
CFIWSE: A Hybrid Preprocessing Approach for
Defect Prediction on Imbalance Real-World Datasets

Jiaxi Xu, Jingwei Shang*, and Zhichang Huang

China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou, Guangdong, China
hickeyhsu@buaa.edu.com, shangjingwei@ceprei.com, huangzhichang@ceprei.com

*corresponding author

Abstract—Software Defect Prediction (SDP) predicts new

defects through machine learning trained with historical defect
data. The distribution of software defects is highly unbalanced,
which hinders the construction of defect prediction models. In
addition, previous studies were usually validated by public
datasets based on code metrics instead of real-world data. In this
work, SNA metrics and code metrics are computed on 9
representative real-world projects. A hybrid preprocessing
approach for defect prediction named CFIWSE is proposed to
improve SDP performance through feature selection, minority
sample synthesis and noise reduction, consisting of CFS and
IWSE. CFS uses correlation analysis and nearest neighbor
theory for feature selection. IWSE utilizes information weights
and edited nearest neighbor rule to alleviate overfitting and
noise introduced from minority sample synthesis. The proposed
method is verified by experiments on real-world data, and the
contribution of the method components and parameter
sensitivity are explored.

Keywords- Software defect prediction; Feature selection;
SMOTE; Minority sample synthesis.

I. INTRODUCTION
Software defect prediction (SDP) is now a hot subject

matter of software dependability because it gives direction for
software testing, minimizes overhead, and enhances the cost-
effectiveness ratio. Currently, forming a high number of
software tests during the software development process is an
essential method for enhancing software reliability. With the
increasing expansion of software size and complexity,
machine learning-based software defect prediction technology
has become an integral component of software reliability
assurance activities. By utilizing the historical defect data to
its fullest extent, it is possible to identify the potential defect
modules that may be hidden in the software. This enables
software testers to test the software more effectively and
pertinently, increase the likelihood of discovering hidden
defects, and ensure the quality of the software.

A. Motivation
Numerous academics have undertaken numerous

experiments on classifier algorithms for constructing defect
prediction models for a very long time. They applied various
classifiers to public datasets and evaluated the effectiveness of
the model using metrics. Various articles provide varying
conclusions regarding the appropriate classifier algorithm for
software defect prediction. In 2018, Agrawal et al.[1]

suggested that the enhancement of training data quality also
considerably enhanced the performance of software defect
prediction.

Some papers have added relevant processing methods to
address the issue of dataset quality. Most articles utilize
recursive feature elimination with cross-validation (RFECV)
to address the problem of redundant and incorrect features.
Typically, SMOTE technology is employed to fix the class
imbalance. Numerous noise reduction technologies are
available for the potential noise samples in the dataset.

Current research frequently uses CK measurement data
from NASA and PROMISE public sources to confirm their
findings. These public datasets have a small number of defect
features, and their class imbalance problem is less severe than
that of real-world software data. In a recent study, Gong et
al.[2] suggested that software network analysis (SNA) metrics
should be considered in SDP scenarios alone or in
combination with code metrics, whereas almost no SNA
metrics have been used in recent software defect prediction
model studies.[3]

In real-world datasets using SNA metrics, datasets tend to
have more features and more severe class imbalances, and the
effectiveness of the commonly used feature filtering and
SMOTE methods cannot be guaranteed. To process the
software defect dataset, a novel hybrid software defect dataset
processing method (CFIWSE) is proposed, which combines
correlation analysis-based feature selection (CFS) and
information weighted synthetic sampling approach with
edited nearest neighbor rule (IWSE). Ensemble learning
classifiers are used to build prediction models.

To evaluate the proposed method on real-world datasets,
we have also developed a defect data extraction tool that
creates hybrid dependency graphs and calculates SNA metric
data from software source codes for various programming
languages. As ground truth, we utilized 32 versions of defect
reports from 9 software versions in the JIRA error reporting
system collected by Yatish et al.[4]. We then generated
datasets from the source code retrieved from the Apache
Software repository and conducted a number of experimental
validations.

B. Contribution
Overall, our work mainly includes the following

contributions:
1. Considering the similarity and difference of SNA

features, CFIWSE combines feature-feature correlation

392

2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

2693-9371/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS-C57518.2022.00064

and feature-defect correlation for feature selection,
effectively reducing irrelevant and redundant features.

2. To repair the class imbalance problem of defect datasets,
avoid the over-generalization of minority class samples
and reduce noise samples, CFIWSE improves minority
sample synthesis through three aspects: sample
selection, sample generation and sample cleaning.

3. To illustrate the effectiveness of our proposed CFIWSE
method, we developed a cross-language software SNA
metric data extraction tool to generate datasets from 32
versions of code from 9 real-world software and conduct
extensive experiments. The experimental results show
that our proposed CFIWSE method improves the AUC
on this dataset by an average of 4-13% over
SMOTUNED[1], the currently widely accepted state-of-
the-art in SDP, and 1-15% over SYMPROD[5], the state-
of-the-art in data balancing.

4. Ablation studies were also conducted to experiment with
feature selection methods, sample synthesis methods,
sample synthesis ratios tuning in CFIWSE. The
conclusions show that both CFS and IWSE contribute
positively to the defect prediction performance and are
better to use combined. Fine-tuning the sample synthesis
ratio can further improve the model performance in most
cases.

C. Paper Organization
The remainder of the paper is organized as follows:

Section II gives brief reviews of software defect prediction
and data processing. Section III introduces our proposed
method CFIWSE. Section IV provides the experimental
setting. The results are provided and analyzed in Section V.
Section VI discloses the threats to validity. Section VII draws
the conclusions.

II. RELATED WORKS
This section mainly discusses the current literature work

in the field of software defect prediction based on machine
learning, including software defect data, defect feature
selection, sample sampling technology and classifier
algorithms.

Machine learning is the mainstream method of defect
prediction models at present[6]. Many researchers have
verified the effectiveness of machine learning for software
module risk prediction, and their conclusions on the optimal
classifier algorithm are different. In the latest research, Alazba
et al.[7] Believe that the best classifier model can be obtained
by optimizing the hyperparameters of the tree-based ensemble
learning models.

Software metrics: Software metrics refer to quantified
features extracted from software from different dimensions as
input to a machine learning classifier.

The earliest software metric applied to SDP was the
measurement of code and its complexity. As early as 1978,
Halstead et al. [21] proposed the Halstead metric for code size.
In 1994, Chidamber and Kmerer [22] proposed the famous
CK metric element, which became one of the standard metric
tuples in the SDP field; in the same year, Abreu et al. [23]
proposed the MOOD metric element. In 1996, Ohlsson et al.

[24] applied McCabe cyclomatic complexity to an Ericsson
telecom system. In 2007, Menzies et al. [25] compared the
impact of various code metrics on SDP. Today, code metrics,
especially CK metrics, are still one of the mainstream metrics
in the SDP field.

Although code metrics and process metrics have been
widely used in SDP, as technology advances and software
structures continue to become more complex, the
shortcomings of these metrics, such as the lack of
representation of software structures and software element
associations, have become a bottleneck in the development of
SDP. In 2008, Zimmermann et al. [29] predicted defects by
relying on graph-centric metrics.

In the subsequent period from 2009-2015, several
researchers have applied SNA metrics to different software
and classifiers ([7], [14]–[17]). However, its application in the
field of software defect prediction is still rare due to the
difficulty of software network construction and analysis,
which often requires software bytecodes. Gong et al.[2]
conducted extensive experiments on software defect
prediction techniques based on dependency graphs and
suggested that SNA metrics alone or together with code
metrics should be considered in SDP scenarios, while recent
software defect prediction model studies have rarely used the
SNA metric.

Dataset: Public datasets such as MDP and PROMISE are
widely used for experimental verification in the research of
machine learning-based software defect prediction. However,
many researchers have questioned the quality and credibility
of public datasets. In 2009, Christian Bird et al.[18]
questioned the fairness and authenticity of public datasets, and
found that these defective data posed a serious challenge to
the validity and universality of defect prediction models. In
2013, Shepperd et al.[19] compared the defect data from two
versions of MDP and PROMISE, and found that quality
problems such as data loss, value anomaly, and instance
repetition, and their differences had significant influence on
software defect prediction results. David Gray et al.[20]
analyzed the characteristics of 13 NASA raw datasets and
designed a data cleaning process. Each dataset has 6% -90%
of records to be cleaned. Research should therefore be
validated in real-world datasets.

Feature selection: By eliminating redundant and
unnecessary features and lowering the time and space
complexity of the algorithms, feature selection aims to
increase the accuracy of software defect prediction models.
The two most common types of feature selection techniques
are filter-based and wrapper-based.

The filter-based feature selection methods did not consider
the correlation within the feature, and because its evaluation
criteria are independent of specific learning algorithms, the
classification accuracy is low. The feature generality of
wrapper-based feature selection methods is not strong, the
subset space exponentially explodes with the increase in the
number of features, and the algorithm performance decreases.

393

Balancing: The problem of class imbalance has been
regarded as a key problem in machine learning and data
mining, which refers to the serious imbalance of the
proportion of different classes of instances in the dataset.
Initially, people balanced the proportion of datasets by
reducing the sampling of the major class (undersampling), but
this method would greatly reduce the amount of data. The
SMOTE algorithm proposed by Chawla et al. [21] is one of
the most commonly used class balance methods in academia,
but this method may increase the risk of overfitting. To this
end, people have proposed variants of SMOTE. Batista et al.
[22] proposed SMOTE_TomekLinks and SMOTE_ENN.
Han et al. [23] proposed Borderline-SMOTE. He et al. [24]
added different weights for different minority instances
(ADASYN). Douzas et al. applied k-means clustering [25]
and self-organizing map [26] to the SMOTE method. Lee et
al.[27] added Gaussian random variables to the SMOTE
synthesis sample process. Barua et al. [28] gave the minority
sample weight based on the distance to the nearest majority
sample. In 2017, Rivera [29] introduced propensity score
matching to the balancing and noise reduction methods.

III. METHODOLOGY
In this section, we introduce our novel hybrid software

defect data-processing approach CFIWSE, with two main
components: correlation-based feature selection (CFS) and
information weighted synthetic sampling approach with
edited nearest neighbors’ rule (IWSE).

A. Framework
This section will introduce the framework of our method,

which is divided into four stages, as shown in Figure 1: 1.
Graph Generation and Metrics Calculation; 2. Correlation-
based Feature Selection (CFS); 3. Information weighted
Sample Synthesis approach with Edited nearest neighbors rule
(IWSE); 4. Training and predicting.

In the first phase, software file dependency and entity
inheritance are analyzed based on the open source analysis
tool EMERGE1 and fused to generate a hybrid dependency
graph. Then, based on the formulas proposed by
Chidamber[9] et al and Yang et al.[30], SNA metrics and code

metrics are calculated from the hybrid dependency graph to
generate training datasets and predicted datasets.

In the second stage, we improved the CHIFS algorithm
based on Wang et al[31] and propose correlation-based
feature selection (CFS). Logistic regression was used to
analyze the feature-defect correlation, excluding the unrelated
features. The Pearson correlation coefficient is used to
evaluate the feature-feature correlation, and the K nearest
neighbor algorithm is introduced instead of the full join
method used by Wang et al. to generate the feature correlation
connection graph. After spectral clustering, the feature quality
coefficients are calculated according to the feature-feature
correlation and the feature-defect correlation, and the feature
quality coefficients are used as the search order to select the
prefix features.

In the third stage, we propose information weighted
synthetic sampling approach with edited nearest neighbors’
rule (IWSE), which introduce information weight in
SMOTE[21] to select more important samples, and use the
Edited Nearest-neighbors algorithm (ENN) [22] to exclude
outliers from the synthetic samples and reduce the noise
introduced by SMOTE.

In the fourth stage, cross validation is used to optimize the
machine learning classifier, and the training set is used to train
the optimized machine learning classifier for the defect
prediction task of the dataset to be predicted.

B. Data Extraction
One of the most crucial components of SDP based on

machine learning is data. As indicated in Section II, many
questions have been raised about the reliability and validity of
the commonly utilized public datasets. Recently, Yatish et
al.[4] established a carefully selected benchmark defect
dataset by mining the closed issues reports from 9
representative open source software in the JIRA problem
management system, linking these problem reports to the
specified earliest affected version.

We use Yatish's dataset[4] as the ground truth for a
number of reasons: 1. Software types in the dataset include
search engine libraries, programming languages, databases,
and integration frameworks. 2. The range of the class
imbalance ratio is broad. 3. Software size ranges from large
(Camel, Derby), medium (ActiveMQ, HBase, Hive, Wicket),
to tiny (Groovy, JRuby, Lucene). We obtained the

1 https://github.com/glato/emerge

Figure 1 Framework of CFIWSE

394

corresponding source code for each version for metric
calculation from GitHub and Apache Repository.

Code Metrics: We use the code metrics calculator
developed by Aniche[32] to calculate the code metrics
consisting of 7 CK metrics and 36 code statistical metrics.

SNA Metrics: First, the open source code analysis tool
EMERGE is used to extract file dependence and entity
inheritance relations from the software code. EMERGE is a
source code static analysis tool that, unlike methods employed
by other research institutions in SNA Metrics, does not require
software code to be built, allowing it to be used for software
development processes. We fuse the file dependency graph
and entity inheritance graph from EMERGE analysis
through file path matching, attach the entity inheritance
relation to the file element where the entity is located, and
obtain a hybrid dependency graph with inheritance
relationships.

We calculated a total of 30 SNA metrics from the hybrid
dependency graph based on the SNA metrics calculation
method proposed by Yang et al.[30].

Table 1 Metrics we calculated
Calculator Metric Type Source

Paper
Count

code metrics calculator CK Metrics [22] 7
Code Statistical Metrics [32] 36

SNA metric calculator SNA metrics [30] 30

C. Correlation-based Feature Selection (CFS)
After introducing the SNA metric, the dataset contains 73

features in total. To eliminate irrelevant and redundant
features, feature selection is necessary. Section II introduces
the commonly used wrapping-based and filtering-based
feature selection methods and their disadvantages. To
eliminate these drawbacks, we start with feature correlation
and combine the wrapped and filtered feature selection
methods.

The feature correlation we consider includes: 1)
correlation between features and defect distribution (Feature-
defect Correlation); 2) the correlation between one feature and
another (Feature-feature Correlation). We propose a
conjecture that features with low feature-defect correlation are
likely to be irrelevant features; feature subsets with high
feature-feature correlation may have redundant features. We
improve the CHIFS method proposed by Wang et al.[31], and
propose a correlation-based feature selection approach(CFS).
1) Feature-defect Correlation Analysis

First, the irrelevant features are excluded by a filter-based
method. Some studies[33] have shown that logistic regression
has good performance in predicting software defects, so we
used logistic regression models to analyze the correlation of
each feature with software defects. We define

 as a software defect dataset consisting
of n samples. For each defect sample ,
is feature amount of , and is the defect class of (1 for
positive, 0 for negative). To avoid the model parameters being
dominated by data with a large or small distribution range, the
dataset is first normalized using a min-max normalization
algorithm to unify the scale of each feature.

After the normalized dataset is obtained, the probability
 that sample is positive is calculated using multivariate

logistic regression:

A multivariate logistic regression model can be fitted by
using the maximum likelihood estimate to obtain the
regression parameter . The odd ratio (OR)
is a commonly used indicator of logistic regression model,
which reflects the strength of the association between the
independent variable and the dependent variable. OR>1
suggests that the characteristics and software defects were
positively correlated, OR<1 suggests that the feature and
software defects were negatively correlated, and OR=1
suggests the feature has a low correlation with software
defects. As suggested by Wang et al.[31], we considered
features with OR values in the interval (0.67, 1.50) as not
significantly related to software defects and removed them
from the feature set.
2) Feature-feature Correlation Analysis

The model adaptability decreases when there is a set of
features with strong internal correlation in the feature set.
Therefore, we used Pearson's correlation coefficient to
evaluate the correlation between features. For the two features

 and , and are the values of features and in the ith
sample. The Pearson coefficient between and is
calculated as:

Features are positively correlated when the Pearson
coefficient is positive and negatively correlated when the
Pearson coefficient is negative. When the Pearson coefficient
is equal to zero, the two variables are not correlated.

Wang et al. joined all features pairwise to form a fully
connected graph so that the similarity matrix

, refers to the i-th
feature. However, in the real-world dataset with SNA features,
the feature dimension is high, and the dataset size is large,
which causes great difficulties with the iteration of the fully
connected graph. We introduce the K-nearest neighbors
(KNN) algorithm into the construction of the similarity matrix
to make the similarity matrix sparser:

Degree matrix:
Laplacian matrix:
Normalized Laplacian matrix:
For that number of cluster cores , compute

the first k eigenvector of , and form the matrix
.

3) Feature Selection
The row vectors are clustered

using the K-means clustering algorithm. The product of the
Silhouette coefficient and the Cohesion degree is used to
evaluate the cluster results and determine the optimal cluster
core number k.

395

Then, according to the calculation method proposed by
Wang et al., the feature-feature metric parameter

and the feature-defect metric parameter
 are calculated, where is the cluster core

where is located, and is the defect distribution. The
quality coefficient of feature is calculated as follows:

Sequential forward selection was performed based on ,
and the optimal feature subset was selected based on the
average AUC of K-fold cross-validation.

D. Information Weighted Sample Synthesis with
Edited Nearest Neighbors Rule

At present, the most popular dataset balancing method in
machine learning is SMOTE[21]. However, this method
cannot avoid the problems of overfitting and noise
amplification due to the synthetic data strategy. Inspired by
MWMOTE[28] and SMOTE+ENN[22], this work introduced
both information weights and Wilson's Edited Nearest
Neighbor Rule (ENN) into the Synthetic Minority Over-
sampling Technique.

Information weighted sample synthesis with edited nearest
neighbors’ rule (ISWE) is proposed, which improves minority
sample synthesis through three aspects: sample selection,
sample generation and sample cleaning.

Han et al.[23], who proposed Borderline-SMOTE,
suggested that samples located near the decision boundary had
a significant impact on model performance. Barua et al.[28],
who proposed MWMOTE, implied that samples belonging to
the small-sized cluster (s) were also important. In line with
their conclusions, IWSE uses the ENN algorithm to clean up
noise after minority sample synthesis instead of deleting
samples before synthesis, in order to preserve as much
information as possible for a few classes of samples.

First, for each minority sample , KNN is used to
compute the majority of its k-nearest-neighbors

. of all samples in
 indicates the boundary of most classes. For each

majority boundary sample , its minority k-
nearest-neighbors set is
calculated. The minority sample set of all
indicates the minority boundary.

After minority boundary samples selection, the
importance of samples is evaluated by information weights.
For each minority sample , calculate its information
weight with every majority boundary sample :

and are set by users. Sum the information
weights to obtain the selection weights:

The larger is, the more important is. Normalize
the selection weight to obtain the sample selection probability:

Unlike SMOTE, is first clustered before synthetic
samples are generated. The minority sample is extracted
according to the sample selection probability , and
another minority sample is randomly selected from the
cluster to which belongs. The synthetic sample is randomly
generated on the connecting line of the two samples. The
synthetic sample generation step was repeated until synthetic
samples were enough.

After finishing sample synthesis, we use Wilson's Edited
Nearest Neighbor Rule (ENN) to reduce the noise introduced.
Unlike the method proposed by Batista et al., we only applied
ENN to synthetic samples. For each synthetic sample , find
its three nearest neighbors. Delete if there is more than 1
sample of the nearest neighbors belonging to the majority.

Through IWSE, minority samples are synthesized to repair
class imbalance, and the noise introduced by sample synthesis
is reduced.

E. Training and prediction
Through CFS and IWSE, a training dataset with feature

selection and balancing is constructed. We trained the defect
prediction classifiers on this training set. Alazba et al.[7]
suggested that the optimized tree-based ensemble learning
model performs well in software defect prediction tasks.
Therefore, we trained three ensemble classifiers, Random
Forest (RF), Extra Trees (ET), and AdaBoost (AB). We also
trained Logistic Regression (LoR), Stoical Gradient Descent
Classifier (SGDC), Decision Tree (DT), and Passive
Aggressive Classifier (PA).

IV. EXPERIMENT
To validate our proposed approach, we presented and

conducted the following research questions (RQs). We
addressed the research problems and validated our proposed
strategy by analyzing the experimental observations.

A. Research Questions
RQ1: Does the proposed method improve the performance of
software defect prediction?
RQ2: How does the proposed CFS contribute to performance
improvement? (Ablation study)
RQ3: How do different oversampling methods affect
prediction performance? (Ablation study)
RQ4: How sensitive are the sampling proportion? (Parameter
sensitivity)

RQ1 intends to verify the performance of the proposed
CFIWSE approach. RQ2 & RQ3 conducted ablation studies
to discuss the contribution of the proposed CFS and IWSE
approaches. RQ4 explored the sensitivity of sampling
proportion.

396

B. Datasets
For the reproducibility of experiments and the

convenience of comparison with the benchmark, we use
Yatish's dataset[4] as the ground truth due to the reasons
mentioned in Section III.B. The corresponding source code
for each version is obtained from GitHub and Apache
Repository for metric calculation. We construct a hybrid
dependency graph for each version of the source code and
calculate SNA metrics as well as code metrics.

The first 80% of each project’s dataset is the train-set,
while the last 20% of each project’s dataset is the test-set.
Table 2 show the details of our dataset.

Table 2 Datasets
Project Versions Total samples Imbalance

Rate
Train

samples
Test samples

ActiveMQ 5 10691 10.20 8553 2138
camel 4 23688 34.76 18951 4737
derby 2 5380 2.72 4304 1076
groovy 3 2152 10.11 1722 430
hive 3 4628 6.68 3703 925
HBase 3 3962 2.79 3170 792
jruby 3 3615 7.79 2892 723
lucene 3 1976 2.98 1581 395
wicket 3 4910 14.46 3928 982

C. Experiment Design
For RQ1, to verify the performance of the proposed

CFIWSE, it is compared with the following methods: a. no
data processing (RAW); b. state-of-the-art: SMOTUNED[1]; c.
state-of-the-art: SYMPROD[5]. RFECV is used for feature
selection with SMOTUNED and SYMPROD.

For RQ2, to study the contribution of the proposed CFS to
the defect prediction effect, it is compared with the following
feature selection methods: a. no feature selection (noFS); b.
common-used wrappers approach: recursive feature
elimination with cross-validation (RFECV). All feature
selection methods were used with the proposed balancing
method IWSE to be fair.

For RQ3, in order to study the contribution of the proposed
IWSE to the defect prediction effect, it is compared with the
following balancing methods: SMOTE_ENN[22],
SMOTUNED[1], SYMPROD[5], Random Undersampler,
Random Oversampler, MSMOTE[35], NRAS[29],
CURE_SMOTE, kmeans_SMOTE[25], CCR[36] and
SMOTE_FRST_2T[37]. All balancing methods would be used
with the proposed feature selection method CFS to be fair.

For RQ4, we tend to study the sensitivity of the
oversampling proportion.

D. Evaluation
The F1 score and AUC score are commonly utilized in the

SDP field[30][38]. The confusion matrix is based on the
number of predicted positives and negatives versus the
number of actual positives and negatives, as Table 3 shows.

Table 3 Confusion matrix
 Predicted Negative Predicted Positive

Actual Negative TN FP
Actual Positive FN TP
The formulas for calculating precision and recall are listed

in the following:

Precision can be an effective metric of model performance
when the consequence of a false positive is serious. Recall is
concerned with circumstances in which real faulty classes are
predicted to be non-defective. F1 is a harmonic mean of
accuracy and recall, as defined by (13).

The Receiver Operating Characteristic (ROC) curve
provides a powerful tool for understanding the trade-off
between true and false positive rates. In practice, the area
under an ROC curve (AUC) is an effective way to summarize
the curve into one single value.

V. RESULTS AND ANALYSIS
Experiments' results and analysis are presented in this

section.

A. RQ1: Does the proposed method improve the
performance of software defect prediction?

The efficacy of the proposed CFIWSE and compared
methods were reported in terms of average AUC and F1
among 7 classifiers over 9 projects, as shown in Table
4&Table 5, in which the best results are bolded.

Table 4 Average AUC for RQ1
RAW SMOTUNED SYMPROD CFIWSE

activemq 0.566±0.036 0.623±0.043 0.649±0.046 0.695±0.023
camel 0.535±0.046 0.588±0.075 0.565±0.058 0.656±0.063
derby 0.696±0.08 0.624±0.101 0.722±0.049 0.729±0.039
groovy 0.706±0.068 0.77±0.096 0.775±0.081 0.873±0.027

hive 0.624±0.052 0.613±0.092 0.661±0.028 0.722±0.022
hbase 0.622±0.029 0.604±0.068 0.663±0.04 0.693±0.023
jruby 0.665±0.057 0.629±0.086 0.68±0.047 0.762±0.059
lucene 0.72±0.059 0.66±0.127 0.715±0.039 0.734±0.04
wicket 0.571±0.034 0.688±0.089 0.577±0.017 0.733±0.037

Table 5 Average F1 for RQ1
RAW SMOTUNED SYMPROD CFIWSE

activemq 0.225±0.105 0.351±0.067 0.389±0.053 0.424±0.019
camel 0.089±0.09 0.231±0.087 0.171±0.092 0.319±0.08
derby 0.572±0.152 0.612±0.092 0.652±0.058 0.667±0.038
groovy 0.449±0.065 0.285±0.139 0.402±0.107 0.387±0.048

hive 0.347±0.108 0.34±0.093 0.399±0.032 0.445±0.039
hbase 0.403±0.051 0.421±0.04 0.473±0.059 0.492±0.023
jruby 0.434±0.082 0.307±0.063 0.423±0.057 0.443±0.086
lucene 0.485±0.085 0.374±0.106 0.453±0.087 0.445±0.064
wicket 0.228±0.087 0.282±0.076 0.242±0.038 0.39±0.035
It can be observed that CFIWSE outperforms RAW,

SMOTUNED and SYMPROD for 7/9 of the datasets. We
conducted a t-test on the results to verify the significance of
the advantage, and the results showed that the significance of
CFIWSE was accepted () in most cases.

Specifically, for the AB, ET, LoR and SGDC models,
CFIWSE obtains significantly higher AUC and F1 values than
RAW, SMOTUNED and SYMPROD methods. For the PA and

397

RF classifiers, CFIWSE obtains slightly higher AUC values.
From the perspective of the project, CFIWSE obtains
significantly higher AUC and F1 values except for groovy and
lucene.

B. RQ2: How does the proposed CFS contribute to
performance improvement? (Ablation study)

We conducted an ablation study on software defect
prediction to evaluate the contributions of the components of
our CFIWSE approach. RQ2 aims to explore the contribution
of defect prediction performance improvement through CFS.
For comparison, we replaced the feature selection approach
with noFS (no feature selection) and the most widely used
approach RFECV (Recursive Feature Elimination with Cross-
Validation), leaving the rest of the components unchanged.

The efficacy of the proposed CFS and compared methods
were reported in terms of average AUC and F1 among 7
classifiers over 9 projects as shown in Table 6&Table 7, in
which the best results are bolded.

It can be observed from Table 6&Table 7 that CFS
outperforms noFS and RFECV for most of the datasets, except
for hbase and hive. Compared with the most widely used
RFECV, CFS leads AUC by 0.25%-5.16% and F1 by 0.11%-
8.23% in seven projects. On hbase and hive, CFS is 0.25%-
1.55% behind.

We tested the dominance significance and found it less
significant than the results in RQ1. This indicates that CFS
alone is not enough to significantly improve the prediction
effect.

C. RQ3: How do different oversampling methods
affect prediction performance? (Ablation study)

RQ3 aims to explore the contribution of IWSE to the
improvement of defect prediction performance. For
comparison, we replaced the sampling component of the
method with 10 other oversamplers (SMOTE_ENN[22],
SMOTUNED[1], SYMPROD[5], Random Oversampling,
MSMOTE[35], NRAS[29], CURE_SMOTE[39],
kmeans_SMOTE[25], CCR[36], SMOTE_FRST_2T[37]) and

Table 8 Average AUC for RQ3
SMOTE_ENN SMOTUNED Random

UnderSampler
Random

OverSampler
activemq 0.682±0.038 0.623±0.059 0.679±0.029 0.673±0.062

camel 0.652±0.046 0.588±0.069 0.655±0.074 0.613±0.08
derby 0.727±0.052 0.624±0.13 0.699±0.099 0.723±0.06
groovy 0.849±0.035 0.77±0.128 0.794±0.052 0.806±0.062

hive 0.73±0.015 0.613±0.107 0.68±0.079 0.689±0.055
hbase 0.693±0.028 0.604±0.082 0.679±0.037 0.669±0.046
jruby 0.743±0.107 0.629±0.122 0.77±0.039 0.713±0.088

lucene 0.712±0.038 0.66±0.116 0.709±0.05 0.699±0.07
wicket 0.722±0.049 0.688±0.048 0.698±0.075 0.664±0.089

Borderline
SMOTE2

MSMOTE NRAS CURE
SMOTE

activemq 0.676±0.046 0.677±0.049 0.635±0.05 0.643±0.049
camel 0.617±0.082 0.625±0.085 0.568±0.053 0.591±0.067
derby 0.721±0.066 0.721±0.063 0.69±0.016 0.705±0.075
groovy 0.843±0.054 0.819±0.05 0.765±0.058 0.768±0.049

hive 0.691±0.025 0.704±0.02 0.689±0.04 0.683±0.031
hbase 0.685±0.046 0.665±0.047 0.668±0.039 0.656±0.035
jruby 0.763±0.073 0.736±0.069 0.749±0.051 0.696±0.077

lucene 0.716±0.036 0.719±0.034 0.725±0.028 0.727±0.036
wicket 0.667±0.056 0.659±0.06 0.603±0.046 0.588±0.02

Kmeans
SMOTE

CCR SMOTE
FRST_2T

IWSE

activemq 0.593±0.014 0.643±0.057 0.663±0.052 0.695±0.023
camel 0.512±0.013 0.592±0.075 0.624±0.074 0.656±0.063
derby 0.696±0.08 0.715±0.067 0.727±0.057 0.729±0.039
groovy 0.694±0.079 0.685±0.111 0.811±0.06 0.873±0.027

hive 0.593±0.047 0.65±0.057 0.699±0.039 0.722±0.022
hbase 0.621±0.02 0.655±0.051 0.661±0.038 0.693±0.023
jruby 0.668±0.034 0.683±0.083 0.726±0.075 0.762±0.059

lucene 0.651±0.075 0.69±0.081 0.695±0.068 0.734±0.04
wicket 0.565±0.022 0.637±0.076 0.685±0.076 0.733±0.037

Table 9 Average F1 for RQ3
SMOTE_ENN SMOTUNED Random

UnderSampler
Random

OverSampler

activemq 0.412±0.025 0.351±0.065 0.379±0.04 0.395±0.057
camel 0.297±0.024 0.231±0.086 0.251±0.061 0.233±0.112
derby 0.667±0.051 0.612±0.083 0.652±0.069 0.649±0.078
groovy 0.355±0.056 0.285±0.167 0.269±0.099 0.354±0.095

hive 0.445±0.049 0.34±0.103 0.392±0.08 0.418±0.059
hbase 0.491±0.032 0.421±0.057 0.477±0.058 0.465±0.053
jruby 0.431±0.097 0.307±0.087 0.471±0.075 0.434±0.109

lucene 0.427±0.062 0.374±0.105 0.418±0.068 0.434±0.122
wicket 0.358±0.039 0.282±0.062 0.306±0.078 0.314±0.078

Borderline
SMOTE2

MSMOTE NRAS CURE_SMOTE

activemq 0.4±0.028 0.413±0.042 0.378±0.091 0.392±0.071
camel 0.242±0.096 0.238±0.111 0.179±0.107 0.234±0.124
derby 0.642±0.11 0.637±0.108 0.581±0.036 0.588±0.145
groovy 0.424±0.097 0.435±0.057 0.48±0.107 0.456±0.063

hive 0.439±0.026 0.437±0.026 0.44±0.035 0.429±0.032
hbase 0.491±0.057 0.467±0.052 0.479±0.056 0.461±0.062
jruby 0.493±0.095 0.496±0.102 0.541±0.061 0.477±0.13

lucene 0.443±0.082 0.454±0.077 0.432±0.059 0.447±0.074
wicket 0.335±0.059 0.341±0.048 0.275±0.075 0.266±0.05

Kmeans
SMOTE

CCR SMOTE_FRST_2T IWSE

activemq 0.308±0.034 0.372±0.075 0.373±0.037 0.424±0.019
camel 0.05±0.051 0.204±0.109 0.244±0.092 0.319±0.08
derby 0.563±0.163 0.641±0.082 0.657±0.069 0.667±0.038
groovy 0.447±0.108 0.339±0.198 0.388±0.07 0.387±0.048

hive 0.285±0.111 0.369±0.062 0.419±0.027 0.449±0.039
hbase 0.399±0.04 0.453±0.065 0.459±0.042 0.492±0.023
jruby 0.449±0.062 0.435±0.132 0.446±0.098 0.443±0.086

lucene 0.386±0.132 0.41±0.156 0.432±0.11 0.457±0.064
wicket 0.211±0.05 0.306±0.087 0.328±0.043 0.39±0.035

Table 6 Average AUC for RQ2
CFS RFECV noFS

activemq 0.698±0.027 0.695±0.021 0.677±0.031
camel 0.675±0.028 0.671±0.035 0.661±0.042
derby 0.729±0.035 0.704±0.041 0.722±0.062
groovy 0.872±0.027 0.839±0.022 0.838±0.023

hive 0.723±0.02 0.738±0.013 0.724±0.012
hbase 0.69±0.02 0.694±0.022 0.688±0.033
jruby 0.762±0.056 0.748±0.063 0.749±0.036
lucene 0.736±0.037 0.713±0.087 0.704±0.046
wicket 0.726±0.034 0.675±0.081 0.726±0.033

Table 7 Average F1 for RQ2
CFS RFECV noFS

activemq 0.435±0.016 0.434±0.026 0.424±0.031
camel 0.347±0.03 0.338±0.039 0.305±0.051
derby 0.664±0.037 0.619±0.076 0.664±0.05
groovy 0.384±0.057 0.358±0.08 0.353±0.078

hive 0.439±0.036 0.454±0.036 0.444±0.041
hbase 0.496±0.02 0.499±0.027 0.491±0.037
jruby 0.432±0.078 0.429±0.063 0.428±0.078
lucene 0.448±0.059 0.413±0.104 0.417±0.061
wicket 0.396±0.038 0.313±0.093 0.35±0.06

398

an under-sampler (Random Undersampling), leaving the rest
of components unchanged.

The efficacy of the proposed IWSE and compared
sampling methods were reported in terms of average AUC and
F1 among 7 classifiers over 9 projects as shown in Table
8&Table 9, in which the best results are bolded.

It can be observed from Table 8&Table 9 that IWSE
outperforms other sampling methods for 6/9 of the datasets.
The most competitive competitor is SMOTE_ ENN, which
uses a similar noise reduction method. However, IWSE still
defeats it in most cases.

D. RQ4: How sensitive are the of the sampling
proportion? (Parameters sensitivity)

RQ4 tends to further study how parameters setting
influence defect prediction performance. We focus on the
parameter-setting issues that are discussed and concerned in
the proportion of minority sample synthesis.

Many minority sample synthesis techniques have been
proposed in various fields. It should be noted that the number
of samples generated by most techniques is freely chosen, and
generally defaults to generating minority samples until the
number of minority and majority samples is equal. Agrawal et
al. suggested that the parameters of sample synthesis had an
impact on defect prediction, and conducted experiments for
the parameter tuning of SMOTE. Being inspired, we explored
the proportion of the proposed IWSE and carried out
experimental verification of 6 levels of proportion.

We set the proportions of six levels: [0.1, 0.2, 0.5, 1, 2, 5].
Average AUC values for each proportion level on seven
classifiers are reported in Table 10Error! Reference source
not found. and highlighted using color depth. The results
show that the optimal scale settings are mostly concentrated
between 0.5 and 2, with 1 in most cases, which is in line with
the recommended settings in many other articles.

Figure 2 details the AUC performance of different
classifiers on each dataset at different proportions, showing
the following:

a) Optimal proportions for different classifiers vary (but
are usually concentrated between 0.5 and 2;

b) Different datasets have different sensitivities to
proportion, and the average difference between the best and
worst performance of AUC is 7%-16%.

c) The worst performances are usually proportion=0.1 or
proportion=5.

When the proportions are too low, there is too little sample
synthesis to improve the quality of the dataset. When the
proportions are too high, the number of synthetic samples are
far more than the real samples, which not only causes class
imbalance in the other direction, but also inevitably causes
serious overfitting and noise introduction problems. We
recommend that users tune proportions within 0.5 to 2 when
applying IWSE to different datasets, or use the default
proportion=1 if there are no tuning resources.

VI. THREATS TO VALIDITY

A. Construct Validity.
Threats to construct validity relate to dataset selection. We

used Yatish et al.[4] dataset as the ground truth when
conducting our experiments. We built hybrid dependency
graphs from the source code and calculated the SNA metrics
and code metrics instead of directly using the statistical
metrics provided by Yatish et al. Although Yatish et al.[4]
sought to eliminate some of the associated noise with the
aforementioned inconsistencies, some amount of noise in the
dataset cannot be avoided.

Another threat to construct validity is that we quantify the
correlation of metrics by the Pearson Correlation Coefficient.
Spearman's and Kendall's Correlation Coefficients and
Mutual Information Coefficient (MIC) is also commonly used
to measure the correlation. As such, it presents a threat to the
CFS that we proposed in Section III.C. However, Wang et
al.[31] compared the performances of Pearson's, Spearman's,
Kendall's correlation coefficients and MIC, concluding that
Pearson's is the best. Nevertheless, we encourage future
studies to revisit the performance of our studies with different
correlation coefficients.

B. External Validity.
In nine fixed open source software projects developed in

JAVA, we analyzed the validity of SNA measurement
compared with code metrics. Although the research projects
are varied, our findings may not be extended to projects with
different module sizes and versions.

Moreover, since the source code of the state-of-the-art
SMOTUNED was not opened, we reimplemented the

Table 10 Average AUC for each proportion level
 0.1 0.2 0.5 1 2 5
activemq 0.619 0.645 0.674 0.681 0.692 0.652

camel 0.560 0.602 0.647 0.679 0.679 0.645
derby 0.675 0.685 0.709 0.724 0.693 0.635
groovy 0.789 0.812 0.816 0.862 0.830 0.700

hive 0.648 0.657 0.703 0.722 0.700 0.637
hbase 0.639 0.668 0.688 0.703 0.659 0.593
jruby 0.720 0.753 0.763 0.746 0.750 0.687
lucene 0.707 0.711 0.736 0.734 0.726 0.638
wicket 0.594 0.600 0.684 0.701 0.751 0.725

Figure 2 AUC performance of different classifiers on each dataset

at different proportion

399

SMOTUNED based on the pseudo-code Agrawal et al.[1]
provided. Since Agrawal et al. [1] did not disclose the absolute
value of the experimental results of SMOTUNED (provided
delta values instead), it is difficult to evaluate whether there is
a gap between our reimplementation and the original version.

C. Internal validity.
Threats to the internal validity relate to hyperparameter

settings when fine-tuning our CFIWSE approach. For the
nearest neighbor setting in CFS, we used the value suggested
by Wang et al[31]. For the nearest neighbor setting in IWSE,
we used the most common value of 5. The user-defined
parameters and are set to default values of 5
and 10.

We only study the oversampling proportion and within
project scenario. Therefore, we encourage future studies to
explore the impact of the hyperparameters on the usefulness
of CFIWSE across different SDP contexts and scenarios.

VII. CONCLUSION
As far as SDP, feature selection and data balance are key

contemporary research issues. In this paper, a hybrid
preprocessing approach for defect prediction named CFIWSE
is proposed to improve SDP performance through feature
selection, minority sample synthesis and noise reduction,
consisting of CFS and IWSE. CFS uses feature correlation and
nearest neighbor theory to remove irrelevant and redundant
features. IWSE is applied to synthesize a few samples and
clean up the introduced noise samples to solve the problem of
data imbalance. The proposed method is tested on SNA metric
and code metric data calculated in real-world software.
Several evaluation metrics were deployed to capture the
performance of the methods tested on seven classifiers. The
experimental results show that our method is better than the
most advanced SMOTUNED and SYMPROD methods.

Additionally, the contribution of method components has
been ablated and the results show that the performance
improvement achieved by combining CFS with IWSE is
significantly higher than that achieved by using alone.
Sensitivity studies on sampling proportions have also been
carried out and the conclusions are as follows: proportions are
recommended to be set between 0.5 and 2; B) if there were no
prior knowledge, proportion is recommended to be set as 1.

For future works, we plan to further study parameter-
setting in CFIWSE to improve SDP performance.

ACKNOWLEDGMENT
The authors would like to thank all reviewers for their

questions and constructive suggestions.

REFERENCES
[1] A. Agrawal and T. Menzies, “Is ‘better data’ better than ‘better data

miners’?: On the benefits of tuning SMOTE for defect prediction,”
Proc. - Int. Conf. Softw. Eng., pp. 1050–1061, 2018, doi:
10.1145/3180155.3180197.

[2] L. Gong, G. K. K. Rajbahadur, A. E. Hassan, and S. Jiang, “Revisiting
the Impact of Dependency Network Metrics on Software Defect
Prediction,” IEEE Trans. Softw. Eng., pp. 1–19, 2021, doi:
10.1109/TSE.2021.3131950.

[3] S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic literature
review and meta-analysis on cross project defect prediction,” IEEE
Trans. Softw. Eng., vol. 45, no. 2, pp. 111–147, 2019, doi:
10.1109/TSE.2017.2770124.

[4] S. Yatish, J. Jiarpakdee, P. Thongtanunam, and C. Tantithamthavorn,
“Mining Software Defects: Should We Consider Affected Releases?,”
Proc. - Int. Conf. Softw. Eng., vol. 2019-May, pp. 654–665, 2019, doi:
10.1109/ICSE.2019.00075.

[5] I. Kunakorntum, W. Hinthong, and P. Phunchongharn, “A Synthetic
Minority Based on Probabilistic Distribution (SyMProD)
Oversampling for Imbalanced Datasets,” IEEE Access, vol. 8, pp.
114692–114704, 2020, doi: 10.1109/ACCESS.2020.3003346.

[6] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” IEEE Trans. Softw. Eng., vol.
37, no. 3, pp. 356–370, 2011, doi: 10.1109/TSE.2010.90.

[7] A. Alazba and H. Aljamaan, “Software Defect Prediction Using
Stacking Generalization of Optimized Tree-Based Ensembles,” Appl.
Sci., vol. 12, no. 9, 2022, doi: 10.3390/app12094577.

[8] M. H. Halstead, Elements of Software Science (Operating and
Programming Systems Series). New York, NY, USA, NY, USA:
Elsevier Science Inc., 1977.

[9] S. Chidamber and C. F. Kemerer, “A Metric suite for object oriented
design,” IEEE Trans. Softw. Eng., 1994.

[10] F. B. e Abreu and R. Carapuça, “Candidate metrics for object-oriented
software within a taxonomy framework,” J. Syst. Softw., vol. 26, no. 1,
pp. 87–96, 1994, doi: 10.1016/0164-1212(94)90099-X.

[11] N. Ohlsson and H. Alberg, “Predicting Fault-Prone Software Modules
in Telephone Switches,” IEEE Trans. Softw. Eng., 1996, doi:
10.1109/32.553637.

[12] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, 2007, doi: 10.1109/TSE.2007.256941.

[13] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proceedings - International
Conference on Software Engineering, 2008, pp. 531–540. doi:
10.1145/1368088.1368161.

[14] K. O. Elish and M. O. Elish, “Predicting defect-prone software
modules using support vector machines,” J. Syst. Softw., vol. 81, no. 5,
pp. 649–660, 2008, doi: 10.1016/j.jss.2007.07.040.

[15] H. Hata, T. Kikuno, and O. Mizuno, “A systematic review of software
fault prediction studies and related techniques,” Comput. Softw., vol.
29, no. 1, pp. 106–117, 2012, doi: 10.11309/jssst.29.1_106.

[16] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” in IEEE Transactions on Software
Engineering, 2008, vol. 34, no. 4, pp. 485–496. doi:
10.1109/TSE.2008.35.

[17] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of
classification techniques on the performance of defect prediction
models,” in Proceedings - International Conference on Software
Engineering, 2015, vol. 1, pp. 789–800. doi: 10.1109/ICSE.2015.91.

[18] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Putting
it all together: Using socio-technical networks to predict failures,” in
Proceedings - International Symposium on Software Reliability
Engineering, ISSRE, 2009, pp. 109–119. doi: 10.1109/ISSRE.2009.17.

[19] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some
comments on the NASA software defect datasets,” IEEE Trans. Softw.
Eng., vol. 39, no. 9, pp. 1208–1215, 2013, doi: 10.1109/TSE.2013.11.

[20] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,
“Reflections on the NASA MDP data sets,” IET Softw., vol. 6, no. 6,
pp. 549–558, 2012, doi: 10.1049/iet-sen.2011.0132.

[21] W. P. Chawla, N. V and Bowyer, K. W and Hall, L. O and Kegelmeyer,
“SMOTE: Synthetic Minority Over-sampling Technique,” J. Artif.
Intell. Res., vol. 16, no. 1, pp. 321–357, 2002, doi: 10.1613/jair.953.

[22] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the
behavior of several methods for balancing machine learning training
data,” ACM SIGKDD Explor. Newsl., vol. 6, no. 1, p. 20, 2004, doi:
10.1145/1007730.1007735.

[23] H. Han, W. Y. Wang, and B. H. Mao, “Borderline-SMOTE: A new
over-sampling method in imbalanced data sets learning,” Lect. Notes

400

Comput. Sci., vol. 3644, no. PART I, pp. 878–887, 2005, doi:
10.1007/11538059_91.

[24] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in Proceedings of the
International Joint Conference on Neural Networks, 2008, no. 3, pp.
1322–1328. doi: 10.1109/IJCNN.2008.4633969.

[25] G. Douzas, F. Bacao, and F. Last, “Improving imbalanced learning
through a heuristic oversampling method based on k-means and
SMOTE,” Inf. Sci. (Ny)., vol. 465, pp. 1–20, 2018, doi:
10.1016/j.ins.2018.06.056.

[26] G. Douzas and F. Bacao, “Self-Organizing Map Oversampling
(SOMO) for imbalanced data set learning,” Expert Syst. Appl., vol. 82,
no. Japkowicz 2000, pp. 40–52, 2017, doi:
10.1016/j.eswa.2017.03.073.

[27] H. Lee, J. Kim, and S. Kim, “Gaussian-based SMOTE algorithm for
solving skewed class distributions,” Int. J. Fuzzy Log. Intell. Syst., vol.
17, no. 4, pp. 229–234, 2017, doi: 10.5391/IJFIS.2017.17.4.229.

[28] S. Barua, M. M. Islam, X. Yao, and K. Murase, “MWMOTE - Majority
weighted minority oversampling technique for imbalanced data set
learning,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 2, pp. 405–425,
2014, doi: 10.1109/TKDE.2012.232.

[29] W. A. Rivera, “Noise Reduction A Priori Synthetic Over-Sampling for
class imbalanced data sets,” Inf. Sci. (Ny)., vol. 408, pp. 146–161, 2017,
doi: 10.1016/j.ins.2017.04.046.

[30] Y. Yang, J. Ai, and F. Wang, “Defect Prediction Based on the
Characteristics of Multilayer Structure of Software Network,” in 2018
IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), 2018, pp. 27–34. doi: 10.1109/QRS-
C.2018.00019.

[31] F. Wang, J. Ai, and Z. Zou, “A Cluster-Based Hybrid Feature Selection
Method for Defect Prediction,” in Proceedings - 19th IEEE

International Conference on Software Quality, Reliability and
Security, QRS 2019, 2019, pp. 1–9. doi: 10.1109/QRS.2019.00014.

[32] M. Aniche, “Java code metrics calculator (CK).” 2015.
[33] G. K. Armah, G. Luo, K. Qin, and A. S. Mbandu, “Applying Variant

Variable Regularized Logistic Regression for Modeling Software
Defect Predictor,” Lect. Notes Softw. Eng., vol. 4, no. 2, pp. 107–115,
2016.

[34] D. R. Cox, “The regression analysis of binary sequences,” J. R. Stat.
Soc. Ser. B, vol. 20, no. 2, pp. 215–232, 1958.

[35] S. Hu, Y. Liang, L. Ma, and Y. He, “MSMOTE: Improving
classification performance when training data is imbalanced,” 2nd Int.
Work. Comput. Sci. Eng. WCSE 2009, vol. 2, pp. 13–17, 2009, doi:
10.1109/WCSE.2009.756.

[36] M. Koziarski and M. Wozniak, “CCR: A combined cleaning and
resampling algorithm for imbalanced data classification,” Int. J. Appl.
Math. Comput. Sci., vol. 27, no. 4, pp. 727–736, 2017, doi:
10.1515/amcs-2017-0050.

[37] E. Ramentol et al., “Fuzzy-rough imbalanced learning for the diagnosis
of High Voltage Circuit Breaker maintenance: The SMOTE-FRST-2T
algorithm,” Eng. Appl. Artif. Intell., vol. 48, pp. 134–139, 2016, doi:
10.1016/j.engappai.2015.10.009.

[38] W. Fu and T. Menzies, “Revisiting unsupervised learning for defect
prediction.” pp. 72–83, 2017. doi: 10.1145/3106237.3106257.

[39] L. Ma and S. Fan, “CURE-SMOTE algorithm and hybrid algorithm for
feature selection and parameter optimization based on random forests,”
BMC Bioinformatics, vol. 18, no. 1, pp. 1–18, 2017, doi:
10.1186/s12859-017-1578-z.

401

