate 
classification of new defects and more understandable labels 
is a multi-label classification problem. The model should be 
trained to label new defect text as accurately as possible. The 
CTM is a full generative model, and the inference is not 
sufficiently fast [10]. Generally, supervised methods are a 
good approach when time is limited. Furthermore, from the 
perspective of accuracy, supervised methods are preferred. 

FastText is a lightweight supervised learning method that 
can be used for text classification, particularly in the case of 
rare words, by exploiting character-level information. 
FastText proposes a method of subword embedding that 
extracts n-gram features for each word, where n-gram is the 
character level. FastText uses character-level n-grams to 
represent words. We use FastText to train the supervised text 
classifier.  

The input of the FastText model is the sequence of words 
and the output is the probability that the sequence of words 
belongs to each category. During model training, we use 
titles, comments, and descriptions from the corpus as input, 
which could cover the content that may be missing in the 
title. For labels, we transform these phrase labels into multi-
hot-encoded vectors and use them in multi-label classifiers. 
When using the classifier for multi-label classification of 
new defect text, the title can only be used as an input. The 
FastText model is illustrated in Figure 3. 

 
Figure 3.  FastText model . 

IV. EVALUATION 
In order to verify the effectiveness of our proposed 

approach, this section has carried out various confirmatory 
experiments. The operating system in this paper is Ubuntu 
18.04 LTS, the hardware configuration is Intel(R) Xeon(R) 
CPU @ 2.20GHz, 16G RAM, NVIDIA-SMI 460.32.03, 
CUDA 11.2, development language is python 3.7.13, 
development framework includes scikit-learn 0.24.2, pytorch 
1.12.1. All evaluations will be performed on our specific 
SDN controller defect text dataset (Section III-B). 

In order to ensure that the neural topic model with the 
contextual embedding representation as input has good 
consistency and can reflect the content of the defect text, the 
semantic coherence and the topic diversity are evaluated. 
The evaluation metrics are from the reference[16]. To ensure 
the accuracy of automatic classification, the classification 
accuracy and loss values are presented as evaluation content. 
The evaluation metrics are from the reference[21]. 

A. Optimal Evaluation of Topic Models  
The word embedding layer of the neural topic model 

adopts the BERT pre-trained language model. A strategy to 
address the maximum length limitation needs to be given. 
BERTOverflow model takes an input of a sequence of no 
more than 512 tokens [24]. The part of the document that 

Defect Text Tile

Pre-process Layer

BoWBigram
(subword)

Hidden  Layer

Output  Layer

Decision  Layer

Trigram
(subword)
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exceeds the maximum length is often the information about 
root causes and fix strategies in descriptions and comments. 
After preprocessing, we have 13.5% (2347) documents with 
more than 510 characters length (L) and adopt hierarchical 
methods in order not to lose information as much as possible 
[21]. The input text is divided into S=L/510 fractions, which 
is fed into BERT. The representation of each fraction is the 
hidden state of the [CLS] tokens of the last layer. The mean 
pooling is used to combine the representations of all the 
fractions. By fine tuning BERTOverflow, we get the word 
contextualized representation and document contextualized 
representation. 

The hyperparameter k has a significant impact on topic 
consistency.  In the parameter optimization process of CTM, 
2000 iterations are selected, and the optimal number of 
topics k is found by perplexity and coherence values, 5-200, 
5 is the step size. For topic model optimization, two metrics 
are used for evaluation, including coherence value and the 
perplexity, as shown in Figure 4.  

 
Figure 4.  The perplexity and coherence values . 

When there are 20 topics, the coherence value and 
perplexity are ideal, but for the consideration of label 
richness, we choose 60 as the topic number, which also has a 
good metric value. Because of the defect text we use, it is 
generally believed that the topics reflected in a defect text are 
concentrated, and the experimental results are also the same. 

For comparison with other topic models, we choose the 
most commonly used benchmark model, LDA, and the non- 
LDA-based topic model NMF. Furthermore, to evaluate the 
effect of in-domain embedding representation, BERT-Base 
and BERTOverflow are used as the contextualized 
embedding representation layer of CTM respectively. The 
results are listed in Table 3. 

Table 3.  Topic coherence&diversity on different topic model 

Model 
Coherences Diversity 

T(20) T(60) T(20) T(60) 

BoW+LDA 0.1629 0.1161 0.6450 0.5983 
BoW+NMF 0.1633 0.1270 0.5351 0.3767 
BERT-Base+CTM 0.1632 0.1381 0.8220 0.7701 
BERTOverflow +CTM 0.1651 0.1464 0.7552 0.6703 

From the results listed in Table 3, it can be found that 
the coherence value of the neural topic model is better than 
that of the two baseline topic models. Although the in-
domain embedding contextualized representation is slightly 

worse than general BERT in topic diversity, it can improve 
topic semantic coherence, which is the focus of our 
approach.  

B. Effectiveness of Multi-label Classification 
We divided our preprocessed dataset of GitHub 

repositories (Section III-D) to three subsets of training, 
validation, and testing datasets. We first split the data into 
train and test sets with ratios of 80%, and 20%, respectively. 
Then we split the train set to two subsets to have a 
validation set as well (with ratios 90% to 10%). 

In the evaluation of multi-label classification effect, 
GLoVe+LSTM is selected as the model for comparison[13]. 
The learning rate is set to 3e-5, the number of epochs to 4 
and the batch size to 32. We set the remaining parameters to 
default values. Precision and loss values are chosen as 
evaluation metrics. The training and evaluation loss values 
for 4 epochs are shown in Figure 5. 

 
Figure 5.  Comparison of FastText model and GloVe model . 

As shown in Figure 5, on our dataset, the loss value of 
FastText model is less than GLoVe+LSTM, and the 
accuracy of the two after 4 epochs is 0.8817 and 0.8768, 
respectively. Such accuracy results are acceptable due to our 
custom dataset. FastText model is better than our chosen 
baseline model, proving that our method is effective. 

V. CONCLUSION 
Defects in the SDN controller can affect the reliability of 

the network. Historical defect text can guide a good 
understanding of the cause of triggering defects and develop 
a better fixing strategy. Giving meaningful labels to SDN 
controller defect text is important for controller defect 
comprehension. Further, it is very helpful for classifying, 
locating and repairing defects. In this paper, we present a 
method to automatically assign labels to SDN controller 
defect texts. The characteristics of the unlabeled text dataset 
are analyzed in detail. Based on neural topic modeling, the 
dataset is assigned phrase labels through a two-layer filtering 
method, and the assigned labels are related to entities and 
activities that contain defects. Based on the custom labeled 
dataset, the FastText model is applied as a classifier for 
automatic multi-label classification of new defect texts. The 
effectiveness of our method is verified by evaluation. The 
research can help developers understand the defects, better 
locate and repair defects in SDN controller software, and 
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also provide convenience for controller deployment and later 
maintenance.

Although with the help of neural topic models with 
contextual information, we obtain better consistent topics 
and better interpretable labels. Yet understanding defect text 
composed of human natural language remains difficult and 
subjective. Future studies should explore ways to apply 
different approaches to automatically label the defect text.

ACKNOWLEDGMENT

We do appreciate the great support of National Natural
Science Foundation of China (No.61862047, 62066034),
Inner Mongolia Science & Technology Plan (No.
2020GG0186), Inner Mongolia discipline inspection and
supervision big data laboratory open project 
fund(No.IMDBD2020011), Research Program of science 
and technology at Universities of Inner Mongolia 
Autonomous Region(No. NJZY22425)

REFERENCES

[1] S. Ahmad and A. H. Mir, "Scalability, consistency, reliability and
security in SDN controllers: a survey of diverse SDN controllers,"
Journal of Network and Systems Management, vol. 29, no. 1, pp. 1-
59, 2021.

[2] S. Davies and M. Roper, "What's in a bug report?," in Proceedings of
the 8th ACM/IEEE International Symposium on Empirical Software 
Engineering and Measuremen, Italy, 2014: ACM, pp. 1-10.

[3] O. Chaparro et al., "Detecting missing information in bug 
descriptions," in Proceedings of the 2017 11th Joint Meeting on 
Foundations of Software Engineering, 2017, pp. 396-407.

[4] X. Xie, Y. Su, S. Chen, L. Chen, J. Xuan, and B. Xu, "MULA: A
just-in-time multi-labeling system for issue reports," IEEE 
Transactions on Reliability, vol. 71, no. 1, pp. 250-263, 2021.

[5] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. 
Wang, "Improving automated bug triaging with specialized topic
model," IEEE Transactions on Software Engineering, vol. 43, no. 3,
pp. 272-297, 2016.

[6] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshynanyk, and
A. De Lucia, "How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms," in 2013
35th International conference on software engineering (ICSE), 2013:
IEEE, pp. 522-531.

[7] Y. Yu et al., "Fault management in software-defined networking: A 
survey," IEEE Communications Surveys & Tutorials, vol. 21, no. 1,
pp. 349-392, 2018.

[8] P. Vizarreta, K. Trivedi, V. Mendiratta, W. Kellerer, and C. Mas-
Machuca, "Dason: Dependability assessment framework for
imperfect distributed sdn implementations," IEEE Transactions on
Network and Service Management, vol. 17, no. 2, pp. 652-667, 2020.

[9] A. Bhardwaj, Z. Zhou, and T. A. Benson, "A Comprehensive Study 
of Bugs in Software Defined Networks," in 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2021: IEEE  pp. 101-115.

[10] X. Song, J. Petrak, Y. Jiang, I. Singh, D. Maynard, and K. Bontcheva,
"Classification aware neural topic model for COVID-19 
disinformation categorisation," PloS one, vol. 16, no. 2, p. e0247086, 
2021.

[11] M. Pettinato, J. P. Gil, P. Galeas, and B. Russo, "Log mining to re-
construct system behavior: An exploratory study on a large telescope
system," Information and Software Technology, vol. 114, pp. 121-
136, 2019.

[12] T. Schopf, D. Braun, and F. Matthes, "Lbl2Vec: An Embedding-
based Approach for Unsupervised Document Retrieval on Predefined
Topics," in WEBIST, 2021, pp. 124-132.

[13] R. R. Althar, D. Samanta, M. Kaur, A. A. Alnuaim, N. Aljaffan, and 
M. Aman Ullah, "Software systems security vulnerabilities
management by exploring the capabilities of language models using
NLP," Computational Intelligence and Neuroscience, pp. 1-19, 2021.

[14] C. Treude and M. Wagner, "Predicting good configurations for
github and stack overflow topic models," in 2019 IEEE/ACM 16th 
International Conference on Mining Software Repositories (MSR),
2019: IEEE, pp. 84-95.

[15] U. Chauhan and A. Shah, "Topic modeling using latent Dirichlet
allocation: A survey," ACM Computing Surveys (CSUR), vol. 54, no.
7, pp. 1-35, 2021.

[16] S. Terragni, E. Fersini, B. G. Galuzzi, P. Tropeano, and A. 
Candelieri, "Octis: comparing and optimizing topic models is 
simple!," in Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: System
Demonstrations, 2021, pp. 263-270.

[17] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," 
Journal of machine Learning research, vol. 3, no. Jan, pp. 993-1022,
2003.

[18] D. Q. Nguyen, R. Billingsley, L. Du, and M. Johnson, "Improving 
topic models with latent feature word representations," Transactions
of the Association for Computational Linguistics, vol. 3, pp. 299-313, 
2015.

[19] S. Bhatia, J. H. Lau, and T. Baldwin, "Automatic labelling of topics 
with neural embeddings," arXiv preprint arXiv:1612.05340, 2016.

[20] F. Bianchi, S. Terragni, and D. Hovy, "Pre-training is a hot topic:
Contextualized document embeddings improve topic coherence,"
arXiv preprint arXiv:2004.03974, 2020.

[21] M. Izadi, A. Heydarnoori, and G. Gousios, "Topic recommendation 
for software repositories using multi-label classification algorithms,"
Empirical Software Engineering, vol. 26, no. 5, pp. 1-33, 2021.

[22] Q. Mei, X. Shen, and C. Zhai, "Automatic labeling of multinomial 
topic models," in Proceedings of the 13th ACM SIGKDD 
international conference on Knowledge discovery and data mining,
2007, pp. 490-499.

[23] V. Venktesh, M. Mohania, and V. Goyal, "Topic Aware
Contextualized Embeddings for High Quality Phrase Extraction," in
European Conference on Information Retrieval, 2022: Springer, pp. 
457-471.

[24] C. Sun, X. Qiu, Y. Xu, and X. Huang, "How to fine-tune bert for text 
classification?," in China national conference on Chinese
computational linguistics, 2019: Springer, pp. 194-206.

[25] J. Tabassum, M. Maddela, W. Xu, and A. Ritter, "Code and named
entity recognition in stackoverflow," arXiv preprint
arXiv:2005.01634, 2020.

[26] A. Srivastava and C. Sutton, "Autoencoding variational inference for 
topic models," arXiv preprint arXiv:1703.01488, 2017.

[27] C. Gao, J. Zeng, M. R. Lyu, and I. King, "Online app review analysis 
for identifying emerging issues," in Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 48-58.

[28] Z. Haj-Yahia, A. Sieg, and L. A. Deleris, "Towards unsupervised text
classification leveraging experts and word embeddings," in
Proceedings of the 57th Annual Meeting of the Association for 
Computational Linguistics, 2019, pp. 371-379.

410


