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Abstract— Detecting code vulnerabilities is a crucial part in 

secure software development. Many static analysis tools have 
been proven useful in finding vulnerabilities, but generally there 
are some complex and subtle vulnerabilities that can escape 
detection. Manual audits are a complementary approach to 
using tools. Unfortunately, most manual analyses are tedious 
and error prone. To benefit from both the tools and manual 
audits, some work incorporates the auditor’s expertise into a 
static analysis tool during vulnerability discovery. Following 
this strategy, this paper presents vulnerability nets, which are a 
special Petri net that integrates with data dependence graphs 
and control flow graphs. Specifically, the proposed approach is 
intended for detecting taint-style vulnerabilities such as buffer 
overflows and injection vulnerabilities. In this paper, the 
construction and use of vulnerability nets are discussed in detail. 
Furthermore, we show the feasibility by presenting a case study 
in analyzing an example adapted from a real-world case. 

Keywords-vulnerability; security; static analysis; manual 
audits; petri nets 

I. INTRODUCTION 
Security threats are increasingly prevalent in today’s 

computer systems [1]. In software-based systems, code 
vulnerabilities (also known as security-related bugs) can lead 
to malicious attacks, which in turn cause security failures [2]. 
Thus, to find (and then fix) the potential vulnerabilities in the 
code is a natural tactic to enhance software security. 

The vast majority of security vulnerabilities are 
discovered by static code analysis [3]. The core idea behind 
static code analysis is to analyze a program without actually 
executing it. Many static analysis tools (e.g., [4, 5]) have been 
developed and adopted by developers to facilitate code 
review. Tools encapsulate certain security knowledge for 
vulnerability discovery, thereby freeing developers from 
manually spotting security flaws during software 
development. However, due to the difficulty of obtaining 
soundness and completeness, tools will always fail to 
uncover some subtle vulnerabilities (i.e., false negatives), or 
may produce substantial false alarms (i.e., false positives). 
For example, buffer overflows [6], one of the most notorious 
vulnerabilities, still cannot be fully addressed using 
automated tools alone. Instead, significant security expertise 
is often involved during detection of buffer overflows [7]. 

Manual audits are a complementary (not alternative) 
method to using automated tools. In the process of auditing, 
an analyst (i.e., the auditor) manually examine a code, based 
on his/her expertise, to find vulnerabilities that escape 
detection of tools. To aid analysts in auditing manually, some 

researchers analyze source code using techniques such as 
fault trees [8, 9], in which some crucial information of code 
is made explicit. However, manual audits are tedious, error 
prone, and costly, so it is normally impractical to manually 
audit a whole program. 

To benefit from both the static analysis tools and manual 
audits, some work (e.g., [10, 11]) has considered to 
incorporate the analyst’s security knowledge into a tool 
during the detection process. The knowledge (such as 
annotations [12]) provided by security auditors can guide the 
detection for vulnerabilities. To make contributions in this 
branch of research, in this paper, we present a novel 
representation of source code, called a vulnerability net, 
which is in the form of a Petri net structure. Our approach 
incorporates data dependence graphs and control flow graphs 
into a vulnerability net. The combination explicitly describes 
the key information of a code and provides a good view for 
analysts to audit source code. Analysts can add certain 
knowledge to the net to augment vulnerability discovery. 
Like standard Petri nets, vulnerability nets are executable, 
thus allowing analysts to conveniently track the data of 
interest to examine the existence of a vulnerability. 
Specifically, our approach is intended for finding taint-style 
vulnerabilities, which includes a number of critical 
vulnerabilities such as buffer overflows [6, 13], injection 
vulnerabilities [14, 15], and cross-site scripting (XSS) 
vulnerabilities [16, 17]. 

To show the feasibility of our approach, we present a case 
study in analyzing an example adapted from a real-world 
case. The case study illustrates how our approach reduces 
false negatives and false positives, yet it is unclear whether 
the idea can be applied to large-scale programs. 

In summary, the main contributions of this paper include: 
 Proposing a novel representation of source code 

called vulnerability nets. 
 Illustrating how a vulnerability net that integrates 

with data dependence graphs and control flow graphs 
can aid in identifying the presence of vulnerabilities. 
To formalize this idea, algorithms are also described 
in this paper. 

 Conducting a case study to demonstrate the 
feasibility of the proposed approach. 

The remainder of this paper is organized as follows. 
Section II presents general definitions for vulnerability nets. 
Section III describes the use of vulnerability nets for 
identifying taint-style vulnerabilities and Section IV 
demonstrates the feasibility by presenting a case study. 
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Section V discusses limitations and the possible extension of 
the proposed approach. Section VI reviews related work and 
the final section concludes this work. 

II. DEFINITION OF VULNERABILITY NETS 
In this section, vulnerability nets are formally defined. 

Most of the notation and terminology are taken or adapted 
from [18, 19]. 

A. Vulnerability Nets 
A vulnerability net is a Petri net structure with some 

special properties. We formally define it as follows. 

Definition 1. A vulnerability net  is a five-tuple, 
, where  

 is a finite set of places, . 
 is a finite set of guarded transitions, 

. . 
 is the input function, a mapping from 

transitions to sets of places. 
 is the output function, a mapping from 

transitions to sets of places. 
 is the marking of the net, a mapping from 

the set of places  to the set . 

The function of the marking implies that each place holds 
a number, 0 or 1. By convention, the element that a place 
holds is called a token. Therefore, each place in the 
vulnerability net holds zero or one token. A marking  shows 
the number and distribution of tokens in a vulnerability net. 
When a vulnerability net executes, the marking may change 
as the number of tokens may change. The conditional 
expressions in guarded transitions are the Boolean 
expressions used to constrain the change in the number of 
tokens. We use  to denote the absence of a conditional 
expression. 

An example of a vulnerability net is shown in Figure 1 
(a). The net is composed of five places and three guarded 
transitions (henceforth transitions). The initial marking 

 states that the place  and  each initially 
contain a token, while other places do not contain any. The 
links between places and transitions are revealed by the input 
and output functions. For example,  indicates 
that  and  are the input places of the transition ; 

 indicates that  is the output place of the 
transition . 

We can also use a graphical representation to represent a 
vulnerability net for ease of reading. A vulnerability net 
graph for Figure 1 (a) is shown in Figure 1 (b), where places, 
transitions, and tokens are denoted by circles, bars, and small 
dots, respectively. Directed arcs are used to connect places 
with transitions. 

Vulnerability nets execute by firing transitions. A 
transition is ready for firing if it is enabled. As formally 
defined in Definition 2, a transition  is enabled if all of the 
following three conditions hold: 1) each of the ’s input 
places contains a token, 2) there exists an output place of  
that does not contain any token, and 3) none of the 
conditional expressions of  evaluates to false. For example, 

the transition  in Figure 1 is enabled because of no violation 
of the definition. However,  is not enabled since , one of 
the ’s input places, does not contain a token. In the case of 

, we notice that its conditional expression  
always evaluates to false because the place  will never 
contains two tokens, so  is not enabled. 

Definition 2. A transition  in a vulnerability net 
 is enabled if  

1. , 
2. , and 
3. none of the conditional expressions of  evaluates 

to false. 

When a transition fires during the execution of a 
vulnerability net, tokens propagate from its input places to 
output places, i.e., new tokens are assigned to output places 
while tokens in input places are retained. We use state to 
describe the change. Every state of a vulnerability net is 
defined by a marking; for example, the initial state is defined 
by initial marking . The state space of a vulnerability net 
with  places is the set of all markings, i.e., , where  is 
the set of . Definition 3 defines a next-state function for 
calculating how a state can change after firing a transition. 

Definition 3. The next-state function 
 for a vulnerability net  and 

transition  is defined if and only if   is enabled. If 
 is defined, then , where  

 (1) 

 

 

 

   

   

   

 

 

 

● 

● 

(a) 

(b) 
Figure 1. (a) Textual representation of a vulnerability net; (b) Graphical 

representation of Figure 1 (a) 
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According to (1), we can calculate the next-state result of 
 in Figure 1. As discussed previously, of the three 

transitions only  is enabled, so that we have the next state 
. The result suggests that a 

token has propagated to . Figure 2 shows the change. After 
the change, since no transition is enabled, the execution must 
halt and  is in fact the final state of the net. 

One may notice that a vulnerability net executes 
differently from a standard Petri net. As a simple example, 
Figure 3 shows the distinct results of executing two nets that 
look initially identical. In Figure 3 (a), the initial Petri net 
fires  to flow a token from  to  and then the execution 
halts since no transition is enabled anymore. In contrast, the 
initial vulnerability net of Figure 3 (b) fires  to propagate a 
token to  and then the execution halts. More distinctions 
between a vulnerability net and a standard Petri net can be 
revealed by their own definitions. In Section III we will see 
how the special properties of vulnerability nets can benefit 
vulnerability analyses. 

B. Vulnerability Nets with Colored Tokens 
Colored tokens are used to augment the expressiveness of 

a vulnerability net. A vulnerability net with colored tokens 
also meets the definitions given in Section II-A as long as we 
consider each kind of colored tokens separately. We formally 
give a definition as follows. 

Definition 4. A vulnerability net with colored tokens is a 
vulnerability net structure , where  is a 
finite set of markings , , where each 

 is the marking for a kind of token with a unique color in a 
graphical representation. 

Figure 4 shows an example. Initially, while  and  
each contain one kind of token,  holds two. During the 
execution of the net, the various kinds of tokens propagate 
independently of each other. Therefore, all the kinds of 
colored tokens can propagate to , with the exception of the 
green token as  requires two green inputs but only one (i.e., 
the green token in ) is available. The initial state of the 
vulnerability net can be denoted by , 

, and , where , , and  
represent the initial markings for black, green, and red tokens, 
respectively. The finial state of the net is , 

, and . 

III. VULNERABILITY DISCOVERY 
In this section, we start by discussing the characteristics 

of taint-style vulnerabilities and give a simple code example. 
Then we briefly introduce data dependence graphs and 
control flow graphs, followed by a description of the 
incorporation of them into vulnerability nets for 
vulnerability-discovery purposes. Finally, algorithms for 
vulnerability nets generation and vulnerability discovery are 
described. 

The class of security weaknesses that this paper focuses 
on is taint-style vulnerabilities, including a number of critical 
vulnerabilities such as buffer overflows, injection 
vulnerabilities, and cross-site scripting vulnerabilities. In 
taint analysis, a tainted value is derived from external input 
such as results returned from function calls, and command-
line arguments. While the source is the original program 
location (such as a function or method) that accepts tainted 
values, the sink is another program location that the tainted 
values propagate to. Security weaknesses may exist when 
tainted values reach the sinks. A sanitization is a step to 
remove the taint from a value, thereby eliminating the 
potential security risk. To perform sanitization, we could 

Figure 3. An example for showing a distinction between vulnerability nets 
and standard Petri nets 

void foo() { 
S1:     int x = source(); 
S2:     if (x > 100) { 
S3:         int y = x; 
S4:         sanitize(x); 
S5:         sink(y); 

       } 
} 

 ● 

 

● 

● 

● 

 ● 

 

● 

● 

● 

● 
● 

Figure 4. Execution of a vulnerability net with colored tokens 

Figure 5. Example of a taint-style vulnerability 

● ● 

(a) Execution of a standard Petri net 

● ● ● 

(b) Execution of a vulnerability net 

 

 

 

● 

● ● 

Figure 2. The next state of Figure 1 
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either replace the tainted value by an untainted value or 
terminate the path of execution when a tainted value is 
detected. 

For illustration, consider a simple taint-style vulnerability 
shown in Figure 5. In this code, x accepts a tainted value 
returned from a source function and passes it to y when the 
if-condition is met. Then x is sanitized (let us assume the 
sanitization used is to terminate the program) and finally a 
sink function that receives y as an argument is called. 

A. Data dependence graphs 
Data dependence graphs (DDGs) are a program 

representation that can explicitly represent data dependences 
among statements and predicates [20]. A data dependence is 
present when two statements cannot be switched without 
changing any variable’s value. For example, in Figure 5, S3 
depends on S1 since S1 must be executed first in order for the 
proper use of x’s value in S3. Figure 6 (a) shows the DDG for 
the example code given in Figure 5. 

In our approach, the use of DDGs makes data 
dependences explicit and visible, which enables analysts to 
find taint-style vulnerabilities more easily. For example, 
Figure 5 explicitly shows that the tainted value originated 
from the source will eventually be passed to the sink and 
could cause some security issue. 

B. Control flow graphs 
Control flow graphs (CFGs) are another commonly used 

representation that can explicitly show the execution order of 
statements and the flow of control determined by conditional 
expressions [21]. In a CFG, statements and predicates are 
denoted by nodes, and the flow of control is indicated by 
directed edges. Figure 6 (b) shows the CFG for the code 
sample given in Figure 5. 

The use of CFGs in our approach is important since data 
dependence graphs alone often do not suffice to ensure the 
existence of a vulnerability. For example, if we exchange the 
order of S3 and S4 in Figure 5, while the data dependence 
graph remains unchanged, as shown in Figure 6 (a), the code 
is no longer a vulnerability because x’s value has been 

sanitized before being passed to y and sink(y). As a 
remedy, a CFG can make explicit whether a sanitization is 
already executed prior to a sink function. Moreover, control-
flow information is also essential in the detection of many 
other types of vulnerabilities, such as use-after-free 
vulnerabilities. 

C. Building Vulnerability Nets 
To perform security analysis at code level, we incorporate 

DDGs and CFGs into vulnerability nets. For brevity, the 
combination is also referred to as a vulnerability net. 

When using a vulnerability net to represent source code, 
places are used to denote statements and predicates according 
to a DDG while transitions are used to control the 
propagation of tokens according a CFG or rules specified by 
security analysts. A token models the existence of a tainted 
value. The color of a token represents a specific value; for 
example, if a black token and a red one are deposited in a 
place , then the statement denoted by  contains two 
different tainted values. Markings are used to show the 
number and position of tainted values. Once a token is 
assigned to a place, we examine whether it can propagate to 
other places by calculating the changes in the states of the net. 
If a token can propagate to some sensitive places, i.e., a 
tainted value can be passed into some sensitive functions, 
then there exists a code vulnerability in the program. In 
addition to the above elements, we may add some textual 
descriptions to the net as needed. 

To clarify the idea, consider again the code example 
shown in Figure 5. We combine the DDG and CFG, both 
given in Figure 6, and produce a vulnerability net, as 
indicated in Figure 7 (a). In the net, the places correspond to 
the statements and predicates while transitions are the 
conditions controlling the propagation of tokens. 

Since the statement int x = source ( ) (denoted 
by ) contains a source method, a token is placed in  to 
represent a tainted value originated from there and the initial 
marking of the net is . Now we analyze 
how the marking changes during the execution of the net. 
First, we can see that  is immediately enabled, resulting in 

entry int x = source ( ) 

if (x > 100) 

int y = x 

sanitize (x) 

sink (y) exit 

true 

false 

int x = source ( ) 

if (x > 100) sanitize (x) 

int y = x 

sink (y) 

x x 
x 

y 

(a) (b) 

Figure 6. (a) DDG for the example given in Figure 5; (b) CFG for the example given in Figure 5 
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the next state . Transitions  
and  are conditionally enabled as the condition  
may hold. To make conservative (or safe) approximations 
[21, 22], when we cannot determine whether a condition of a 
transition will be met, we would consider the worst case, i.e., 
the condition will be met and the token can propagate 
successfully. After firing the two transitions, the marking 
changes to . Finally,  is enabled, and its firing 
yields the marking . This means the token can 
propagate to all places, including the sink function (i.e., ). 
Therefore, the execution result suggests the existence of a 
taint-style vulnerability: the tainted value from the source can 
reach the sink. 

To reduce the risk of taint-style vulnerabilities, 
programmers may sanitize the tainted values before using 
them. In this situation, false positives may arise if we do not 
realize the presence of a sanitization. For example, as 
discussed in Section III-B, exchanging the order of S3 and S4 
in Figure 5 will eliminate the vulnerability, so we should not 
report an alarm in that case. Therefore, it is crucial to confirm 
sanitizations’ existence when spotting taint-style 
vulnerabilities. To this end, necessary sanitization 
information may be accommodated in the transitions of a 
vulnerability net. As an example, Figure 7 (b) shows the 
vulnerability net for the code that exchanges the order of S3 
and S4 in Figure 5. 

In Figure 7 (b), each transition adds a Boolean predicate 
nonsan(var), which will return true or false value by 
evaluating that whether the variable var is sanitized. It will 
return true if var is not sanitized, and false otherwise. To 
illustrate this, we simulate the execution of the net given in 
Figure 7 (b). The initial marking is  as we 
assign a token to . Since x is not sanitized before reaching 

, the nonsan(x) evaluates to true, which implies that  
is enabled, and the token will propagate to . We have the 

next state . Similarly,  could 
be enabled when , so we have . 
However, the situation of  is different. The CFG edges in 
the net show that prior to the propagation to  from , x 
must have been sanitized in . Consequently, the 
nonsan(x) at  evaluates to false and  is thus not 
enabled, preventing the token in  from propagating to . 
Furthermore,  will not be enabled either since  never 
contains a token. In summary, there is no further change in 
the state of the net. That is, the final state of the net is 

, which implies that no taint-style 
vulnerability is present in this code as no tainted value 
reaches the sink function (i.e., ). In this example we can see 
that taking into account the sanitization information helps us 
recognize the absence of vulnerabilities, thereby reducing 
spurious alarms. 

D. Algorithm 
In previous subsection we illustrate how a vulnerability 

net is constructed and used for vulnerability discovery. To 
formalize the idea, algorithms are described in this 
subsection. 

The process of generating a vulnerability net is 
formalized in Algorithm 1. Each step can be completed in an 
automatic manner. At line 1, the merger between a control 
flow graph and a data dependence graph is the union of the 
two graphs (their nodes and edges). From line 2 to line 7, the 
merger graph is transformed to a vulnerability net. The 
assignments of conditional expressions to transitions are 
based on the Boolean expressions given in the control flow 
graph (e.g., the  in Figure 7 (a)) or given by the 
security analysts (e.g., the nonsan(x) in Figure 7 (b)). 

The algorithm for detecting taint-style vulnerabilities in a 
vulnerability net is described in Algorithm 2. We start by 
providing a vulnerability net and specifying the sources and 

int x = source ( ) 

if (x > 100) sanitize (x) 

int y = x 

sink (y) 

x 
x 

y 

 

  

 

 

true 

 

x 

int x = source ( ) 

if (x > 100) 

sanitize (x) 

int y = x 

sink (y) 

x 
x 

y 

 

  

  

true 

  
 

 

x 

(a) (b) 

Directed arc Directed arc
CFG edge 

  

   

 
 

● ● 

Figure 7. (a) Vulnerability net for the example given in Figure 5; (b) Vulnerability net for the code in Figure 5 that exchanges the order of S3 and S4 
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sinks. A source-sink pair denotes a source and a sink, where 
data propagation from the source to the sink may cause a 
security flaw. The number of sources and sinks is arbitrary. 

In line 1 of Algorithm 2, the set of initial markings  is 
generated according to the location of the source places, i.e., 

 for all , where  is the set of 
places. Note that when represented in a graph, different 
sources are denoted by tokens with different colors (see 
Section II-B). 

Line 2 of Algorithm 2 states that the vulnerability net is 
then executed, followed by the generation of the set of final 
markings. The final markings are used to iteratively examine 
the markings of all the source-sink pairs. If the markings of a 
source and its sink are both 1, meaning each of them contains 
a token (i.e., the tainted data reach the sink), then a 
vulnerability is detected. The process is formalized at line 3 
to line 5. 
 

Algorithm 1: Generation of a vulnerability net 
INPUT: A source program and its DDG and CFG 
OUTPUT: A vulnerability net 
METHOD:  
1: Merge CFG and DDG; 
2: for each statement s (or predicate) in DDG do 
3: replace s by a place  ; 
4: for each DDG edge e do 
5: replace e by a transition  and directed 

arcs connected to places; 
6: for each transition  do 
7: assign conditional expressions; 

 
Algorithm 2: Vulnerabilities discovery 
INPUT: A vulnerability net and a set of source-sink pairs 

, 
 and  

OUTPUT: Taint-style vulnerabilities 
METHOD: 
1: Generate the set of initial markings ; 
2: Execute the vulnerability net and generate the set of final 

markings ; 
3: for each  in  do 
4: if  then 
5: report  as a vulnerability; 

 

IV. CASE STUDY 
In this section we illustrate the feasibility of our approach 

by conducting a case study. 
Figure 8 is the code adapted from an abstract code 

fragment, which is abstracted from a real-world case [23]. For 
brevity, the type information of each variable is omitted in 
the code. The ellipses appear in line 2 and line 10 represent 
some code omitted. The code fragment contains two source-
sink pairs, namely  and . 
To identify the potential taint-style vulnerabilities that exist 

in this code, we want to examine whether a tainted value from 
a source (e.g., ) may reach its paired sink (e.g., 

). 
Our analysis begins by generating the vulnerability net 

(see the Algorithm 1), as shown in Figure 9. Note that we 
assume the DDG can handle the aliasing issue [20, 21], 
thereby allowing the dependences to be generated accurately. 
For example, in the code given in Figure 8, since the variable 
b (line 4) and x (line 5) are aliases of each other, b.f and 
x.f are aliased. Accordingly,  (i.e., x.f = w) in Figure 
9 is connected to  (i.e., sink(b.f)). 

Then we proceed to execute the net (see the Algorithm 2). 
Since  and  are distinct sources, we assign each of them 
a unique colored token. The initial markings of the net are 

 (for the black token), and 
 (for the red token). After 

running the net, we obtain the corresponding final markings 
 and 

 and a vulnerability  is 
reported. 

Let us take a closer look at the changes in state during the 
execution of the vulnerability net. The token in  propagates 
to  when  fires and then propagates to  when  fires. 
In other words, the tainted data from the source  can finally 
reach its sink , resulting in a potential vulnerability. 

Similarly, the token in  propagates to  when  fires 
and to  when  fires. However, the token reaches  will 
not lead to a vulnerability since  (i.e., isSecure(p)) is 
not a call to a sink method. Instead, it is a call to a secure 
method. 

Finally, we examine whether a token will propagate to 
. Consider the condition of , i.e., 

. The sub-condition  is a 
sanitization of , while another sub-condition  
states that no sanitization of  exists. Thus, the condition 

 is a contradiction and is always 
false. Consequently, transition  will never fire, and thus no 
token (i.e., tainted data) will reach . In other words,  

1 void main() { 
2     […] 
3     a = new A(); 
4     b = a.g; 
5     x = a.g; 
6     sink1(b.f); 
7     w = source1(); 
8     x.f = w; 
9     p = source2(); 
10     […] 
11     if (p == isTaint) { 
12         isSecure(p); 
13     } else { 
14         sink2(p); 
15     } 
16     sink1(b.f); 
17 } 

Figure 8. Code fragment adapted from a real-world case 
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 is not a vulnerability due to the presence of a 
sanitization. 

The case study shows that our approach reduces false 
negatives and false positives because: 

 Vulnerability nets support aliasing analysis. The use 
of DDG enables our approach to handle aliasing 
issues, so we can recognize that b.f and x.f are 
aliased in Figure 9. Consequently, the vulnerability 

 can be correctly detected.  
 Vulnerability nets are flow-sensitive. From the 

vulnerability net given in Figure 9 we can see that the 
token in  may propagate to , but never 
propagate to  even though  and  represent an 
identical statement (i.e., sink1(b.f)). Thus, a 
spurious vulnerability  will not be reported. 

 Sanitizations are recognized in vulnerability nets. 
Since the sanitization in  of the net in Figure 9 is 
recognized,   is proved to not enabled and thus the 
token in  cannot propagate to . That is, 

 will not be considered incorrectly as a 
vulnerability. 

V. LIMITATIONS 
The discovery of taint-style vulnerabilities in the case 

study demonstrates the feasibility of our approach. However, 
several limitations arise if we apply our approach to more 
sophisticated programs in real world. Firstly, our approach is 
intended only for detecting taint-style vulnerabilities and it is 

unclear if similar techniques can be applied to discovery of 
other types of vulnerabilities. 

Secondly, the approach discussed in this paper involves 
only intraprocedural analysis since a data dependence graph 
or a control flow graph are built on a single procedure. 
Fortunately, it can be extended for interprocedural analysis if 
system dependence graphs [24] and interprocedural control 
flow graphs are introduced. 

Thirdly, this paper handles only statement-level analysis, 
neglecting the analysis of the arguments of methods. For 
example, given a sink method sink (a, b, c) where a 
is tainted but b and c are untainted, our approach would 
simply treat the whole sink method as tainted rather than 
consider the arguments separately. In the future, we will 
explore the solutions to this issue. 

VI. RELATED WORK 
Although the purely manual audits are rarely used in 

practice, some interesting work has been done in this 
direction. Leveson et al. [8, 9] present a method using 
software fault trees for safety analysis at source code level. 
The analysis is expressed in a tree form, which starts with 
determining a fault of interest, followed by a backward 
analysis to find the set of possible causes. This kind of 
method relies heavily on the analyst’s expertise, so it is 
unlikely to achieve automated analysis. A major similarity 
between this work and our work is that we both use a 
graphical node to explicitly represent a statement or predicate 
in the source code, which can assist analysts during auditing. 
Some other similar work (e.g., [25, 26]) is also presented in 
this branch of research. 

In comparison to manual audits, using static analysis tools 
to perform vulnerability discovery is much more popular. 
Viega et al. [4] present ITS4, a practical tool,  using basic 
lexical analysis to identify security vulnerabilities in C and 
C++ code. The idea is to extract lexical tokens from the 
source code and then matches the vulnerable functions. Bush 
et al. [27] propose PREfix to perform analysis on a set of 
execution paths to track information. PREfix can find 
security-related bugs, such as null pointer references and 
memory leaks, in large programs. To find complex and subtle 
vulnerabilities, many tools incorporate expert knowledge into 
the identification of vulnerabilities. For example, to detect 
buffer overflow vulnerabilities, Larochelle and Evans [11, 
28] employ annotations to check whether the code being 
analyzed is consistent with a set of particular properties. 
Yamaguchi et al. [10] merge abstract syntax tree, control flow 
graphs and program dependence graphs into a joint data 
structure, in which analysts craft certain rules, known as 
traversals, to facilitate vulnerabilities auditing. 

Applying pointer analysis or taint analysis [29] to 
vulnerability discovery is an important direction in static 
program analysis. Dor et al. [30] first use pointer analysis 
techniques to detect memory errors. Livshits and Lam [31] 
suggest a taint-analysis method to find taint-style security 
vulnerabilities, such as SQL injections and cross-site 
scripting, in Java applications. Arzt et al. [23] present 
FlowDroid for Android applications, which claims to be fully 
context, flow, field and object-sensitive, thus reducing both 
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Figure 9. Vulnerability net for the code given in Figure 8 
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false negatives and false positives. While pointer/taint 
analysis approaches are valuable, most of them require 
whole-program availability [32], i.e., a program being 
analyzed must be complete. 

To perform analyses on an incomplete program is another 
branch of research. For example, defensive programming 
[33, 34] is a technique for uncovering bugs during the 
construction of programs. Human-Machine Pair 
Programming [35, 36] allows the developer (i.e., the human) 
and the computer (i.e., the machine) to work collaboratively 
to discover vulnerabilities in the coding phase. Our approach 
supports this kind of idea since a vulnerability net can be 
generated when a program is still under construction. 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we present an approach called vulnerability 

nets, which can be used to detect security vulnerabilities in 
source code. Specifically, the approach assists in finding 
taint-style vulnerabilities such as buffer overflows, injection 
vulnerabilities, and cross-site scripting vulnerabilities. 
Vulnerability nets can perform analyses in an automatic 
manner except that the analyst needs to help identify the 
sanitizations for the purpose of reducing false alarms. On the 
other hand, vulnerability nets provide a graphical view that 
explicitly shows code information, which also benefits 
manual audits. In the paper we describe the idea in detail, 
including providing the definitions of vulnerability nets, the 
ways of building and using vulnerability nets, plus their 
algorithms. To demonstrate the feasibility, we also present a 
case study on an example adapted from a real-world case, yet 
there lacks a discussion of whether our approach is applicable 
to large programs. 

Despite the progress we have made in this work, there 
remains a significant amount of work to be done. A number 
of unsolved issues listed in the following are driving our 
future research. 

 Discussion of interprocedural analysis. 
 Discussion of distinguishing the tainted values 

between arguments in a method/function. 
 More practical evaluation of the proposed approach. 
 Extension of the proposed approach to handle 

incomplete programs. 
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