
Detecting Security Vulnerabilities with Vulnerability Nets

Pingyan Wang, Shaoying Liu*, Ai Liu, and Wen Jiang
Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan

{pingyanwang, sliu, liuai}@hiroshima-u.ac.jp, bonjourjw@gmail.com
*corresponding author

Abstract— Detecting code vulnerabilities is a crucial part in

secure software development. Many static analysis tools have
been proven useful in finding vulnerabilities, but generally there
are some complex and subtle vulnerabilities that can escape
detection. Manual audits are a complementary approach to
using tools. Unfortunately, most manual analyses are tedious
and error prone. To benefit from both the tools and manual
audits, some work incorporates the auditor’s expertise into a
static analysis tool during vulnerability discovery. Following
this strategy, this paper presents vulnerability nets, which are a
special Petri net that integrates with data dependence graphs
and control flow graphs. Specifically, the proposed approach is
intended for detecting taint-style vulnerabilities such as buffer
overflows and injection vulnerabilities. In this paper, the
construction and use of vulnerability nets are discussed in detail.
Furthermore, we show the feasibility by presenting a case study
in analyzing an example adapted from a real-world case.

Keywords-vulnerability; security; static analysis; manual
audits; petri nets

I. INTRODUCTION
Security threats are increasingly prevalent in today’s

computer systems [1]. In software-based systems, code
vulnerabilities (also known as security-related bugs) can lead
to malicious attacks, which in turn cause security failures [2].
Thus, to find (and then fix) the potential vulnerabilities in the
code is a natural tactic to enhance software security.

The vast majority of security vulnerabilities are
discovered by static code analysis [3]. The core idea behind
static code analysis is to analyze a program without actually
executing it. Many static analysis tools (e.g., [4, 5]) have been
developed and adopted by developers to facilitate code
review. Tools encapsulate certain security knowledge for
vulnerability discovery, thereby freeing developers from
manually spotting security flaws during software
development. However, due to the difficulty of obtaining
soundness and completeness, tools will always fail to
uncover some subtle vulnerabilities (i.e., false negatives), or
may produce substantial false alarms (i.e., false positives).
For example, buffer overflows [6], one of the most notorious
vulnerabilities, still cannot be fully addressed using
automated tools alone. Instead, significant security expertise
is often involved during detection of buffer overflows [7].

Manual audits are a complementary (not alternative)
method to using automated tools. In the process of auditing,
an analyst (i.e., the auditor) manually examine a code, based
on his/her expertise, to find vulnerabilities that escape
detection of tools. To aid analysts in auditing manually, some

researchers analyze source code using techniques such as
fault trees [8, 9], in which some crucial information of code
is made explicit. However, manual audits are tedious, error
prone, and costly, so it is normally impractical to manually
audit a whole program.

To benefit from both the static analysis tools and manual
audits, some work (e.g., [10, 11]) has considered to
incorporate the analyst’s security knowledge into a tool
during the detection process. The knowledge (such as
annotations [12]) provided by security auditors can guide the
detection for vulnerabilities. To make contributions in this
branch of research, in this paper, we present a novel
representation of source code, called a vulnerability net,
which is in the form of a Petri net structure. Our approach
incorporates data dependence graphs and control flow graphs
into a vulnerability net. The combination explicitly describes
the key information of a code and provides a good view for
analysts to audit source code. Analysts can add certain
knowledge to the net to augment vulnerability discovery.
Like standard Petri nets, vulnerability nets are executable,
thus allowing analysts to conveniently track the data of
interest to examine the existence of a vulnerability.
Specifically, our approach is intended for finding taint-style
vulnerabilities, which includes a number of critical
vulnerabilities such as buffer overflows [6, 13], injection
vulnerabilities [14, 15], and cross-site scripting (XSS)
vulnerabilities [16, 17].

To show the feasibility of our approach, we present a case
study in analyzing an example adapted from a real-world
case. The case study illustrates how our approach reduces
false negatives and false positives, yet it is unclear whether
the idea can be applied to large-scale programs.

In summary, the main contributions of this paper include:
 Proposing a novel representation of source code

called vulnerability nets.
 Illustrating how a vulnerability net that integrates

with data dependence graphs and control flow graphs
can aid in identifying the presence of vulnerabilities.
To formalize this idea, algorithms are also described
in this paper.

 Conducting a case study to demonstrate the
feasibility of the proposed approach.

The remainder of this paper is organized as follows.
Section II presents general definitions for vulnerability nets.
Section III describes the use of vulnerability nets for
identifying taint-style vulnerabilities and Section IV
demonstrates the feasibility by presenting a case study.

375

2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

2693-9371/22/$31.00 ©2022 IEEE
DOI 10.1109/QRS-C57518.2022.00062

Section V discusses limitations and the possible extension of
the proposed approach. Section VI reviews related work and
the final section concludes this work.

II. DEFINITION OF VULNERABILITY NETS
In this section, vulnerability nets are formally defined.

Most of the notation and terminology are taken or adapted
from [18, 19].

A. Vulnerability Nets
A vulnerability net is a Petri net structure with some

special properties. We formally define it as follows.

Definition 1. A vulnerability net is a five-tuple,
, where

 is a finite set of places, .
 is a finite set of guarded transitions,

. .
 is the input function, a mapping from

transitions to sets of places.
 is the output function, a mapping from

transitions to sets of places.
 is the marking of the net, a mapping from

the set of places to the set .

The function of the marking implies that each place holds
a number, 0 or 1. By convention, the element that a place
holds is called a token. Therefore, each place in the
vulnerability net holds zero or one token. A marking shows
the number and distribution of tokens in a vulnerability net.
When a vulnerability net executes, the marking may change
as the number of tokens may change. The conditional
expressions in guarded transitions are the Boolean
expressions used to constrain the change in the number of
tokens. We use to denote the absence of a conditional
expression.

An example of a vulnerability net is shown in Figure 1
(a). The net is composed of five places and three guarded
transitions (henceforth transitions). The initial marking

 states that the place and each initially
contain a token, while other places do not contain any. The
links between places and transitions are revealed by the input
and output functions. For example, indicates
that and are the input places of the transition ;

 indicates that is the output place of the
transition .

We can also use a graphical representation to represent a
vulnerability net for ease of reading. A vulnerability net
graph for Figure 1 (a) is shown in Figure 1 (b), where places,
transitions, and tokens are denoted by circles, bars, and small
dots, respectively. Directed arcs are used to connect places
with transitions.

Vulnerability nets execute by firing transitions. A
transition is ready for firing if it is enabled. As formally
defined in Definition 2, a transition is enabled if all of the
following three conditions hold: 1) each of the ’s input
places contains a token, 2) there exists an output place of
that does not contain any token, and 3) none of the
conditional expressions of evaluates to false. For example,

the transition in Figure 1 is enabled because of no violation
of the definition. However, is not enabled since , one of
the ’s input places, does not contain a token. In the case of

, we notice that its conditional expression
always evaluates to false because the place will never
contains two tokens, so is not enabled.

Definition 2. A transition in a vulnerability net
 is enabled if

1. ,
2. , and
3. none of the conditional expressions of evaluates

to false.

When a transition fires during the execution of a
vulnerability net, tokens propagate from its input places to
output places, i.e., new tokens are assigned to output places
while tokens in input places are retained. We use state to
describe the change. Every state of a vulnerability net is
defined by a marking; for example, the initial state is defined
by initial marking . The state space of a vulnerability net
with places is the set of all markings, i.e., , where is
the set of . Definition 3 defines a next-state function for
calculating how a state can change after firing a transition.

Definition 3. The next-state function
 for a vulnerability net and

transition is defined if and only if is enabled. If
 is defined, then , where

 (1)

●

●

(a)

(b)
Figure 1. (a) Textual representation of a vulnerability net; (b) Graphical

representation of Figure 1 (a)

376

According to (1), we can calculate the next-state result of
 in Figure 1. As discussed previously, of the three

transitions only is enabled, so that we have the next state
. The result suggests that a

token has propagated to . Figure 2 shows the change. After
the change, since no transition is enabled, the execution must
halt and is in fact the final state of the net.

One may notice that a vulnerability net executes
differently from a standard Petri net. As a simple example,
Figure 3 shows the distinct results of executing two nets that
look initially identical. In Figure 3 (a), the initial Petri net
fires to flow a token from to and then the execution
halts since no transition is enabled anymore. In contrast, the
initial vulnerability net of Figure 3 (b) fires to propagate a
token to and then the execution halts. More distinctions
between a vulnerability net and a standard Petri net can be
revealed by their own definitions. In Section III we will see
how the special properties of vulnerability nets can benefit
vulnerability analyses.

B. Vulnerability Nets with Colored Tokens
Colored tokens are used to augment the expressiveness of

a vulnerability net. A vulnerability net with colored tokens
also meets the definitions given in Section II-A as long as we
consider each kind of colored tokens separately. We formally
give a definition as follows.

Definition 4. A vulnerability net with colored tokens is a
vulnerability net structure , where is a
finite set of markings , , where each

 is the marking for a kind of token with a unique color in a
graphical representation.

Figure 4 shows an example. Initially, while and
each contain one kind of token, holds two. During the
execution of the net, the various kinds of tokens propagate
independently of each other. Therefore, all the kinds of
colored tokens can propagate to , with the exception of the
green token as requires two green inputs but only one (i.e.,
the green token in) is available. The initial state of the
vulnerability net can be denoted by ,

, and , where , , and
represent the initial markings for black, green, and red tokens,
respectively. The finial state of the net is ,

, and .

III. VULNERABILITY DISCOVERY
In this section, we start by discussing the characteristics

of taint-style vulnerabilities and give a simple code example.
Then we briefly introduce data dependence graphs and
control flow graphs, followed by a description of the
incorporation of them into vulnerability nets for
vulnerability-discovery purposes. Finally, algorithms for
vulnerability nets generation and vulnerability discovery are
described.

The class of security weaknesses that this paper focuses
on is taint-style vulnerabilities, including a number of critical
vulnerabilities such as buffer overflows, injection
vulnerabilities, and cross-site scripting vulnerabilities. In
taint analysis, a tainted value is derived from external input
such as results returned from function calls, and command-
line arguments. While the source is the original program
location (such as a function or method) that accepts tainted
values, the sink is another program location that the tainted
values propagate to. Security weaknesses may exist when
tainted values reach the sinks. A sanitization is a step to
remove the taint from a value, thereby eliminating the
potential security risk. To perform sanitization, we could

Figure 3. An example for showing a distinction between vulnerability nets
and standard Petri nets

void foo() {
S1: int x = source();
S2: if (x > 100) {
S3: int y = x;
S4: sanitize(x);
S5: sink(y);

 }
}

 ●

●

●

●

 ●

●

●

●

●
●

Figure 4. Execution of a vulnerability net with colored tokens

Figure 5. Example of a taint-style vulnerability

● ●

(a) Execution of a standard Petri net

● ● ●

(b) Execution of a vulnerability net

●

● ●

Figure 2. The next state of Figure 1

377

either replace the tainted value by an untainted value or
terminate the path of execution when a tainted value is
detected.

For illustration, consider a simple taint-style vulnerability
shown in Figure 5. In this code, x accepts a tainted value
returned from a source function and passes it to y when the
if-condition is met. Then x is sanitized (let us assume the
sanitization used is to terminate the program) and finally a
sink function that receives y as an argument is called.

A. Data dependence graphs
Data dependence graphs (DDGs) are a program

representation that can explicitly represent data dependences
among statements and predicates [20]. A data dependence is
present when two statements cannot be switched without
changing any variable’s value. For example, in Figure 5, S3
depends on S1 since S1 must be executed first in order for the
proper use of x’s value in S3. Figure 6 (a) shows the DDG for
the example code given in Figure 5.

In our approach, the use of DDGs makes data
dependences explicit and visible, which enables analysts to
find taint-style vulnerabilities more easily. For example,
Figure 5 explicitly shows that the tainted value originated
from the source will eventually be passed to the sink and
could cause some security issue.

B. Control flow graphs
Control flow graphs (CFGs) are another commonly used

representation that can explicitly show the execution order of
statements and the flow of control determined by conditional
expressions [21]. In a CFG, statements and predicates are
denoted by nodes, and the flow of control is indicated by
directed edges. Figure 6 (b) shows the CFG for the code
sample given in Figure 5.

The use of CFGs in our approach is important since data
dependence graphs alone often do not suffice to ensure the
existence of a vulnerability. For example, if we exchange the
order of S3 and S4 in Figure 5, while the data dependence
graph remains unchanged, as shown in Figure 6 (a), the code
is no longer a vulnerability because x’s value has been

sanitized before being passed to y and sink(y). As a
remedy, a CFG can make explicit whether a sanitization is
already executed prior to a sink function. Moreover, control-
flow information is also essential in the detection of many
other types of vulnerabilities, such as use-after-free
vulnerabilities.

C. Building Vulnerability Nets
To perform security analysis at code level, we incorporate

DDGs and CFGs into vulnerability nets. For brevity, the
combination is also referred to as a vulnerability net.

When using a vulnerability net to represent source code,
places are used to denote statements and predicates according
to a DDG while transitions are used to control the
propagation of tokens according a CFG or rules specified by
security analysts. A token models the existence of a tainted
value. The color of a token represents a specific value; for
example, if a black token and a red one are deposited in a
place , then the statement denoted by contains two
different tainted values. Markings are used to show the
number and position of tainted values. Once a token is
assigned to a place, we examine whether it can propagate to
other places by calculating the changes in the states of the net.
If a token can propagate to some sensitive places, i.e., a
tainted value can be passed into some sensitive functions,
then there exists a code vulnerability in the program. In
addition to the above elements, we may add some textual
descriptions to the net as needed.

To clarify the idea, consider again the code example
shown in Figure 5. We combine the DDG and CFG, both
given in Figure 6, and produce a vulnerability net, as
indicated in Figure 7 (a). In the net, the places correspond to
the statements and predicates while transitions are the
conditions controlling the propagation of tokens.

Since the statement int x = source () (denoted
by) contains a source method, a token is placed in to
represent a tainted value originated from there and the initial
marking of the net is . Now we analyze
how the marking changes during the execution of the net.
First, we can see that is immediately enabled, resulting in

entry int x = source ()

if (x > 100)

int y = x

sanitize (x)

sink (y) exit

true

false

int x = source ()

if (x > 100) sanitize (x)

int y = x

sink (y)

x x
x

y

(a) (b)

Figure 6. (a) DDG for the example given in Figure 5; (b) CFG for the example given in Figure 5

378

the next state . Transitions
and are conditionally enabled as the condition
may hold. To make conservative (or safe) approximations
[21, 22], when we cannot determine whether a condition of a
transition will be met, we would consider the worst case, i.e.,
the condition will be met and the token can propagate
successfully. After firing the two transitions, the marking
changes to . Finally, is enabled, and its firing
yields the marking . This means the token can
propagate to all places, including the sink function (i.e.,).
Therefore, the execution result suggests the existence of a
taint-style vulnerability: the tainted value from the source can
reach the sink.

To reduce the risk of taint-style vulnerabilities,
programmers may sanitize the tainted values before using
them. In this situation, false positives may arise if we do not
realize the presence of a sanitization. For example, as
discussed in Section III-B, exchanging the order of S3 and S4
in Figure 5 will eliminate the vulnerability, so we should not
report an alarm in that case. Therefore, it is crucial to confirm
sanitizations’ existence when spotting taint-style
vulnerabilities. To this end, necessary sanitization
information may be accommodated in the transitions of a
vulnerability net. As an example, Figure 7 (b) shows the
vulnerability net for the code that exchanges the order of S3
and S4 in Figure 5.

In Figure 7 (b), each transition adds a Boolean predicate
nonsan(var), which will return true or false value by
evaluating that whether the variable var is sanitized. It will
return true if var is not sanitized, and false otherwise. To
illustrate this, we simulate the execution of the net given in
Figure 7 (b). The initial marking is as we
assign a token to . Since x is not sanitized before reaching

, the nonsan(x) evaluates to true, which implies that
is enabled, and the token will propagate to . We have the

next state . Similarly, could
be enabled when , so we have .
However, the situation of is different. The CFG edges in
the net show that prior to the propagation to from , x
must have been sanitized in . Consequently, the
nonsan(x) at evaluates to false and is thus not
enabled, preventing the token in from propagating to .
Furthermore, will not be enabled either since never
contains a token. In summary, there is no further change in
the state of the net. That is, the final state of the net is

, which implies that no taint-style
vulnerability is present in this code as no tainted value
reaches the sink function (i.e.,). In this example we can see
that taking into account the sanitization information helps us
recognize the absence of vulnerabilities, thereby reducing
spurious alarms.

D. Algorithm
In previous subsection we illustrate how a vulnerability

net is constructed and used for vulnerability discovery. To
formalize the idea, algorithms are described in this
subsection.

The process of generating a vulnerability net is
formalized in Algorithm 1. Each step can be completed in an
automatic manner. At line 1, the merger between a control
flow graph and a data dependence graph is the union of the
two graphs (their nodes and edges). From line 2 to line 7, the
merger graph is transformed to a vulnerability net. The
assignments of conditional expressions to transitions are
based on the Boolean expressions given in the control flow
graph (e.g., the in Figure 7 (a)) or given by the
security analysts (e.g., the nonsan(x) in Figure 7 (b)).

The algorithm for detecting taint-style vulnerabilities in a
vulnerability net is described in Algorithm 2. We start by
providing a vulnerability net and specifying the sources and

int x = source ()

if (x > 100) sanitize (x)

int y = x

sink (y)

x
x

y

true

x

int x = source ()

if (x > 100)

sanitize (x)

int y = x

sink (y)

x
x

y

true

x

(a) (b)

Directed arc Directed arc
CFG edge

● ●

Figure 7. (a) Vulnerability net for the example given in Figure 5; (b) Vulnerability net for the code in Figure 5 that exchanges the order of S3 and S4

379

sinks. A source-sink pair denotes a source and a sink, where
data propagation from the source to the sink may cause a
security flaw. The number of sources and sinks is arbitrary.

In line 1 of Algorithm 2, the set of initial markings is
generated according to the location of the source places, i.e.,

 for all , where is the set of
places. Note that when represented in a graph, different
sources are denoted by tokens with different colors (see
Section II-B).

Line 2 of Algorithm 2 states that the vulnerability net is
then executed, followed by the generation of the set of final
markings. The final markings are used to iteratively examine
the markings of all the source-sink pairs. If the markings of a
source and its sink are both 1, meaning each of them contains
a token (i.e., the tainted data reach the sink), then a
vulnerability is detected. The process is formalized at line 3
to line 5.

Algorithm 1: Generation of a vulnerability net
INPUT: A source program and its DDG and CFG
OUTPUT: A vulnerability net
METHOD:
1: Merge CFG and DDG;
2: for each statement s (or predicate) in DDG do
3: replace s by a place ;
4: for each DDG edge e do
5: replace e by a transition and directed

arcs connected to places;
6: for each transition do
7: assign conditional expressions;

Algorithm 2: Vulnerabilities discovery
INPUT: A vulnerability net and a set of source-sink pairs

,
 and

OUTPUT: Taint-style vulnerabilities
METHOD:
1: Generate the set of initial markings ;
2: Execute the vulnerability net and generate the set of final

markings ;
3: for each in do
4: if then
5: report as a vulnerability;

IV. CASE STUDY
In this section we illustrate the feasibility of our approach

by conducting a case study.
Figure 8 is the code adapted from an abstract code

fragment, which is abstracted from a real-world case [23]. For
brevity, the type information of each variable is omitted in
the code. The ellipses appear in line 2 and line 10 represent
some code omitted. The code fragment contains two source-
sink pairs, namely and .
To identify the potential taint-style vulnerabilities that exist

in this code, we want to examine whether a tainted value from
a source (e.g.,) may reach its paired sink (e.g.,

).
Our analysis begins by generating the vulnerability net

(see the Algorithm 1), as shown in Figure 9. Note that we
assume the DDG can handle the aliasing issue [20, 21],
thereby allowing the dependences to be generated accurately.
For example, in the code given in Figure 8, since the variable
b (line 4) and x (line 5) are aliases of each other, b.f and
x.f are aliased. Accordingly, (i.e., x.f = w) in Figure
9 is connected to (i.e., sink(b.f)).

Then we proceed to execute the net (see the Algorithm 2).
Since and are distinct sources, we assign each of them
a unique colored token. The initial markings of the net are

 (for the black token), and
 (for the red token). After

running the net, we obtain the corresponding final markings
 and

 and a vulnerability is
reported.

Let us take a closer look at the changes in state during the
execution of the vulnerability net. The token in propagates
to when fires and then propagates to when fires.
In other words, the tainted data from the source can finally
reach its sink , resulting in a potential vulnerability.

Similarly, the token in propagates to when fires
and to when fires. However, the token reaches will
not lead to a vulnerability since (i.e., isSecure(p)) is
not a call to a sink method. Instead, it is a call to a secure
method.

Finally, we examine whether a token will propagate to
. Consider the condition of , i.e.,

. The sub-condition is a
sanitization of , while another sub-condition
states that no sanitization of exists. Thus, the condition

 is a contradiction and is always
false. Consequently, transition will never fire, and thus no
token (i.e., tainted data) will reach . In other words,

1 void main() {
2 […]
3 a = new A();
4 b = a.g;
5 x = a.g;
6 sink1(b.f);
7 w = source1();
8 x.f = w;
9 p = source2();
10 […]
11 if (p == isTaint) {
12 isSecure(p);
13 } else {
14 sink2(p);
15 }
16 sink1(b.f);
17 }

Figure 8. Code fragment adapted from a real-world case

380

 is not a vulnerability due to the presence of a
sanitization.

The case study shows that our approach reduces false
negatives and false positives because:

 Vulnerability nets support aliasing analysis. The use
of DDG enables our approach to handle aliasing
issues, so we can recognize that b.f and x.f are
aliased in Figure 9. Consequently, the vulnerability

 can be correctly detected.
 Vulnerability nets are flow-sensitive. From the

vulnerability net given in Figure 9 we can see that the
token in may propagate to , but never
propagate to even though and represent an
identical statement (i.e., sink1(b.f)). Thus, a
spurious vulnerability will not be reported.

 Sanitizations are recognized in vulnerability nets.
Since the sanitization in of the net in Figure 9 is
recognized, is proved to not enabled and thus the
token in cannot propagate to . That is,

 will not be considered incorrectly as a
vulnerability.

V. LIMITATIONS
The discovery of taint-style vulnerabilities in the case

study demonstrates the feasibility of our approach. However,
several limitations arise if we apply our approach to more
sophisticated programs in real world. Firstly, our approach is
intended only for detecting taint-style vulnerabilities and it is

unclear if similar techniques can be applied to discovery of
other types of vulnerabilities.

Secondly, the approach discussed in this paper involves
only intraprocedural analysis since a data dependence graph
or a control flow graph are built on a single procedure.
Fortunately, it can be extended for interprocedural analysis if
system dependence graphs [24] and interprocedural control
flow graphs are introduced.

Thirdly, this paper handles only statement-level analysis,
neglecting the analysis of the arguments of methods. For
example, given a sink method sink (a, b, c) where a
is tainted but b and c are untainted, our approach would
simply treat the whole sink method as tainted rather than
consider the arguments separately. In the future, we will
explore the solutions to this issue.

VI. RELATED WORK
Although the purely manual audits are rarely used in

practice, some interesting work has been done in this
direction. Leveson et al. [8, 9] present a method using
software fault trees for safety analysis at source code level.
The analysis is expressed in a tree form, which starts with
determining a fault of interest, followed by a backward
analysis to find the set of possible causes. This kind of
method relies heavily on the analyst’s expertise, so it is
unlikely to achieve automated analysis. A major similarity
between this work and our work is that we both use a
graphical node to explicitly represent a statement or predicate
in the source code, which can assist analysts during auditing.
Some other similar work (e.g., [25, 26]) is also presented in
this branch of research.

In comparison to manual audits, using static analysis tools
to perform vulnerability discovery is much more popular.
Viega et al. [4] present ITS4, a practical tool, using basic
lexical analysis to identify security vulnerabilities in C and
C++ code. The idea is to extract lexical tokens from the
source code and then matches the vulnerable functions. Bush
et al. [27] propose PREfix to perform analysis on a set of
execution paths to track information. PREfix can find
security-related bugs, such as null pointer references and
memory leaks, in large programs. To find complex and subtle
vulnerabilities, many tools incorporate expert knowledge into
the identification of vulnerabilities. For example, to detect
buffer overflow vulnerabilities, Larochelle and Evans [11,
28] employ annotations to check whether the code being
analyzed is consistent with a set of particular properties.
Yamaguchi et al. [10] merge abstract syntax tree, control flow
graphs and program dependence graphs into a joint data
structure, in which analysts craft certain rules, known as
traversals, to facilitate vulnerabilities auditing.

Applying pointer analysis or taint analysis [29] to
vulnerability discovery is an important direction in static
program analysis. Dor et al. [30] first use pointer analysis
techniques to detect memory errors. Livshits and Lam [31]
suggest a taint-analysis method to find taint-style security
vulnerabilities, such as SQL injections and cross-site
scripting, in Java applications. Arzt et al. [23] present
FlowDroid for Android applications, which claims to be fully
context, flow, field and object-sensitive, thus reducing both

● ●

●

true

false

 a = new A ()
 x = a.g
 b = a.g
 sink1 (b.f)
 w = source1 ()
 x.f = w
 p = source2 ()
 if (p == isTaint)
 isSecure (p)
 sink2 (p)
 sink1 (b.f)

 nonsan (w)
 nonsan (w)
 nonsan (p)
 p == isTaint nonsan (p)
 p != isTaint nonsan (p)

Figure 9. Vulnerability net for the code given in Figure 8

381

false negatives and false positives. While pointer/taint
analysis approaches are valuable, most of them require
whole-program availability [32], i.e., a program being
analyzed must be complete.

To perform analyses on an incomplete program is another
branch of research. For example, defensive programming
[33, 34] is a technique for uncovering bugs during the
construction of programs. Human-Machine Pair
Programming [35, 36] allows the developer (i.e., the human)
and the computer (i.e., the machine) to work collaboratively
to discover vulnerabilities in the coding phase. Our approach
supports this kind of idea since a vulnerability net can be
generated when a program is still under construction.

VII. CONCLUSION AND FUTURE WORK
In this paper, we present an approach called vulnerability

nets, which can be used to detect security vulnerabilities in
source code. Specifically, the approach assists in finding
taint-style vulnerabilities such as buffer overflows, injection
vulnerabilities, and cross-site scripting vulnerabilities.
Vulnerability nets can perform analyses in an automatic
manner except that the analyst needs to help identify the
sanitizations for the purpose of reducing false alarms. On the
other hand, vulnerability nets provide a graphical view that
explicitly shows code information, which also benefits
manual audits. In the paper we describe the idea in detail,
including providing the definitions of vulnerability nets, the
ways of building and using vulnerability nets, plus their
algorithms. To demonstrate the feasibility, we also present a
case study on an example adapted from a real-world case, yet
there lacks a discussion of whether our approach is applicable
to large programs.

Despite the progress we have made in this work, there
remains a significant amount of work to be done. A number
of unsolved issues listed in the following are driving our
future research.

 Discussion of interprocedural analysis.
 Discussion of distinguishing the tainted values

between arguments in a method/function.
 More practical evaluation of the proposed approach.
 Extension of the proposed approach to handle

incomplete programs.

ACKNOWLEDGMENTS
This work was supported by JST SPRING, Grant Number

JPMJSP2132.

REFERENCES
[1] C. Easttom, Computer security fundamentals. Pearson IT

Certification, 2019.
[2] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, "Basic

concepts and taxonomy of dependable and secure computing,"
IEEE Transactions on Dependable and Secure Computing, vol.
1, no. 1, pp. 11-33, October 2004.

[3] K. Goseva-Popstojanova and J. Tyo, "Experience report:
security vulnerability profiles of mission critical software:
empirical analysis of security related bug reports," IEEE 28th

International Symposium on Software Reliability Engineering
(ISSRE), pp. 152-163, October 2017.

[4] J. Viega, J.-T. Bloch, Y. Kohno, and G. McGraw, "ITS4: A
static vulnerability scanner for C and C++ code," Proceedings
16th Annual Computer Security Applications Conference
(ACSAC'00), pp. 257-267, December 2000.

[5] J. R. Larus et al., "Righting software," IEEE Software, vol. 21,
no. 3, 2004, pp. 92-100.

[6] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, "Buffer
overflows: Attacks and defenses for the vulnerability of the
decade," Proceedings DARPA Information Survivability
Conference and Exposition, DISCEX'00, vol. 2, pp. 119-129,
January 2000.

[7] S. Heelan, "Vulnerability detection systems: Think cyborg, not
robot," IEEE Security & Privacy, vol. 9, no. 3, 2011, pp. 74-
77.

[8] N. G. Leveson and P. R. Harvey, "Analyzing software safety,"
IEEE Transactions on Software Engineering, no. 5, 1983, pp.
569-579.

[9] N. G. Leveson, S. S. Cha, and T. J. Shimeall, "Safety
verification of ada programs using software fault trees," IEEE
Software, vol. 8, no. 4, 1991, pp. 48-59.

[10] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, "Modeling and
discovering vulnerabilities with code property graphs," IEEE
Symposium on Security and Privacy, pp. 590-604, May 2014.

[11] D. Larochelle and D. Evans, "Statically detecting likely buffer
overflow vulnerabilities," 10th USENIX Security Symposium,
pp. 177-190, August 2001.

[12] J. Vanegue and S. K. Lahiri, "Towards practical reactive
security audit using extended static checkers," IEEE
Symposium on Security and Privacy, pp. 33-47, May 2013.

[13] M. Zitser, R. Lippmann, and T. Leek, "Testing static analysis
tools using exploitable buffer overflows from open source
code," 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 97-106, October
2004.

[14] W. G. Halfond, J. Viegas, and A. Orso, "A classification of
SQL-injection attacks and countermeasures," Proceedings of
the IEEE International Symposium on Secure Software
Engineering, March 2006.

[15] Z. Su and G. Wassermann, "The essence of command injection
attacks in web applications," POPL '06: Conference Record of
the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 372-382, January 2006.

[16] N. Jovanovic, C. Kruegel, and E. Kirda, "Pixy: A static analysis
tool for detecting web application vulnerabilities," IEEE
Symposium on Security and Privacy (S&P'06), pp. 258-263,
May 2006.

[17] S. Gupta and B. B. Gupta, "Cross-Site Scripting (XSS) attacks
and defense mechanisms: classification and state-of-the-art,"
International Journal of System Assurance Engineering and
Management, vol. 8, no. 1, 2017, pp. 512-530.

[18] J. L. Peterson, Petri net theory and the modeling of systems.
Prentice-Hall, 1981.

[19] N. G. Leveson and J. L. Stolzy, "Safety analysis using Petri
nets," IEEE Transactions on Software Engineering, no. 3,
1987, pp. 386-397.

382

[20] J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The program
dependence graph and its use in optimization," ACM
Transactions on Programming Languages and Systems
(TOPLAS), vol. 9, no. 3, 1987, pp. 319-349.

[21] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
principles, techniques, & tools. Pearson Education India, 2007.

[22] F. Nielson, H. R. Nielson, and C. Hankin, Principles of
program analysis. Springer Science & Business Media, 2004.

[23] S. Arzt et al., "Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps,"
Proceedings of the 35th annual ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI
2014), pp. 259-269, June 2014.

[24] S. Horwitz, T. Reps, and D. Binkley, "Interprocedural slicing
using dependence graphs," ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 12, no.
1, 1990, pp. 26-60.

[25] S.-Y. Min, Y.-K. Jang, S.-D. Cha, Y.-R. Kwon, and D.-H. Bae,
"Safety verification of Ada95 programs using software fault
trees," Computer Safety, Reliability and Security, 18th
International Conference, SAFECOMP'99, pp. 226-238,
September 1999.

[26] Y. Oh, J. Yoo, S. Cha, and H. S. Son, "Software safety analysis
of function block diagrams using fault trees," Reliability
Engineering & System Safety, vol. 88, no. 3, 2005, pp. 215-
228.

[27] W. R. Bush, J. D. Pincus, and D. J. Sielaff, "A static analyzer
for finding dynamic programming errors," Software: Practice
and Experience, vol. 30, no. 7, 2000, pp. 775-802.

[28] D. Evans and D. Larochelle, "Improving security using
extensible lightweight static analysis," IEEE Software, vol. 19,
no. 1, 2002, pp. 42-51.

[29] N. Grech and Y. Smaragdakis, "P/taint: Unified points-to and
taint analysis," Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, 2017, pp. 1-28.

[30] N. Dor, M. Rodeh, and M. Sagiv, "Detecting memory errors
via static pointer analysis (preliminary experience),"
Proceedings of the 1998 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis For Software Tools and
Engineering, pp. 27-34, June 1998.

[31] V. B. Livshits and M. S. Lam, "Finding security vulnerabilities
in java applications with static analysis," Proceedings of the
14th USENIX Security Symposium, pp. 271-286, July-August
2005.

[32] Y. Smaragdakis and G. Balatsouras, "Pointer analysis,"
Foundations and Trends in Programming Languages, vol. 2,
no. 1, 2015, pp. 1-69.

[33] F. Schindler, "Coping with security in programming," Acta
Polytechnica Hungarica, vol. 3, no. 2, 2006, pp. 65-72.

[34] J. K. Teto, R. Bearden, and D. C.-T. Lo, "The impact of
defensive programming on i/o cybersecurity attacks,"
Proceedings of the 2017 ACM Southeast Regional Conference,
pp. 102-111, April 2017.

[35] S. Liu, "Software construction monitoring and predicting for
Human-Machine Pair Programming," 8th International
Workshop, SOFL+MSVL 2018, pp. 3-20, November 2018.

[36] P. Wang, S. Liu, A. Liu, and F. Zaidi, "A framework for
modeling and detecting security vulnerabilities in Human-
Machine Pair Programming," Journal of Internet Technology,
vol. 23, no. 5, 2022, pp. 1129-1138.

383

