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Abstract—Software Defect Prediction (SDP) predicts new 

defects through machine learning trained with historical defect 
data. The distribution of software defects is highly unbalanced, 
which hinders the construction of defect prediction models. In 
addition, previous studies were usually validated by public 
datasets based on code metrics instead of real-world data. In this 
work, SNA metrics and code metrics are computed on 9 
representative real-world projects. A hybrid preprocessing 
approach for defect prediction named CFIWSE is proposed to 
improve SDP performance through feature selection, minority 
sample synthesis and noise reduction, consisting of CFS and 
IWSE. CFS uses correlation analysis and nearest neighbor 
theory for feature selection. IWSE utilizes information weights 
and edited nearest neighbor rule to alleviate overfitting and 
noise introduced from minority sample synthesis. The proposed 
method is verified by experiments on real-world data, and the 
contribution of the method components and parameter 
sensitivity are explored. 

Keywords- Software defect prediction; Feature selection; 
SMOTE; Minority sample synthesis. 

I.  INTRODUCTION  
Software defect prediction (SDP) is now a hot subject 

matter of software dependability because it gives direction for 
software testing, minimizes overhead, and enhances the cost-
effectiveness ratio. Currently, forming a high number of 
software tests during the software development process is an 
essential method for enhancing software reliability. With the 
increasing expansion of software size and complexity, 
machine learning-based software defect prediction technology 
has become an integral component of software reliability 
assurance activities. By utilizing the historical defect data to 
its fullest extent, it is possible to identify the potential defect 
modules that may be hidden in the software. This enables 
software testers to test the software more effectively and 
pertinently, increase the likelihood of discovering hidden 
defects, and ensure the quality of the software. 

A. Motivation 
Numerous academics have undertaken numerous 

experiments on classifier algorithms for constructing defect 
prediction models for a very long time. They applied various 
classifiers to public datasets and evaluated the effectiveness of 
the model using metrics. Various articles provide varying 
conclusions regarding the appropriate classifier algorithm for 
software defect prediction. In 2018, Agrawal et al.[1] 

suggested that the enhancement of training data quality also 
considerably enhanced the performance of software defect 
prediction. 

Some papers have added relevant processing methods to 
address the issue of dataset quality. Most articles utilize 
recursive feature elimination with cross-validation (RFECV) 
to address the problem of redundant and incorrect features. 
Typically, SMOTE technology is employed to fix the class 
imbalance. Numerous noise reduction technologies are 
available for the potential noise samples in the dataset. 

Current research frequently uses CK measurement data 
from NASA and PROMISE public sources to confirm their 
findings. These public datasets have a small number of defect 
features, and their class imbalance problem is less severe than 
that of real-world software data. In a recent study, Gong et 
al.[2] suggested that software network analysis (SNA) metrics 
should be considered in SDP scenarios alone or in 
combination with code metrics, whereas almost no SNA 
metrics have been used in recent software defect prediction 
model studies.[3] 

In real-world datasets using SNA metrics, datasets tend to 
have more features and more severe class imbalances, and the 
effectiveness of the commonly used feature filtering and 
SMOTE methods cannot be guaranteed. To process the 
software defect dataset, a novel hybrid software defect dataset 
processing method (CFIWSE) is proposed, which combines 
correlation analysis-based feature selection (CFS) and 
information weighted synthetic sampling approach with 
edited nearest neighbor rule (IWSE). Ensemble learning 
classifiers are used to build prediction models. 

To evaluate the proposed method on real-world datasets, 
we have also developed a defect data extraction tool that 
creates hybrid dependency graphs and calculates SNA metric 
data from software source codes for various programming 
languages. As ground truth, we utilized 32 versions of defect 
reports from 9 software versions in the JIRA error reporting 
system collected by Yatish et al.[4]. We then generated 
datasets from the source code retrieved from the Apache 
Software repository and conducted a number of experimental 
validations. 

B. Contribution 
Overall, our work mainly includes the following 

contributions: 
1. Considering the similarity and difference of SNA 

features, CFIWSE combines feature-feature correlation 
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and feature-defect correlation for feature selection, 
effectively reducing irrelevant and redundant features. 

2. To repair the class imbalance problem of defect datasets, 
avoid the over-generalization of minority class samples 
and reduce noise samples, CFIWSE improves minority 
sample synthesis through three aspects: sample 
selection, sample generation and sample cleaning. 

3. To illustrate the effectiveness of our proposed CFIWSE 
method, we developed a cross-language software SNA 
metric data extraction tool to generate datasets from 32 
versions of code from 9 real-world software and conduct 
extensive experiments. The experimental results show 
that our proposed CFIWSE method improves the AUC 
on this dataset by an average of 4-13% over 
SMOTUNED[1], the currently widely accepted state-of-
the-art in SDP, and 1-15% over SYMPROD[5], the state-
of-the-art in data balancing. 

4. Ablation studies were also conducted to experiment with 
feature selection methods, sample synthesis methods, 
sample synthesis ratios tuning in CFIWSE. The 
conclusions show that both CFS and IWSE contribute 
positively to the defect prediction performance and are 
better to use combined. Fine-tuning the sample synthesis 
ratio can further improve the model performance in most 
cases. 

C. Paper Organization 
The remainder of the paper is organized as follows: 

Section II gives brief reviews of software defect prediction 
and data processing. Section III introduces our proposed 
method CFIWSE. Section IV provides the experimental 
setting. The results are provided and analyzed in Section V. 
Section VI discloses the threats to validity. Section VII draws 
the conclusions. 

II. RELATED WORKS 
This section mainly discusses the current literature work 

in the field of software defect prediction based on machine 
learning, including software defect data, defect feature 
selection, sample sampling technology and classifier 
algorithms. 

Machine learning is the mainstream method of defect 
prediction models at present[6]. Many researchers have 
verified the effectiveness of machine learning for software 
module risk prediction, and their conclusions on the optimal 
classifier algorithm are different. In the latest research, Alazba 
et al.[7] Believe that the best classifier model can be obtained 
by optimizing the hyperparameters of the tree-based ensemble 
learning models. 

Software metrics: Software metrics refer to quantified 
features extracted from software from different dimensions as 
input to a machine learning classifier. 

The earliest software metric applied to SDP was the 
measurement of code and its complexity. As early as 1978, 
Halstead et al. [21] proposed the Halstead metric for code size. 
In 1994, Chidamber and Kmerer [22] proposed the famous 
CK metric element, which became one of the standard metric 
tuples in the SDP field; in the same year, Abreu et al. [23] 
proposed the MOOD metric element. In 1996, Ohlsson et al. 

[24] applied McCabe cyclomatic complexity to an Ericsson 
telecom system. In 2007, Menzies et al. [25] compared the 
impact of various code metrics on SDP. Today, code metrics, 
especially CK metrics, are still one of the mainstream metrics 
in the SDP field. 

Although code metrics and process metrics have been 
widely used in SDP, as technology advances and software 
structures continue to become more complex, the 
shortcomings of these metrics, such as the lack of 
representation of software structures and software element 
associations, have become a bottleneck in the development of 
SDP. In 2008, Zimmermann et al. [29] predicted defects by 
relying on graph-centric metrics. 

In the subsequent period from 2009-2015, several 
researchers have applied SNA metrics to different software 
and classifiers ([7], [14]–[17]). However, its application in the 
field of software defect prediction is still rare due to the 
difficulty of software network construction and analysis, 
which often requires software bytecodes. Gong et al.[2] 
conducted extensive experiments on software defect 
prediction techniques based on dependency graphs and 
suggested that SNA metrics alone or together with code 
metrics should be considered in SDP scenarios, while recent 
software defect prediction model studies have rarely used the 
SNA metric. 

Dataset: Public datasets such as MDP and PROMISE are 
widely used for experimental verification in the research of 
machine learning-based software defect prediction. However, 
many researchers have questioned the quality and credibility 
of public datasets. In 2009, Christian Bird et al.[18] 
questioned the fairness and authenticity of public datasets, and 
found that these defective data posed a serious challenge to 
the validity and universality of defect prediction models. In 
2013, Shepperd et al.[19] compared the defect data from two 
versions of MDP and PROMISE, and found that quality 
problems such as data loss, value anomaly, and instance 
repetition, and their differences had significant influence on 
software defect prediction results. David Gray et al.[20] 
analyzed the characteristics of 13 NASA raw datasets and 
designed a data cleaning process. Each dataset has 6% -90% 
of records to be cleaned. Research should therefore be 
validated in real-world datasets. 

Feature selection: By eliminating redundant and 
unnecessary features and lowering the time and space 
complexity of the algorithms, feature selection aims to 
increase the accuracy of software defect prediction models. 
The two most common types of feature selection techniques 
are filter-based and wrapper-based.  

The filter-based feature selection methods did not consider 
the correlation within the feature, and because its evaluation 
criteria are independent of specific learning algorithms, the 
classification accuracy is low. The feature generality of 
wrapper-based feature selection methods is not strong, the 
subset space exponentially explodes with the increase in the 
number of features, and the algorithm performance decreases. 
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Balancing: The problem of class imbalance has been 
regarded as a key problem in machine learning and data 
mining, which refers to the serious imbalance of the 
proportion of different classes of instances in the dataset. 
Initially, people balanced the proportion of datasets by 
reducing the sampling of the major class (undersampling), but 
this method would greatly reduce the amount of data. The 
SMOTE algorithm proposed by Chawla et al. [21] is one of 
the most commonly used class balance methods in academia, 
but this method may increase the risk of overfitting. To this 
end, people have proposed variants of SMOTE. Batista et al. 
[22] proposed SMOTE_TomekLinks and SMOTE_ENN. 
Han et al. [23] proposed Borderline-SMOTE. He et al. [24] 
added different weights for different minority instances 
(ADASYN). Douzas et al. applied k-means clustering [25] 
and self-organizing map [26] to the SMOTE method. Lee et 
al.[27] added Gaussian random variables to the SMOTE 
synthesis sample process. Barua et al. [28] gave the minority 
sample weight based on the distance to the nearest majority 
sample. In 2017, Rivera [29] introduced propensity score 
matching to the balancing and noise reduction methods. 

III. METHODOLOGY 
In this section, we introduce our novel hybrid software 

defect data-processing approach CFIWSE, with two main 
components: correlation-based feature selection (CFS) and 
information weighted synthetic sampling approach with 
edited nearest neighbors’ rule (IWSE). 

A. Framework 
This section will introduce the framework of our method, 

which is divided into four stages, as shown in Figure 1: 1. 
Graph Generation and Metrics Calculation; 2. Correlation-
based Feature Selection (CFS); 3. Information weighted 
Sample Synthesis approach with Edited nearest neighbors rule 
(IWSE); 4. Training and predicting. 

In the first phase, software file dependency and entity 
inheritance are analyzed based on the open source analysis 
tool EMERGE1 and fused to generate a hybrid dependency 
graph. Then, based on the formulas proposed by 
Chidamber[9] et al and Yang et al.[30], SNA metrics and code 

metrics are calculated from the hybrid dependency graph to 
generate training datasets and predicted datasets. 

In the second stage, we improved the CHIFS algorithm 
based on Wang et al[31] and propose correlation-based 
feature selection (CFS). Logistic regression was used to 
analyze the feature-defect correlation, excluding the unrelated 
features. The Pearson correlation coefficient is used to 
evaluate the feature-feature correlation, and the K nearest 
neighbor algorithm is introduced instead of the full join 
method used by Wang et al. to generate the feature correlation 
connection graph. After spectral clustering, the feature quality 
coefficients are calculated according to the feature-feature 
correlation and the feature-defect correlation, and the feature 
quality coefficients are used as the search order to select the 
prefix features. 

In the third stage, we propose information weighted 
synthetic sampling approach with edited nearest neighbors’ 
rule (IWSE), which introduce information weight in 
SMOTE[21] to select more important samples, and use the 
Edited Nearest-neighbors algorithm (ENN) [22] to exclude 
outliers from the synthetic samples and reduce the noise 
introduced by SMOTE. 

In the fourth stage, cross validation is used to optimize the 
machine learning classifier, and the training set is used to train 
the optimized machine learning classifier for the defect 
prediction task of the dataset to be predicted. 

B. Data Extraction 
One of the most crucial components of SDP based on 

machine learning is data. As indicated in Section II, many 
questions have been raised about the reliability and validity of 
the commonly utilized public datasets. Recently, Yatish et 
al.[4] established a carefully selected benchmark defect 
dataset by mining the closed issues reports from 9 
representative open source software in the JIRA problem 
management system, linking these problem reports to the 
specified earliest affected version. 

We use Yatish's dataset[4] as the ground truth for a 
number of reasons: 1. Software types in the dataset include 
search engine libraries, programming languages, databases, 
and integration frameworks. 2. The range of the class 
imbalance ratio is broad. 3. Software size ranges from large 
(Camel, Derby), medium (ActiveMQ, HBase, Hive, Wicket), 
to tiny (Groovy, JRuby, Lucene). We obtained the 

______ 

1 https://github.com/glato/emerge 

 
Figure 1 Framework of CFIWSE 
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corresponding source code for each version for metric 
calculation from GitHub and Apache Repository. 

Code Metrics: We use the code metrics calculator 
developed by Aniche[32] to calculate the code metrics 
consisting of 7 CK metrics and 36 code statistical metrics. 

SNA Metrics: First, the open source code analysis tool 
EMERGE is used to extract file dependence and entity 
inheritance relations from the software code. EMERGE is a 
source code static analysis tool that, unlike methods employed 
by other research institutions in SNA Metrics, does not require 
software code to be built, allowing it to be used for software 
development processes. We fuse the file dependency graph 
and entity inheritance graph from EMERGE analysis 
through file path matching, attach the entity inheritance 
relation to the file element where the entity is located, and 
obtain a hybrid dependency graph with inheritance 
relationships. 

We calculated a total of 30 SNA metrics from the hybrid 
dependency graph based on the SNA metrics calculation 
method proposed by Yang et al.[30]. 

Table 1 Metrics we calculated 
Calculator Metric Type Source 

Paper 
Count 

code metrics calculator CK Metrics [22] 7 
Code Statistical Metrics [32] 36 

SNA metric calculator SNA metrics [30] 30 

C. Correlation-based Feature Selection (CFS) 
After introducing the SNA metric, the dataset contains 73 

features in total. To eliminate irrelevant and redundant 
features, feature selection is necessary. Section II introduces 
the commonly used wrapping-based and filtering-based 
feature selection methods and their disadvantages. To 
eliminate these drawbacks, we start with feature correlation 
and combine the wrapped and filtered feature selection 
methods. 

The feature correlation we consider includes: 1) 
correlation between features and defect distribution (Feature-
defect Correlation); 2) the correlation between one feature and 
another (Feature-feature Correlation). We propose a 
conjecture that features with low feature-defect correlation are 
likely to be irrelevant features; feature subsets with high 
feature-feature correlation may have redundant features. We 
improve the CHIFS method proposed by Wang et al.[31], and 
propose a correlation-based feature selection approach(CFS). 
1) Feature-defect Correlation Analysis 

First, the irrelevant features are excluded by a filter-based 
method. Some studies[33] have shown that logistic regression 
has good performance in predicting software defects, so we 
used logistic regression models to analyze the correlation of 
each feature with software defects. We define 

 as a software defect dataset consisting 
of n samples. For each defect sample ,  
is feature amount of  , and  is the defect class of  (1 for 
positive, 0 for negative). To avoid the model parameters being 
dominated by data with a large or small distribution range, the 
dataset is first normalized using a min-max normalization 
algorithm to unify the scale of each feature. 

After the normalized dataset  is obtained, the probability 
 that sample  is positive is calculated using multivariate 

logistic regression: 

 

A multivariate logistic regression model can be fitted by 
using the maximum likelihood estimate to obtain the 
regression parameter . The odd ratio (OR) 
is a commonly used indicator of logistic regression model, 
which reflects the strength of the association between the 
independent variable and the dependent variable. OR>1 
suggests that the characteristics and software defects were 
positively correlated, OR<1 suggests that the feature and 
software defects were negatively correlated, and OR=1 
suggests the feature has a low correlation with software 
defects. As suggested by Wang et al.[31], we considered 
features with OR values in the interval (0.67, 1.50) as not 
significantly related to software defects and removed them 
from the feature set. 
2) Feature-feature Correlation Analysis 

The model adaptability decreases when there is a set of 
features with strong internal correlation in the feature set. 
Therefore, we used Pearson's correlation coefficient to 
evaluate the correlation between features. For the two features 

 and ,  and are the values of features  and  in the ith 
sample. The Pearson coefficient between  and  is 
calculated as: 

 

Features are positively correlated when the Pearson 
coefficient is positive and negatively correlated when the 
Pearson coefficient is negative. When the Pearson coefficient 
is equal to zero, the two variables are not correlated. 

Wang et al. joined all features pairwise to form a fully 
connected graph so that the similarity matrix 

,  refers to the i-th 
feature. However, in the real-world dataset with SNA features, 
the feature dimension is high, and the dataset size is large, 
which causes great difficulties with the iteration of the fully 
connected graph. We introduce the K-nearest neighbors 
(KNN) algorithm into the construction of the similarity matrix 
to make the similarity matrix sparser: 

 

Degree matrix:   
Laplacian matrix:  
Normalized Laplacian matrix:  
For that number of cluster cores , compute 

the first k eigenvector of , and form the matrix 
. 

3) Feature Selection 
The row vectors  are clustered 

using the K-means clustering algorithm. The product of the 
Silhouette coefficient and the Cohesion degree is used to 
evaluate the cluster results and determine the optimal cluster 
core number k. 
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Then, according to the calculation method proposed by 
Wang et al., the feature-feature metric parameter 

and the feature-defect metric parameter 
 are calculated, where  is the cluster core 

where  is located, and  is the defect distribution. The 
quality coefficient of feature  is calculated as follows: 

 

Sequential forward selection was performed based on , 
and the optimal feature subset was selected based on the 
average AUC of K-fold cross-validation. 

D. Information Weighted Sample Synthesis with 
Edited Nearest Neighbors Rule 

At present, the most popular dataset balancing method in 
machine learning is SMOTE[21]. However, this method 
cannot avoid the problems of overfitting and noise 
amplification due to the synthetic data strategy. Inspired by 
MWMOTE[28] and SMOTE+ENN[22], this work introduced 
both information weights and Wilson's Edited Nearest 
Neighbor Rule (ENN) into the Synthetic Minority Over-
sampling Technique. 

Information weighted sample synthesis with edited nearest 
neighbors’ rule (ISWE) is proposed, which improves minority 
sample synthesis through three aspects: sample selection, 
sample generation and sample cleaning. 

Han et al.[23], who proposed Borderline-SMOTE, 
suggested that samples located near the decision boundary had 
a significant impact on model performance. Barua et al.[28], 
who proposed MWMOTE, implied that samples belonging to 
the small-sized cluster (s) were also important. In line with 
their conclusions, IWSE uses the ENN algorithm to clean up 
noise after minority sample synthesis instead of deleting 
samples before synthesis, in order to preserve as much 
information as possible for a few classes of samples. 

First, for each minority sample , KNN is used to 
compute the majority of its k-nearest-neighbors 

.  of all samples in 
 indicates the boundary of most classes. For each 

majority boundary sample , its minority k-
nearest-neighbors set  is 
calculated. The minority sample set  of all  
indicates the minority boundary. 

After minority boundary samples selection, the 
importance of samples is evaluated by information weights. 
For each minority sample , calculate its information 
weight with every majority boundary sample : 

 

 

 

and  are set by users. Sum the information 
weights to obtain the selection weights: 

 

The larger  is, the more important  is. Normalize 
the selection weight to obtain the sample selection probability: 

 

Unlike SMOTE,  is first clustered before synthetic 
samples are generated. The minority sample  is extracted 
according to the sample selection probability , and 
another minority sample  is randomly selected from the 
cluster to which  belongs. The synthetic sample is randomly 
generated on the connecting line of the two samples. The 
synthetic sample generation step was repeated until synthetic 
samples were enough. 

After finishing sample synthesis, we use Wilson's Edited 
Nearest Neighbor Rule (ENN) to reduce the noise introduced. 
Unlike the method proposed by Batista et al., we only applied 
ENN to synthetic samples. For each synthetic sample , find 
its three nearest neighbors. Delete if there is more than 1 
sample of the nearest neighbors belonging to the majority. 

Through IWSE, minority samples are synthesized to repair 
class imbalance, and the noise introduced by sample synthesis 
is reduced. 

E. Training and prediction 
Through CFS and IWSE, a training dataset with feature 

selection and balancing is constructed. We trained the defect 
prediction classifiers on this training set. Alazba et al.[7] 
suggested that the optimized tree-based ensemble learning 
model performs well in software defect prediction tasks. 
Therefore, we trained three ensemble classifiers, Random 
Forest (RF), Extra Trees (ET), and AdaBoost (AB). We also 
trained Logistic Regression (LoR), Stoical Gradient Descent 
Classifier (SGDC), Decision Tree (DT), and Passive 
Aggressive Classifier (PA). 

IV. EXPERIMENT 
To validate our proposed approach, we presented and 

conducted the following research questions (RQs). We 
addressed the research problems and validated our proposed 
strategy by analyzing the experimental observations. 

A. Research Questions 
RQ1: Does the proposed method improve the performance of 
software defect prediction? 
RQ2: How does the proposed CFS contribute to performance 
improvement? (Ablation study) 
RQ3: How do different oversampling methods affect 
prediction performance? (Ablation study) 
RQ4: How sensitive are the sampling proportion? (Parameter 
sensitivity) 

RQ1 intends to verify the performance of the proposed 
CFIWSE approach. RQ2 & RQ3 conducted ablation studies 
to discuss the contribution of the proposed CFS and IWSE 
approaches. RQ4 explored the sensitivity of sampling 
proportion. 
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B. Datasets 
For the reproducibility of experiments and the 

convenience of comparison with the benchmark, we use 
Yatish's dataset[4] as the ground truth due to the reasons 
mentioned in Section III.B. The corresponding source code 
for each version is obtained from GitHub and Apache 
Repository for metric calculation. We construct a hybrid 
dependency graph for each version of the source code and 
calculate SNA metrics as well as code metrics.  

The first 80% of each project’s dataset is the train-set, 
while the last 20% of each project’s dataset is the test-set. 
Table 2 show the details of our dataset. 

Table 2 Datasets 
Project Versions Total samples Imbalance 

Rate 
Train 

samples 
Test samples 

ActiveMQ 5 10691 10.20 8553 2138 
camel 4 23688 34.76 18951 4737 
derby 2 5380 2.72 4304 1076 
groovy 3 2152 10.11 1722 430 
hive 3 4628 6.68 3703 925 
HBase 3 3962 2.79 3170 792 
jruby 3 3615 7.79 2892 723 
lucene 3 1976 2.98 1581 395 
wicket 3 4910 14.46 3928 982 

C. Experiment Design 
For RQ1, to verify the performance of the proposed 

CFIWSE, it is compared with the following methods: a. no 
data processing (RAW); b. state-of-the-art: SMOTUNED[1]; c. 
state-of-the-art: SYMPROD[5]. RFECV is used for feature 
selection with SMOTUNED and SYMPROD. 

For RQ2, to study the contribution of the proposed CFS to 
the defect prediction effect, it is compared with the following 
feature selection methods: a. no feature selection (noFS); b. 
common-used wrappers approach: recursive feature 
elimination with cross-validation (RFECV). All feature 
selection methods were used with the proposed balancing 
method IWSE to be fair. 

For RQ3, in order to study the contribution of the proposed 
IWSE to the defect prediction effect, it is compared with the 
following balancing methods: SMOTE_ENN[22], 
SMOTUNED[1], SYMPROD[5], Random Undersampler, 
Random Oversampler, MSMOTE[35], NRAS[29], 
CURE_SMOTE, kmeans_SMOTE[25], CCR[36] and 
SMOTE_FRST_2T[37]. All balancing methods would be used 
with the proposed feature selection method CFS to be fair. 

For RQ4, we tend to study the sensitivity of the 
oversampling proportion. 

D. Evaluation 
The F1 score and AUC score are commonly utilized in the 

SDP field[30][38]. The confusion matrix is based on the 
number of predicted positives and negatives versus the 
number of actual positives and negatives, as Table 3 shows. 

Table 3 Confusion matrix 
 Predicted Negative Predicted Positive 

Actual Negative TN FP 
Actual Positive FN TP 
The formulas for calculating precision and recall are listed 

in the following: 

 

 

Precision can be an effective metric of model performance 
when the consequence of a false positive is serious. Recall is 
concerned with circumstances in which real faulty classes are 
predicted to be non-defective. F1 is a harmonic mean of 
accuracy and recall, as defined by (13). 

 

The Receiver Operating Characteristic (ROC) curve 
provides a powerful tool for understanding the trade-off 
between true and false positive rates. In practice, the area 
under an ROC curve (AUC) is an effective way to summarize 
the curve into one single value. 

V. RESULTS AND ANALYSIS 
Experiments' results and analysis are presented in this 

section. 

A. RQ1: Does the proposed method improve the 
performance of software defect prediction? 

The efficacy of the proposed CFIWSE and compared 
methods were reported in terms of average AUC and F1 
among 7 classifiers over 9 projects, as shown in Table 
4&Table 5, in which the best results are bolded. 

Table 4 Average AUC for RQ1  
RAW SMOTUNED SYMPROD CFIWSE 

activemq 0.566±0.036 0.623±0.043 0.649±0.046 0.695±0.023 
camel 0.535±0.046 0.588±0.075 0.565±0.058 0.656±0.063 
derby 0.696±0.08 0.624±0.101 0.722±0.049 0.729±0.039 
groovy 0.706±0.068 0.77±0.096 0.775±0.081 0.873±0.027 

hive 0.624±0.052 0.613±0.092 0.661±0.028 0.722±0.022 
hbase 0.622±0.029 0.604±0.068 0.663±0.04 0.693±0.023 
jruby 0.665±0.057 0.629±0.086 0.68±0.047 0.762±0.059 
lucene 0.72±0.059 0.66±0.127 0.715±0.039 0.734±0.04 
wicket 0.571±0.034 0.688±0.089 0.577±0.017 0.733±0.037 

Table 5 Average F1 for RQ1  
RAW SMOTUNED SYMPROD CFIWSE 

activemq 0.225±0.105 0.351±0.067 0.389±0.053 0.424±0.019 
camel 0.089±0.09 0.231±0.087 0.171±0.092 0.319±0.08 
derby 0.572±0.152 0.612±0.092 0.652±0.058 0.667±0.038 
groovy 0.449±0.065 0.285±0.139 0.402±0.107 0.387±0.048 

hive 0.347±0.108 0.34±0.093 0.399±0.032 0.445±0.039 
hbase 0.403±0.051 0.421±0.04 0.473±0.059 0.492±0.023 
jruby 0.434±0.082 0.307±0.063 0.423±0.057 0.443±0.086 
lucene 0.485±0.085 0.374±0.106 0.453±0.087 0.445±0.064 
wicket 0.228±0.087 0.282±0.076 0.242±0.038 0.39±0.035 
It can be observed that CFIWSE outperforms RAW, 

SMOTUNED and SYMPROD for 7/9 of the datasets. We 
conducted a t-test on the results to verify the significance of 
the advantage, and the results showed that the significance of 
CFIWSE was accepted ( ) in most cases.  

Specifically, for the AB, ET, LoR and SGDC models, 
CFIWSE obtains significantly higher AUC and F1 values than 
RAW, SMOTUNED and SYMPROD methods. For the PA and 
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RF classifiers, CFIWSE obtains slightly higher AUC values. 
From the perspective of the project, CFIWSE obtains 
significantly higher AUC and F1 values except for groovy and 
lucene. 

B. RQ2: How does the proposed CFS contribute to 
performance improvement? (Ablation study) 

We conducted an ablation study on software defect 
prediction to evaluate the contributions of the components of 
our CFIWSE approach. RQ2 aims to explore the contribution 
of defect prediction performance improvement through CFS. 
For comparison, we replaced the feature selection approach 
with noFS (no feature selection) and the most widely used 
approach RFECV (Recursive Feature Elimination with Cross-
Validation), leaving the rest of the components unchanged. 

The efficacy of the proposed CFS and compared methods 
were reported in terms of average AUC and F1 among 7 
classifiers over 9 projects as shown in Table 6&Table 7, in 
which the best results are bolded. 

It can be observed from Table 6&Table 7 that CFS 
outperforms noFS and RFECV for most of the datasets, except 
for hbase and hive. Compared with the most widely used 
RFECV, CFS leads AUC by 0.25%-5.16% and F1 by 0.11%-
8.23% in seven projects. On hbase and hive, CFS is 0.25%-
1.55% behind. 

We tested the dominance significance and found it less 
significant than the results in RQ1. This indicates that CFS 
alone is not enough to significantly improve the prediction 
effect. 

C. RQ3: How do different oversampling methods 
affect prediction performance? (Ablation study) 

RQ3 aims to explore the contribution of IWSE to the 
improvement of defect prediction performance. For 
comparison, we replaced the sampling component of the 
method with 10 other oversamplers (SMOTE_ENN[22], 
SMOTUNED[1], SYMPROD[5], Random Oversampling, 
MSMOTE[35], NRAS[29], CURE_SMOTE[39], 
kmeans_SMOTE[25], CCR[36], SMOTE_FRST_2T[37]) and 

Table 8 Average AUC for RQ3  
SMOTE_ENN SMOTUNED Random 

UnderSampler 
Random 

OverSampler 
activemq 0.682±0.038 0.623±0.059 0.679±0.029 0.673±0.062 

camel 0.652±0.046 0.588±0.069 0.655±0.074 0.613±0.08 
derby 0.727±0.052 0.624±0.13 0.699±0.099 0.723±0.06 
groovy 0.849±0.035 0.77±0.128 0.794±0.052 0.806±0.062 

hive 0.73±0.015 0.613±0.107 0.68±0.079 0.689±0.055 
hbase 0.693±0.028 0.604±0.082 0.679±0.037 0.669±0.046 
jruby 0.743±0.107 0.629±0.122 0.77±0.039 0.713±0.088 

lucene 0.712±0.038 0.66±0.116 0.709±0.05 0.699±0.07 
wicket 0.722±0.049 0.688±0.048 0.698±0.075 0.664±0.089  

Borderline 
SMOTE2 

MSMOTE NRAS CURE 
SMOTE 

activemq 0.676±0.046 0.677±0.049 0.635±0.05 0.643±0.049 
camel 0.617±0.082 0.625±0.085 0.568±0.053 0.591±0.067 
derby 0.721±0.066 0.721±0.063 0.69±0.016 0.705±0.075 
groovy 0.843±0.054 0.819±0.05 0.765±0.058 0.768±0.049 

hive 0.691±0.025 0.704±0.02 0.689±0.04 0.683±0.031 
hbase 0.685±0.046 0.665±0.047 0.668±0.039 0.656±0.035 
jruby 0.763±0.073 0.736±0.069 0.749±0.051 0.696±0.077 

lucene 0.716±0.036 0.719±0.034 0.725±0.028 0.727±0.036 
wicket 0.667±0.056 0.659±0.06 0.603±0.046 0.588±0.02  

Kmeans 
SMOTE 

CCR SMOTE 
FRST_2T 

IWSE 

activemq 0.593±0.014 0.643±0.057 0.663±0.052 0.695±0.023 
camel 0.512±0.013 0.592±0.075 0.624±0.074 0.656±0.063 
derby 0.696±0.08 0.715±0.067 0.727±0.057 0.729±0.039 
groovy 0.694±0.079 0.685±0.111 0.811±0.06 0.873±0.027 

hive 0.593±0.047 0.65±0.057 0.699±0.039 0.722±0.022 
hbase 0.621±0.02 0.655±0.051 0.661±0.038 0.693±0.023 
jruby 0.668±0.034 0.683±0.083 0.726±0.075 0.762±0.059 

lucene 0.651±0.075 0.69±0.081 0.695±0.068 0.734±0.04 
wicket 0.565±0.022 0.637±0.076 0.685±0.076 0.733±0.037 

Table 9 Average F1 for RQ3  
SMOTE_ENN SMOTUNED Random 

UnderSampler 
Random 

OverSampler 

activemq 0.412±0.025 0.351±0.065 0.379±0.04 0.395±0.057 
camel 0.297±0.024 0.231±0.086 0.251±0.061 0.233±0.112 
derby 0.667±0.051 0.612±0.083 0.652±0.069 0.649±0.078 
groovy 0.355±0.056 0.285±0.167 0.269±0.099 0.354±0.095 

hive 0.445±0.049 0.34±0.103 0.392±0.08 0.418±0.059 
hbase 0.491±0.032 0.421±0.057 0.477±0.058 0.465±0.053 
jruby 0.431±0.097 0.307±0.087 0.471±0.075 0.434±0.109 

lucene 0.427±0.062 0.374±0.105 0.418±0.068 0.434±0.122 
wicket 0.358±0.039 0.282±0.062 0.306±0.078 0.314±0.078  

Borderline 
SMOTE2 

MSMOTE NRAS CURE_SMOTE 

activemq 0.4±0.028 0.413±0.042 0.378±0.091 0.392±0.071 
camel 0.242±0.096 0.238±0.111 0.179±0.107 0.234±0.124 
derby 0.642±0.11 0.637±0.108 0.581±0.036 0.588±0.145 
groovy 0.424±0.097 0.435±0.057 0.48±0.107 0.456±0.063 

hive 0.439±0.026 0.437±0.026 0.44±0.035 0.429±0.032 
hbase 0.491±0.057 0.467±0.052 0.479±0.056 0.461±0.062 
jruby 0.493±0.095 0.496±0.102 0.541±0.061 0.477±0.13 

lucene 0.443±0.082 0.454±0.077 0.432±0.059 0.447±0.074 
wicket 0.335±0.059 0.341±0.048 0.275±0.075 0.266±0.05  

Kmeans 
SMOTE 

CCR SMOTE_FRST_2T IWSE 

activemq 0.308±0.034 0.372±0.075 0.373±0.037 0.424±0.019 
camel 0.05±0.051 0.204±0.109 0.244±0.092 0.319±0.08 
derby 0.563±0.163 0.641±0.082 0.657±0.069 0.667±0.038 
groovy 0.447±0.108 0.339±0.198 0.388±0.07 0.387±0.048 

hive 0.285±0.111 0.369±0.062 0.419±0.027 0.449±0.039 
hbase 0.399±0.04 0.453±0.065 0.459±0.042 0.492±0.023 
jruby 0.449±0.062 0.435±0.132 0.446±0.098 0.443±0.086 

lucene 0.386±0.132 0.41±0.156 0.432±0.11 0.457±0.064 
wicket 0.211±0.05 0.306±0.087 0.328±0.043 0.39±0.035 

Table 6 Average AUC for RQ2  
CFS RFECV noFS 

activemq 0.698±0.027 0.695±0.021 0.677±0.031 
camel 0.675±0.028 0.671±0.035 0.661±0.042 
derby 0.729±0.035 0.704±0.041 0.722±0.062 
groovy 0.872±0.027 0.839±0.022 0.838±0.023 

hive 0.723±0.02 0.738±0.013 0.724±0.012 
hbase 0.69±0.02 0.694±0.022 0.688±0.033 
jruby 0.762±0.056 0.748±0.063 0.749±0.036 
lucene 0.736±0.037 0.713±0.087 0.704±0.046 
wicket 0.726±0.034 0.675±0.081 0.726±0.033 

Table 7 Average F1 for RQ2  
CFS RFECV noFS 

activemq 0.435±0.016 0.434±0.026 0.424±0.031 
camel 0.347±0.03 0.338±0.039 0.305±0.051 
derby 0.664±0.037 0.619±0.076 0.664±0.05 
groovy 0.384±0.057 0.358±0.08 0.353±0.078 

hive 0.439±0.036 0.454±0.036 0.444±0.041 
hbase 0.496±0.02 0.499±0.027 0.491±0.037 
jruby 0.432±0.078 0.429±0.063 0.428±0.078 
lucene 0.448±0.059 0.413±0.104 0.417±0.061 
wicket 0.396±0.038 0.313±0.093 0.35±0.06 
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an under-sampler (Random Undersampling), leaving the rest 
of components unchanged.  

The efficacy of the proposed IWSE and compared 
sampling methods were reported in terms of average AUC and 
F1 among 7 classifiers over 9 projects as shown in Table 
8&Table 9, in which the best results are bolded. 

It can be observed from Table 8&Table 9 that IWSE 
outperforms other sampling methods for 6/9 of the datasets. 
The most competitive competitor is SMOTE_ ENN, which 
uses a similar noise reduction method. However, IWSE still 
defeats it in most cases. 

D. RQ4: How sensitive are the of the sampling 
proportion? (Parameters sensitivity) 

RQ4 tends to further study how parameters setting 
influence defect prediction performance. We focus on the 
parameter-setting issues that are discussed and concerned in 
the proportion of minority sample synthesis. 

Many minority sample synthesis techniques have been 
proposed in various fields. It should be noted that the number 
of samples generated by most techniques is freely chosen, and 
generally defaults to generating minority samples until the 
number of minority and majority samples is equal. Agrawal et 
al. suggested that the parameters of sample synthesis had an 
impact on defect prediction, and conducted experiments for 
the parameter tuning of SMOTE. Being inspired, we explored 
the proportion of the proposed IWSE and carried out 
experimental verification of 6 levels of proportion. 

We set the proportions of six levels: [0.1, 0.2, 0.5, 1, 2, 5]. 
Average AUC values for each proportion level on seven 
classifiers are reported in Table 10Error! Reference source 
not found. and highlighted using color depth. The results 
show that the optimal scale settings are mostly concentrated 
between 0.5 and 2, with 1 in most cases, which is in line with 
the recommended settings in many other articles. 

Figure 2 details the AUC performance of different 
classifiers on each dataset at different proportions, showing 
the following:  

a) Optimal proportions for different classifiers vary (but 
are usually concentrated between 0.5 and 2;  

b) Different datasets have different sensitivities to 
proportion, and the average difference between the best and 
worst performance of AUC is 7%-16%.  

c) The worst performances are usually proportion=0.1 or 
proportion=5.   

When the proportions are too low, there is too little sample 
synthesis to improve the quality of the dataset. When the 
proportions are too high, the number of synthetic samples are 
far more than the real samples, which not only causes class 
imbalance in the other direction, but also inevitably causes 
serious overfitting and noise introduction problems. We 
recommend that users tune proportions within 0.5 to 2 when 
applying IWSE to different datasets, or use the default 
proportion=1 if there are no tuning resources. 

VI. THREATS TO VALIDITY 

A. Construct Validity. 
Threats to construct validity relate to dataset selection. We 

used Yatish et al.[4] dataset as the ground truth when 
conducting our experiments. We built hybrid dependency 
graphs from the source code and calculated the SNA metrics 
and code metrics instead of directly using the statistical 
metrics provided by Yatish et al. Although Yatish et al.[4] 
sought to eliminate some of the associated noise with the 
aforementioned inconsistencies, some amount of noise in the 
dataset cannot be avoided. 

Another threat to construct validity is that we quantify the 
correlation of metrics by the Pearson Correlation Coefficient. 
Spearman's and Kendall's Correlation Coefficients and 
Mutual Information Coefficient (MIC) is also commonly used 
to measure the correlation. As such, it presents a threat to the 
CFS that we proposed in Section III.C. However, Wang et 
al.[31] compared the performances of Pearson's, Spearman's, 
Kendall's correlation coefficients and MIC, concluding that 
Pearson's is the best. Nevertheless, we encourage future 
studies to revisit the performance of our studies with different 
correlation coefficients. 

B. External Validity. 
In nine fixed open source software projects developed in 

JAVA, we analyzed the validity of SNA measurement 
compared with code metrics. Although the research projects 
are varied, our findings may not be extended to projects with 
different module sizes and versions. 

Moreover, since the source code of the state-of-the-art 
SMOTUNED was not opened, we reimplemented the 

Table 10 Average AUC for each proportion level 
 0.1 0.2 0.5 1 2 5 
activemq 0.619 0.645 0.674 0.681 0.692 0.652 

camel 0.560 0.602 0.647 0.679 0.679 0.645 
derby 0.675 0.685 0.709 0.724 0.693 0.635 
groovy 0.789 0.812 0.816 0.862 0.830 0.700 

hive 0.648 0.657 0.703 0.722 0.700 0.637 
hbase 0.639 0.668 0.688 0.703 0.659 0.593 
jruby 0.720 0.753 0.763 0.746 0.750 0.687 
lucene 0.707 0.711 0.736 0.734 0.726 0.638 
wicket 0.594 0.600 0.684 0.701 0.751 0.725 

 

 
Figure 2 AUC performance of different classifiers on each dataset 

at different proportion 
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SMOTUNED based on the pseudo-code Agrawal et al.[1] 
provided. Since Agrawal et al. [1] did not disclose the absolute 
value of the experimental results of SMOTUNED (provided 
delta values instead), it is difficult to evaluate whether there is 
a gap between our reimplementation and the original version. 

C. Internal validity. 
Threats to the internal validity relate to hyperparameter 

settings when fine-tuning our CFIWSE approach. For the 
nearest neighbor setting in CFS, we used the value suggested 
by Wang et al[31]. For the nearest neighbor setting in IWSE, 
we used the most common value of 5. The user-defined 
parameters  and  are set to default values of 5 
and 10.  

We only study the oversampling proportion and within 
project scenario. Therefore, we encourage future studies to 
explore the impact of the hyperparameters on the usefulness 
of CFIWSE across different SDP contexts and scenarios. 

VII. CONCLUSION 
As far as SDP, feature selection and data balance are key 

contemporary research issues. In this paper, a hybrid 
preprocessing approach for defect prediction named CFIWSE 
is proposed to improve SDP performance through feature 
selection, minority sample synthesis and noise reduction, 
consisting of CFS and IWSE. CFS uses feature correlation and 
nearest neighbor theory to remove irrelevant and redundant 
features. IWSE is applied to synthesize a few samples and 
clean up the introduced noise samples to solve the problem of 
data imbalance. The proposed method is tested on SNA metric 
and code metric data calculated in real-world software. 
Several evaluation metrics were deployed to capture the 
performance of the methods tested on seven classifiers. The 
experimental results show that our method is better than the 
most advanced SMOTUNED and SYMPROD methods. 

Additionally, the contribution of method components has 
been ablated and the results show that the performance 
improvement achieved by combining CFS with IWSE is 
significantly higher than that achieved by using alone. 
Sensitivity studies on sampling proportions have also been 
carried out and the conclusions are as follows: proportions are 
recommended to be set between 0.5 and 2; B) if there were no 
prior knowledge, proportion is recommended to be set as 1. 

For future works, we plan to further study parameter-
setting in CFIWSE to improve SDP performance. 
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